JPH04325080A - Amplifier of deoxyribonucleic acid - Google Patents

Amplifier of deoxyribonucleic acid

Info

Publication number
JPH04325080A
JPH04325080A JP9549891A JP9549891A JPH04325080A JP H04325080 A JPH04325080 A JP H04325080A JP 9549891 A JP9549891 A JP 9549891A JP 9549891 A JP9549891 A JP 9549891A JP H04325080 A JPH04325080 A JP H04325080A
Authority
JP
Japan
Prior art keywords
temperature
reaction liquid
deoxyribonucleic acid
reaction solution
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9549891A
Other languages
Japanese (ja)
Other versions
JP3120466B2 (en
Inventor
Sanpei Usui
臼井 三平
Masahiko Fujita
雅彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03095498A priority Critical patent/JP3120466B2/en
Publication of JPH04325080A publication Critical patent/JPH04325080A/en
Application granted granted Critical
Publication of JP3120466B2 publication Critical patent/JP3120466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain the title device constituted so as to carry out PCR method in such state as to hold both ends of reaction liquid put into a capillary by air, etc., made operation such as removal of mineral oil and sealing by combustion gas unnecessary and capable of carrying out the PCR method in a short time. CONSTITUTION:A capillary 1 is put into a heating medium 21 kept at a temperature for modifying a reaction liquid 11 containing a deoxyribonucleic acid to be amplified and then a reaction liquid feed port 2, the capillary 1 and reaction liquid discharge port 4 communicate with operating three-way valve and stop valve 7. Then the reaction liquid 11 is introduced from the feed port 2 into the capillary 1 and then a gas feed port 3 communicates with the capillary 1 to feed the gas so as to carry the reaction liquid 11 at prescribed position in the capillary 1. The capillary 1 is put into a heating medium 22 of annealing temperature at a point when the reaction liquid 11 attained heat distortion temperature and then put into the heating medium 23 kept to polymerization temperature at a point when the reaction liquid 11 attained annealing temperature. The above-mentioned operation is repeated to carry out PCR method and then a gas is fed from the gas feed port 3 and the reaction liquid 11 is discharged from the discharge port 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はPCR法を使ったデオキ
シリボ核酸の増幅装置に関し、特に反応液の容器として
毛細管等の細管を使用したデオキシリボ核酸の増幅装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for amplifying deoxyribonucleic acid using the PCR method, and more particularly to an apparatus for amplifying deoxyribonucleic acid using a thin tube such as a capillary tube as a container for a reaction solution.

【0002】0002

【従来の技術】PCR法を使ったデオキシリボ核酸の増
幅装置の従来技術として、特開昭62−240862号
が開示されている。また、反応液の容器として毛細管を
使用する方法がアナリティカル・バイオケミストリ,1
86(1990)第328頁から331頁(Analy
tical Biochemistry  186(1
990)pp328−331)に記載されている。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 62-240862 discloses a prior art device for amplifying deoxyribonucleic acid using the PCR method. In addition, a method using a capillary tube as a container for the reaction solution is used in Analytical Biochemistry, 1.
86 (1990), pp. 328-331 (Analy
tical Biochemistry 186 (1
990) pp328-331).

【0003】0003

【発明が解決しようとする課題】しかしながら、上記特
開昭62−240862号が開示している従来技術は反
応液の容器として使い捨ての蓋付のプラスチック容器(
例えば、0.5ml のマイクロヒュージチューブ)の
使用を想定し、およそ0.1ml 程度の反応液を前記
した使い捨ての蓋付のプラスチック容器に入れ、さらに
反応液の上層に反応液中の水分の蒸発を防止するための
鉱物油を重畳し、およそ95℃程度の熱変性温度、およ
そ55℃程度のアニーリング温度、およそ70℃程度の
重合温度の順に、通常数十回繰返し温度変化させてPC
R法を行わせ、デオキシリボ核酸の増幅を行っているが
、増幅反応終了後、鉱物油の除去工程が必要となる欠点
がある。また、使い捨ての蓋付のプラスチック容器は、
熱容量も大きく、反応液への熱伝達も悪いため、PCR
法を行う時間が長くなる欠点がある。一方、上記アナリ
ティカル・バイオケミストリ,186(1990)第3
28頁から331頁が開示している従来技術は反応液の
容器として毛細管を使用し、反応液を毛細管の中に入れ
た後、毛細管の両端を燃焼ガスで封止することにより、
反応液中の水分の蒸発を防止するとともに、容器の熱容
量を小さくし、かつ反応液への熱伝達を良くしてPCR
法を行う時間を短くしているが、毛細管の両端を燃焼ガ
スで封止する操作、増幅反応終了後、封止した毛細管か
ら反応液を取り出す操作が必要となる欠点がある。また
、PCR法を用いたDNAの増幅は、遺伝子解析や遺伝
子診断等の一工程であり、その前後には目的DNAの抽
出,シーケンス反応等の工程があるので、それら前後の
工程との継続性が重要であるにもかかわらず、従来技術
では前後の工程との継続性に対する考慮がなされていな
い。
However, the prior art disclosed in JP-A No. 62-240862 uses a disposable plastic container with a lid as a container for the reaction solution.
For example, assuming the use of a 0.5 ml microfuge tube (for example, a 0.5 ml microfuge tube), approximately 0.1 ml of the reaction solution is placed in the above-mentioned disposable plastic container with a lid. Mineral oil is superimposed to prevent this, and the temperature is changed repeatedly several dozen times in the following order: heat denaturation temperature of about 95 degrees Celsius, annealing temperature of about 55 degrees Celsius, and polymerization temperature of about 70 degrees Celsius.
Although the R method is used to amplify deoxyribonucleic acid, it has the disadvantage that a mineral oil removal step is required after the amplification reaction is completed. In addition, disposable plastic containers with lids are
PCR has a large heat capacity and poor heat transfer to the reaction solution.
The disadvantage is that it takes a long time to perform the dharma. On the other hand, the above-mentioned Analytical Biochemistry, 186 (1990) No. 3
The prior art disclosed on pages 28 to 331 uses a capillary tube as a container for the reaction liquid, and after putting the reaction liquid into the capillary tube, both ends of the capillary tube are sealed with combustion gas.
In addition to preventing evaporation of water in the reaction solution, the heat capacity of the container is reduced, and heat transfer to the reaction solution is improved to improve PCR performance.
Although the time required for performing the method is shortened, there are disadvantages in that it is necessary to seal both ends of the capillary tube with combustion gas, and to take out the reaction liquid from the sealed capillary tube after the amplification reaction is completed. In addition, DNA amplification using the PCR method is a step such as gene analysis and genetic diagnosis, and before and after it there are steps such as extraction of target DNA and sequence reaction, so it is important to check the continuity between these steps. Despite the importance of this process, conventional techniques do not consider continuity with previous and subsequent processes.

【0004】本発明の目的は、前記従来技術の欠点に鑑
みてなしたもので、鉱物油の除去工程を不要とし、PC
R法を行う時間を短くし、毛細管の両端を燃焼ガスで封
止する操作、ならびに封止した毛細管から反応液を取り
出す操作を不要とするとともに、PCR法を用いたDN
Aの増幅工程の前後の工程との継続性にも考慮した、デ
オキシリボ核酸の増幅装置を提供することにある。
[0004] The object of the present invention was made in view of the drawbacks of the prior art.
It shortens the time required to perform the R method, eliminates the need for sealing both ends of the capillary tube with combustion gas, and removing the reaction solution from the sealed capillary tube.
The object of the present invention is to provide a deoxyribonucleic acid amplification device that takes into consideration continuity with the steps before and after the amplification step A.

【0005】[0005]

【課題を解決するための手段】上記目的は、反応液の気
液界面からの水分蒸発が細管内の反応液を流体で封止す
ることで実質的に防止できることに着目して、反応液を
毛細管等の細管の中に入れ、前記した反応液を空気もし
くは他のガスで両端を挾みこんだ状態にしてPCR法を
行わせることにより達成される。
[Means for Solving the Problems] The above object is achieved by focusing on the fact that water evaporation from the gas-liquid interface of a reaction liquid can be substantially prevented by sealing the reaction liquid in a capillary with a fluid. This is achieved by placing the reaction solution in a thin tube such as a capillary tube, sandwiching both ends of the reaction solution with air or other gas, and performing the PCR method.

【0006】[0006]

【作用】PCR法を行うために反応液は、およそ95℃
程度の熱変性温度、およそ55℃程度のアニーリング温
度、およそ70℃程度の重合温度の順に、通常数十回繰
返し温度変化させられ、その際、水分蒸発が起きると反
応液の組成が変化しPCR法が目的どおりに行えない。 しかしながら、反応液からの水分蒸発は反応液と流体と
の界面で起きるので、前記界面の面積を十分小さくすれ
ば水分蒸発を十分小さくでき、PCR法を行う場合に支
障を生じない程度の反応液の組成変化にすることができ
る。更に前記流体で反応液の移送を制御できるから、P
CR法を用いたDNAの増幅工程の前後の工程との継続
性にも考慮した、デオキシリボ核酸の増幅装置が容易に
実現できる。
[Operation] In order to perform the PCR method, the reaction solution should be approximately 95°C.
The temperature is usually changed several dozen times in the following order: thermal denaturation temperature of approximately 55°C, annealing temperature of approximately 55°C, and polymerization temperature of approximately 70°C. At this time, when water evaporates, the composition of the reaction solution changes and PCR The law cannot be carried out as intended. However, since water evaporation from the reaction liquid occurs at the interface between the reaction liquid and the fluid, if the area of the interface is made sufficiently small, water evaporation can be sufficiently reduced, and the reaction liquid can be kept at a level that does not cause problems when performing PCR. The composition can be changed. Furthermore, since the transfer of the reaction solution can be controlled using the fluid, P
It is possible to easily realize a deoxyribonucleic acid amplification device that takes into consideration the continuity between the steps before and after the DNA amplification step using the CR method.

【0007】[0007]

【実施例】図1は一実施例を示す構成図で、1は内径が
約1mmの毛細管、2は反応液供給口、3はガス給気口
、4は反応液排出口、6は三方弁、7は止め弁である。 8は毛細管支持具、9は毛細管移動機構であり、これに
より毛細管支持具8の位置を制御する。両者の詳細は省
略するが、要はスムーズに移動が制御できれば任意の構
成が取り得る。21a,22a,23aは、それぞれ容
器である。21,22,23は熱媒体で、それぞれ容器
21a,22a,23aに入っている。それぞれの熱媒
体は、反応液の変性温度,アニーリング温度,重合温度
に維持されている。11は反応液であり、毛細管内にガ
スにより封止されている状態である。以下、図1に従っ
て動作を説明する。予め毛細管1内や三方弁6止め弁7
などの反応液の通過する部分を反応液の代わりに洗浄液
を流すことにより反応液の汚染を防止し、毛細管移動機
構9により毛細管支持具8によって毛細管1を熱媒体2
1の中に入れたのち、三方弁6,止め弁7を操作し、そ
れぞれ反応液供給口2と毛細管1,毛細管1と反応液排
出口4とを連通させる。反応液11を反応液供給口2よ
り毛細管1の中に入れたのち、三方弁6を操作しガス給
気口3と毛細管1とを連通させ、反応液11が毛細管1
内の所定の位置に来るようにガス給気口3よりガスを供
給する。所定の時間後反応液11が熱変性温度になった
ら、毛細管支持具8に連結された毛細管移動機構9を動
作させて毛細管1を熱媒体22の中に入れる。所定の時
間後反応液11がアニーリング温度になったら、毛細管
支持具8に連結された毛細管移動機構9を動作させて毛
細管1を熱媒体23の中に入れる。所定の時間後反応液
11が重合温度になったら、毛細管支持具8に連結され
た毛細管移動機構9を動作させて毛細管1を熱媒体21
の中に入れる。以下、毛細管1の移動をおなじ順序で繰
り返し所定の回数だけ熱変性温度,アニーリング温度,
重合温度の順に反応液を温度変化させてPCR法を実施
したのち、ガス給気口3よりガスを供給して反応液11
を反応液排出口4より排出する。以上の動作のなかで、
三方弁6を操作しガス給気口3と毛細管1とを連通させ
、反応液11が毛細管1内の所定の位置に来るようにガ
ス給気口3よりガスを供給する際に、止め弁7を操作し
毛細管1内に適当な内圧がかかるようにしてもよい。 このようにすると仮りに反応液11中に微量の空気等の
ガスが混入していても反応液の温度変化によるガスの膨
張に伴う反応液の分断を防止できる効果がある。
[Example] Fig. 1 is a configuration diagram showing an example, in which 1 is a capillary tube with an inner diameter of about 1 mm, 2 is a reaction liquid supply port, 3 is a gas supply port, 4 is a reaction liquid outlet, and 6 is a three-way valve. , 7 is a stop valve. 8 is a capillary support, and 9 is a capillary moving mechanism, which controls the position of the capillary support 8. The details of both will be omitted, but the point is that any configuration can be used as long as the movement can be controlled smoothly. 21a, 22a, and 23a are containers, respectively. Reference numerals 21, 22, and 23 are heat carriers contained in containers 21a, 22a, and 23a, respectively. Each heat medium is maintained at the denaturation temperature, annealing temperature, and polymerization temperature of the reaction solution. Reference numeral 11 denotes a reaction liquid, which is sealed in a capillary tube with gas. The operation will be explained below according to FIG. In advance, the inside of the capillary tube 1 or the three-way valve 6 stop valve 7
Contamination of the reaction liquid is prevented by flowing a cleaning liquid instead of the reaction liquid through the part through which the reaction liquid passes, and the capillary 1 is moved by the capillary support 8 by the capillary movement mechanism 9 into the heating medium 2.
1, the three-way valve 6 and the stop valve 7 are operated to connect the reaction liquid supply port 2 and the capillary tube 1, and the capillary tube 1 and the reaction liquid discharge port 4, respectively. After putting the reaction liquid 11 into the capillary tube 1 from the reaction liquid supply port 2, the three-way valve 6 is operated to communicate the gas supply port 3 and the capillary tube 1, so that the reaction liquid 11 flows into the capillary tube 1.
Gas is supplied from the gas supply port 3 so as to reach a predetermined position within the gas supply port 3. When the reaction liquid 11 reaches the heat denaturation temperature after a predetermined period of time, the capillary moving mechanism 9 connected to the capillary support 8 is operated to place the capillary 1 into the heat medium 22. When the reaction liquid 11 reaches the annealing temperature after a predetermined period of time, the capillary moving mechanism 9 connected to the capillary support 8 is operated to place the capillary tube 1 into the heat medium 23. When the reaction liquid 11 reaches the polymerization temperature after a predetermined time, the capillary moving mechanism 9 connected to the capillary support 8 is operated to move the capillary 1 to the heat medium 21.
put it inside. Hereinafter, the movement of the capillary tube 1 is repeated in the same order a predetermined number of times at the heat denaturation temperature, annealing temperature,
After carrying out the PCR method by changing the temperature of the reaction solution in the order of the polymerization temperature, gas is supplied from the gas supply port 3 to form the reaction solution 11.
is discharged from the reaction liquid outlet 4. Among the above operations,
When operating the three-way valve 6 to connect the gas supply port 3 and the capillary tube 1 and supplying gas from the gas supply port 3 so that the reaction liquid 11 comes to a predetermined position in the capillary tube 1, the stop valve 7 is operated. It is also possible to apply an appropriate internal pressure to the capillary tube 1 by manipulating the capillary tube 1. In this way, even if a small amount of gas such as air is mixed into the reaction liquid 11, it is possible to prevent the reaction liquid from being divided due to expansion of the gas due to a temperature change of the reaction liquid.

【0008】いま一例として、内径1mm,外径2mm
のプラスチック製の毛細管を用い、反応液を毛細管に入
れた状態で95℃の熱変性温度から55℃のアニーリン
グ温度の温水中に毛細管を入れたときの反応液の温度変
化を数値計算で求め、反応液の平均温度の時間変化とし
てしめすと図2のようになる。この図から反応液の温度
が約15秒で95℃の熱変性温度からほぼ55℃のアニ
ーリング温度になることが分かる。即ち、毛細管の移動
時間を入れても熱変性温度,アニーリング温度,重合温
度の一連の温度変化に要する時間は約1分程度でありそ
れを30回程度繰り返しても約30分でPCR法を実施
できる。計算結果は示さないが、内外径をそれぞれ1/
2にすれば約15分でPCR法を実施できる。
[0008] As an example, the inner diameter is 1 mm and the outer diameter is 2 mm.
Using a plastic capillary tube, the temperature change of the reaction solution was determined by numerical calculation when the reaction solution was placed in hot water with a heat denaturation temperature of 95 degrees Celsius and an annealing temperature of 55 degrees Celsius. Figure 2 shows the change in the average temperature of the reaction solution over time. It can be seen from this figure that the temperature of the reaction solution changes from the thermal denaturation temperature of 95° C. to the annealing temperature of approximately 55° C. in about 15 seconds. In other words, even if you include the capillary movement time, the time required for a series of temperature changes of heat denaturation temperature, annealing temperature, and polymerization temperature is about 1 minute, and even if you repeat this process about 30 times, it will take about 30 minutes to carry out the PCR method. can. Although calculation results are not shown, the inner and outer diameters are each 1/
If it is set to 2, the PCR method can be carried out in about 15 minutes.

【0009】図3は他の実施例を示す構成図で、1は毛
細管、2は反応液供給口、3,5はガス給排気口、4は
反応液排出口、61,62は三方弁、21,22,23
は熱媒体、21a,22a,23aは容器で、これに入
っている熱媒体はそれぞれ熱変性温度,アニーリング温
度,重合温度に維持されている。11は反応液である。 図3の実施例は、図1のそれに比し毛細管1の移動に代
え反応液11自体を移動させることとしたものである。 以下、図3に従って動作を説明する。予め毛細管1内や
三方弁61,62などの反応液の通過する部分を反応液
の代わりに洗浄液を流すことにより反応液の汚染を防止
したのち、三方弁61,62を操作し、それぞれ反応液
供給口2と毛細管1,毛細管1とガス給排気口5とを連
通させる。反応液11を反応液供給口2より毛細管1の
中に入れたのち、三方弁61を操作しガス給排気口3と
毛細管1とを連通させ、反応液11が熱媒体21に浸っ
ている毛細管1内の所定の位置に来るようにガス給排気
口3よりガスを供給する。所定の時間後反応液11が熱
変性温度になったら、反応液11が熱媒体22に浸って
いる毛細管1内の所定の位置に来るようにガス給排気口
3よりガスを供給する。所定の時間後反応液11がアニ
ーリング温度になったら、反応液11が熱媒体23に浸
っている毛細管1内の所定の位置に来るようにガス給排
気口3よりガスを供給する。所定の時間後反応液11が
重合温度になったら、反応液11が熱媒体21に浸って
いる毛細管1内の所定の位置に来るようにガス給排気口
5よりガスを供給する。以下、反応液11の毛細管1内
での移動を繰り返し所定の回数だけ熱変性温度,アニー
リング温度,重合温度の順に反応液を温度変化させてP
CR法を実施したのち、三方弁62を操作し毛細管1と
反応液排出口4とを連通させ、ガス給排気口3よりガス
を供給して反応液11を反応液排出口4より排出する。 勿論、反応液を繰返しのために逆送するときは短時間で
戻るように制御することとして、この逆送による影響の
無いようにすることはいうまでもない。また、ガス給排
気口3,5よりガスを供給して反応液11の毛細管1内
での移動を繰り返す場合に毛細管1内に適当な内圧がか
かるようにしてもよい。この効果は第1の実施例と同様
である。本実施例で、第1の実施例と同一の寸法の毛細
管を使用した場合、毛細管は既に目的の温度になってい
るので反応液の温度が目的の温度になるのに要する時間
は第1の実施例より短いことが容易に類推される。また
、本発明では、反応液の移動がガスの給排気によりおこ
なわれるため、可動部がほとんどなく、安価で信頼性の
高い装置とすることができる効果がある。
FIG. 3 is a configuration diagram showing another embodiment, in which 1 is a capillary tube, 2 is a reaction liquid supply port, 3 and 5 are gas supply and exhaust ports, 4 is a reaction liquid discharge port, 61 and 62 are three-way valves, 21, 22, 23
21a, 22a, and 23a are containers, and the heating media contained therein are maintained at a heat denaturation temperature, an annealing temperature, and a polymerization temperature, respectively. 11 is a reaction solution. The embodiment shown in FIG. 3 is different from that shown in FIG. 1 in that the reaction liquid 11 itself is moved instead of the capillary tube 1 being moved. The operation will be explained below according to FIG. After preventing contamination of the reaction liquid by flowing a cleaning liquid instead of the reaction liquid through the capillary tube 1 and the three-way valves 61 and 62, which pass through the reaction liquid, the three-way valves 61 and 62 are operated to remove the reaction liquid. The supply port 2 and the capillary tube 1 are communicated with each other, and the capillary tube 1 and the gas supply/exhaust port 5 are communicated with each other. After introducing the reaction liquid 11 into the capillary tube 1 from the reaction liquid supply port 2, the three-way valve 61 is operated to connect the gas supply/exhaust port 3 and the capillary tube 1, and the capillary tube in which the reaction liquid 11 is immersed in the heat medium 21 is opened. Gas is supplied from the gas supply/exhaust port 3 so as to reach a predetermined position within the gas supply/exhaust port 1. After a predetermined time, when the reaction liquid 11 reaches the heat denaturation temperature, gas is supplied from the gas supply/exhaust port 3 so that the reaction liquid 11 comes to a predetermined position in the capillary tube 1 immersed in the heat medium 22. After a predetermined time, when the reaction liquid 11 reaches the annealing temperature, gas is supplied from the gas supply/exhaust port 3 so that the reaction liquid 11 comes to a predetermined position in the capillary tube 1 immersed in the heat medium 23. When the reaction liquid 11 reaches the polymerization temperature after a predetermined period of time, gas is supplied from the gas supply/exhaust port 5 so that the reaction liquid 11 comes to a predetermined position in the capillary tube 1 immersed in the heat medium 21 . Hereinafter, the movement of the reaction liquid 11 in the capillary tube 1 is repeated a predetermined number of times, changing the temperature of the reaction liquid in the order of heat denaturation temperature, annealing temperature, and polymerization temperature.
After carrying out the CR method, the three-way valve 62 is operated to connect the capillary tube 1 and the reaction liquid discharge port 4, gas is supplied from the gas supply/exhaust port 3, and the reaction liquid 11 is discharged from the reaction liquid discharge port 4. Of course, when the reaction solution is sent back for repetition, it goes without saying that it should be controlled so that it returns in a short time so that there is no influence due to this back delivery. Further, when the reaction liquid 11 is repeatedly moved within the capillary tube 1 by supplying gas from the gas supply/exhaust ports 3 and 5, an appropriate internal pressure may be applied within the capillary tube 1. This effect is similar to that of the first embodiment. In this example, if a capillary tube with the same dimensions as in the first example is used, the capillary tube is already at the target temperature, so the time required for the temperature of the reaction solution to reach the target temperature is the same as the first example. It can be easily inferred that it is shorter than the example. Further, in the present invention, since the movement of the reaction liquid is performed by supplying and exhausting gas, there are almost no moving parts, and there is an advantage that the apparatus can be made inexpensive and highly reliable.

【0010】図4は更に他の実施例を示す構成図で、1
は毛細管で螺旋状に巻かれている。2は反応液供給口、
3はガス給気口、4は反応液排出口、6は三方弁である
FIG. 4 is a block diagram showing still another embodiment.
is spirally wound in a capillary tube. 2 is a reaction liquid supply port,
3 is a gas supply port, 4 is a reaction liquid outlet, and 6 is a three-way valve.

【0011】31,32,33はヒートブロックでそれ
ぞれ熱変性温度,アニーリング温度,重合温度に維持さ
れており、毛細管1は、これに熱的に十分接触した状態
で螺旋状に巻かれている。11は反応液である。毛細管
1の螺旋巻数は熱変性温度,アニーリング温度,重合温
度の順に温度変化を繰り返すPCR法の必要な回数以上
にする。以下、図4に従って動作を説明する。予め毛細
管1内や三方弁6などの反応液の通過する部分を反応液
の代わりに洗浄液を流すことにより反応液の汚染を防止
し、三方弁6を操作し、反応液供給口2と毛細管1とを
連通させる。反応液11を反応液供給口2より毛細管1
の中に入れたのち、三方弁6を操作しガス給気口3と毛
細管1とを連通させ、反応液11がヒートブロック31
の所定の位置に来るようにガス給気口3よりガスを供給
する。所定の時間後反応液11が熱変性温度になったら
、反応液11がヒートブロック32の所定の位置に来る
ようにガス給気口3よりガスを供給する。所定の時間後
反応液11がアニーリング温度になったら、反応液11
がヒートブロック33の所定の位置に来るようにガス給
気口3よりガスを供給する。以下、同様の操作を繰り返
し所定の回数だけ熱変性温度,アニーリング温度,重合
温度の順に反応液を温度変化させてPCR法を実施した
のち、ガス給気口3よりガスの供給速度を前記した速度
より速くして連続供給し、反応液11を反応液排出口4
より排出する。前記した動作のなかで反応液11が移動
中に目的の温度になるように給気口3からのガス供給速
度を適当に制御すれば、ガスの供給を連続的におこなっ
てもPCR法を実施できる。なお、反応液排出口4の前
後の適当な位置に絞り等の流体抵抗素子を設け毛細管1
内に適当な内圧がかかるようにしてもよい。この効果は
第1の実施例と同様である。本実施例で、第1の実施例
と同一の寸法の毛細管を使用した場合、毛細管は既に目
的の温度になっているので反応液の温度が目的の温度に
なるのに要する時間は第1の実施例より短いことが容易
に類推される。また、本実施例では、反応液が一方向に
移動することによりPCR法が行われるためガスの給気
制御が容易であるとともに、反応液を不適切な温度状態
にある場所を逆送する必要が無いから制御を高精度にで
きる。更に可動部がほとんどなく、安価で信頼性の高い
装置とすることができる効果がある。
[0011] Reference numerals 31, 32, and 33 are heat blocks that are maintained at a heat denaturation temperature, an annealing temperature, and a polymerization temperature, respectively, and the capillary tube 1 is wound in a spiral shape while being in sufficient thermal contact with these blocks. 11 is a reaction solution. The number of spiral turns of the capillary tube 1 is set to be greater than the number of times required for the PCR method, in which temperature changes are repeated in the order of heat denaturation temperature, annealing temperature, and polymerization temperature. The operation will be explained below according to FIG. Contamination of the reaction liquid is prevented by flowing a washing liquid instead of the reaction liquid through the capillary tube 1 and the three-way valve 6 through which the reaction liquid passes. communicate with. Reaction liquid 11 is transferred from reaction liquid supply port 2 to capillary tube 1.
After putting the reaction liquid 11 into the heat block 31, the three-way valve 6 is operated to connect the gas supply port 3 and the capillary tube 1.
Gas is supplied from the gas supply port 3 so that the gas is at a predetermined position. When the reaction liquid 11 reaches the heat denaturation temperature after a predetermined time, gas is supplied from the gas supply port 3 so that the reaction liquid 11 comes to a predetermined position of the heat block 32. When the reaction liquid 11 reaches the annealing temperature after a predetermined time, the reaction liquid 11
Gas is supplied from the gas supply port 3 so that the heat block 33 is at a predetermined position. After repeating the same operation a predetermined number of times and changing the temperature of the reaction solution in the order of heat denaturation temperature, annealing temperature, and polymerization temperature to carry out the PCR method, the gas supply rate from the gas supply port 3 was changed to the above-mentioned rate. Continuously supply the reaction liquid 11 to the reaction liquid outlet 4.
Emit more. If the gas supply rate from the air supply port 3 is appropriately controlled so that the reaction liquid 11 reaches the target temperature during movement during the above-described operation, the PCR method can be carried out even if the gas is continuously supplied. can. In addition, fluid resistance elements such as throttles are provided at appropriate positions before and after the reaction liquid outlet 4 to connect the capillary tube 1.
Appropriate internal pressure may be applied inside. This effect is similar to that of the first embodiment. In this example, if a capillary tube with the same dimensions as in the first example is used, the capillary tube is already at the target temperature, so the time required for the temperature of the reaction solution to reach the target temperature is the same as the first example. It can be easily inferred that it is shorter than the example. In addition, in this example, since the PCR method is performed by moving the reaction liquid in one direction, it is easy to control the gas supply, and there is no need to send the reaction liquid back to a place where the temperature is inappropriate. Since there is no Furthermore, there are almost no moving parts, which has the effect of making the device inexpensive and highly reliable.

【0012】反応液の界面での蒸発量について概算して
みると次のようである。
The amount of evaporation of the reaction liquid at the interface is estimated as follows.

【0013】前記の蓋付のプラスチック容器に反応液を
入れたときの界面の面積はおよそ35mm2 、一方、
内径1mmの毛細管では両端合わせて約1.6mm2で
あるから界面の面積は1/20以下になる。必要に応じ
てさらに細い内径の毛細管の使用すれば、界面の面積を
さらに小さくすることも容易である。界面の面積を小さ
くすれば、水分蒸発を十分小さくできることは以下の事
実でも証明される。内径1mmのプラスチック製の毛細
管を用い、前記毛細管の中に反応液を入れ、前記した反
応液を空気で両端を挾みこんだ状態にして95℃の恒温
室に10分入れておいても、水分蒸発量は0.1% 程
度であった。温度が低ければ水分蒸発量がさらに小さく
なることは自明である。すなわち、内径1mm程度以下
の毛細管を反応液の容器として用い、前記毛細管の中に
反応液を入れ、前記した反応液を空気もしくは他のガス
で両端を挾みこんだ状態にすれば、従来技術で使用して
いる鉱物油を使用しなくてよく、また、アナリティカル
・バイオケミストリ,186(1990)第328頁か
ら331頁(Analytical Biochemi
stry  186(1990)pp328−331)
に提示されているように毛細管の前後を封止しなくても
PCR法を行う場合に支障を生じない程度の反応液の組
成変化で目的とするPCR法が行える。
[0013] When the reaction solution is poured into the plastic container with a lid, the area of the interface is approximately 35 mm2;
In a capillary tube with an inner diameter of 1 mm, the total area of both ends is about 1.6 mm2, so the area of the interface is less than 1/20. If necessary, the area of the interface can be easily made even smaller by using a capillary tube with a smaller inner diameter. The following fact also proves that water evaporation can be sufficiently reduced by reducing the area of the interface. Using a plastic capillary tube with an inner diameter of 1 mm, the reaction solution is put into the capillary tube, and even if the reaction solution is placed in a constant temperature room at 95°C for 10 minutes with both ends sandwiched with air, no moisture remains. The amount of evaporation was about 0.1%. It is obvious that the lower the temperature, the smaller the amount of water evaporation. That is, if a capillary tube with an inner diameter of about 1 mm or less is used as a container for the reaction liquid, the reaction liquid is put into the capillary tube, and both ends of the reaction liquid are sandwiched between air or other gas, the conventional technique can be used. It is not necessary to use the mineral oil that is currently used, and the mineral oil used in
186 (1990) pp328-331)
As proposed in 2006, the desired PCR method can be performed without sealing the front and rear of the capillary tube with a change in the composition of the reaction solution that does not cause any trouble when performing the PCR method.

【0014】[0014]

【発明の効果】以上説明したように本発明によれば、前
記従来技術の欠点である、鉱物油の除去工程あるいは、
毛細管の両端を燃焼ガスで封止する操作、ならびに封止
した毛細管から反応液を取り出す操作が不要で、かつ、
短時間で処理できるPCR法が実現できるだけでなく、
反応液の供給,排出がそれぞれPCR法の前処理工程,
後処理工程と連続できるよう工夫されているので、PC
R法を用いたDNAの増幅工程の前後の工程との継続性
のあるデオキシリボ核酸の増幅装置が実現できる。
As explained above, according to the present invention, the process of removing mineral oil, which is a drawback of the prior art, or
It is not necessary to seal both ends of the capillary tube with combustion gas and to take out the reaction liquid from the sealed capillary tube, and
Not only is it possible to realize a PCR method that can be processed in a short time, but
The supply and discharge of the reaction solution are the pretreatment steps of the PCR method, respectively.
Since it is designed to be continuous with the post-processing process, PC
It is possible to realize a deoxyribonucleic acid amplification device that has continuity between the steps before and after the DNA amplification step using the R method.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】反応液の平均温度変化の一例を示す図である。FIG. 2 is a diagram showing an example of an average temperature change of a reaction solution.

【図3】本発明の他の実施例を示す構成図である。FIG. 3 is a configuration diagram showing another embodiment of the present invention.

【図4】本発明の他の実施例を示す構成図である。FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…毛細管、2…反応液供給口、3…ガス給気口、4…
反応液排出口、5…ガス給排気口、6,61,62…三
方弁、7は止め弁、21,22,23…熱媒体、31,
32,33…ヒートブロック
1... Capillary tube, 2... Reaction liquid supply port, 3... Gas supply port, 4...
Reaction liquid discharge port, 5... Gas supply/exhaust port, 6, 61, 62... Three-way valve, 7 is a stop valve, 21, 22, 23... Heat medium, 31,
32, 33...Heat block

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】増幅すべきデオキシリボ核酸を含む反応液
を収容した細管、前記細管内に前記反応液を送りこむた
めの装置、前記細管部分を所定の温度に制御するための
装置よりなり、前記細管内の反応液はこの反応液を送り
こむための流体で細管内の所定の位置に封止され且つ所
定の位置に移送されることを特徴とするデオキシリボ核
酸の増幅装置。
1. A thin tube containing a reaction solution containing deoxyribonucleic acid to be amplified, a device for feeding the reaction solution into the thin tube, and a device for controlling the temperature of the thin tube at a predetermined temperature. 1. A deoxyribonucleic acid amplification device, characterized in that a reaction liquid within the tube is sealed at a predetermined position within the tube with a fluid for transporting the reaction liquid, and is transferred to a predetermined position.
【請求項2】増幅すべきデオキシリボ核酸、前記デオキ
シリボ核酸の一部と相補的なDNAプライマ,アデニン
,チミン,グアニン,シトシンのデオキシリボヌクレオ
チド,DNAポリメラーゼなどを混合した反応液を空気
もしくは他のガスで両端を挾みこんだ状態で細管の中に
入れ、二本鎖デオキシリボ核酸を一本鎖デオキシリボ核
酸に分離させるための熱変性温度を実現する手段と、前
記一本鎖デオキシリボ核酸とDNAプライマとを結合さ
せるアニーリング温度を実現する手段と、DNAポリメ
ラーゼの作用により一本鎖デオキシリボ核酸と結合した
DNAプライマに一本鎖デオキシリボ核酸と相補的なデ
オキシリボヌクレオチドを重合させる重合温度を実現す
る手段との順で、繰返し所定回数だけ温度変化させるこ
とによりデオキシリボ核酸を増幅させるPCR法を自動
化したことを特徴とするデオキシリボ核酸の増幅装置。
[Claim 2] A reaction solution containing a mixture of deoxyribonucleic acid to be amplified, a DNA primer complementary to a portion of the deoxyribonucleic acid, deoxyribonucleotides such as adenine, thymine, guanine, and cytosine, and DNA polymerase is heated with air or other gas. The single-stranded deoxyribonucleic acid and the DNA primer are combined with a means for achieving a heat denaturation temperature for separating the double-stranded deoxyribonucleic acid into single-stranded deoxyribonucleic acid by placing the two ends in a tubule with the two ends sandwiched between them. a means for achieving an annealing temperature that causes the deoxyribonucleic acid to polymerize, and a means for realizing a polymerization temperature that causes the deoxyribonucleotide complementary to the single-stranded deoxyribonucleic acid to polymerize to the DNA primer bound to the single-stranded deoxyribonucleic acid by the action of DNA polymerase, 1. A deoxyribonucleic acid amplification device characterized by automating a PCR method for amplifying deoxyribonucleic acid by repeatedly changing the temperature a predetermined number of times.
【請求項3】細管の管路方向に熱変性温度と、アニーリ
ング温度と、重合温度との各温度条件を作る手段を設け
るとともに、細管の一方から空気もしくは他のガスを供
給もしくは除去することにより細管内の反応液を前記各
温度条件の位置に移動させ、反応液を繰返し所定の回数
だけ熱変性温度,アニーリング温度,重合温度の順に温
度変化させてPCR法を行わせることを特徴とする請求
項2記載のデオキシリボ核酸の増幅装置。
[Claim 3] By providing means for creating temperature conditions of a heat denaturation temperature, an annealing temperature, and a polymerization temperature in the pipe direction of the thin tube, and supplying or removing air or other gas from one side of the thin tube. A claim characterized in that the reaction solution in the capillary is moved to a position corresponding to each of the temperature conditions, and the temperature of the reaction solution is repeatedly changed a predetermined number of times in the order of heat denaturation temperature, annealing temperature, and polymerization temperature to perform the PCR method. Item 2. The deoxyribonucleic acid amplification device according to item 2.
【請求項4】細管を螺旋状に必要な回数だけ巻くととも
に、前記した螺旋状の細管の周方向に熱変性温度,アニ
ーリング温度,重合温度の各温度条件を作る手段を所定
の順に配置するとともに、細管の一方から空気もしくは
他のガスを間歇的もしくは連続的に所定の速度で供給す
ることにより細管内の反応液を一方向に移動させ、反応
液を熱変性温度,アニーリング温度,重合温度の順に温
度変化させてPCR法を行わせ且つこれを所定の回数だ
け繰返すことを特徴とする請求項2記載のデオキシリボ
核酸の増幅装置。
4. The thin tube is wound spirally a necessary number of times, and means for creating temperature conditions of a heat denaturation temperature, an annealing temperature, and a polymerization temperature are arranged in a predetermined order in the circumferential direction of the spiral thin tube. , the reaction liquid inside the tube is moved in one direction by supplying air or other gas intermittently or continuously at a predetermined rate from one side of the tube, and the reaction solution is heated to a temperature of denaturation temperature, annealing temperature, and polymerization temperature. 3. The deoxyribonucleic acid amplification apparatus according to claim 2, wherein the PCR method is performed by sequentially changing the temperature and is repeated a predetermined number of times.
【請求項5】前記繰返しは、反応液の温度変化が前記し
た熱変性温度,アニーリング温度,重合温度に達しない
ように細管内の反応液の移動が高速となるように細管の
一方から空気もしくは他のガスを供給することにより、
反応液が最初の位置に戻るように制御することを特徴と
する請求項4記載のデオキシリボ核酸の増幅装置。
5. The repetition is performed by using air or air from one side of the capillary so that the reaction solution moves at high speed so that the temperature change of the reaction solution does not reach the above-mentioned heat denaturation temperature, annealing temperature, or polymerization temperature. By supplying other gases,
5. The deoxyribonucleic acid amplification device according to claim 4, wherein the reaction solution is controlled to return to its initial position.
JP03095498A 1991-04-25 1991-04-25 Apparatus and method for amplifying deoxyribonucleic acid Expired - Fee Related JP3120466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03095498A JP3120466B2 (en) 1991-04-25 1991-04-25 Apparatus and method for amplifying deoxyribonucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03095498A JP3120466B2 (en) 1991-04-25 1991-04-25 Apparatus and method for amplifying deoxyribonucleic acid

Publications (2)

Publication Number Publication Date
JPH04325080A true JPH04325080A (en) 1992-11-13
JP3120466B2 JP3120466B2 (en) 2000-12-25

Family

ID=14139268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03095498A Expired - Fee Related JP3120466B2 (en) 1991-04-25 1991-04-25 Apparatus and method for amplifying deoxyribonucleic acid

Country Status (1)

Country Link
JP (1) JP3120466B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520229A (en) * 2004-02-03 2007-07-26 ポステック・ファウンデーション Continuous flow high performance reactor
JP2007300896A (en) * 2006-05-15 2007-11-22 Ishikawa Pref Gov Device and method for quantifying gene
US9863855B2 (en) 2015-02-13 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Apparatus and method for obtaining liquid sample from gaseous sample
WO2020202802A1 (en) 2019-04-05 2020-10-08 日本板硝子株式会社 Reaction treatment container
WO2020246051A1 (en) 2019-06-07 2020-12-10 日本板硝子株式会社 Reaction treatment container and reaction treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520229A (en) * 2004-02-03 2007-07-26 ポステック・ファウンデーション Continuous flow high performance reactor
JP2007300896A (en) * 2006-05-15 2007-11-22 Ishikawa Pref Gov Device and method for quantifying gene
US9863855B2 (en) 2015-02-13 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Apparatus and method for obtaining liquid sample from gaseous sample
WO2020202802A1 (en) 2019-04-05 2020-10-08 日本板硝子株式会社 Reaction treatment container
WO2020246051A1 (en) 2019-06-07 2020-12-10 日本板硝子株式会社 Reaction treatment container and reaction treatment method

Also Published As

Publication number Publication date
JP3120466B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
JP5224801B2 (en) Nucleic acid amplification equipment
US9409166B2 (en) Integrated PCR reactor for cell lysis, nucleic acid isolation and purification, and nucleic acid amplication related applications
Zhang et al. A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification
KR100298487B1 (en) Disposable dual chamber reaction vessel for amplification reaction, reaction process station therefor, and method of use thereof
JP5675604B2 (en) System and method for microfluidic flow control
JP5318102B2 (en) Thermal circulator for PCR including temperature control sac
EP1442136A1 (en) Apparatus for circulating carrier fluid
JP5856958B2 (en) Simple nucleic acid amplification apparatus and method of using simple nucleic acid amplification apparatus
WO1992020778A1 (en) Biochemical reaction control
US20170114380A1 (en) Systems and methods for the amplification of dna
KR20100070977A (en) A disposable multiplex polymerase chain reaction (pcr) chip and device
US5133940A (en) Apparatus, for amplification of nucleic acids
KR101911021B1 (en) Film-based integrated chip and its nucleic acid detection method
JPH04325080A (en) Amplifier of deoxyribonucleic acid
JP5258966B2 (en) System and method for preventing cross-contamination in an assay performed in a microfluidic channel
Xiang et al. Advances in improvement strategies of digital nucleic acid amplification for pathogen detection
US20220048026A1 (en) Microfluidic reaction chamber for amplification of nucleic acids
JP2011200193A (en) Method for amplifying nucleic acid
WO1994021780A1 (en) Apparatus for the quantitative determination of particulate analytes
US20100129872A1 (en) System and method for movement and positioning of reaction mixture during nucleic acid amplification
US20220010368A1 (en) Enhanced detection of low-copy-number nucleic acids in an integrated workflow
CN111148845A (en) Nucleic acid amplification
US20180237769A1 (en) Method and System for Isolation of Nucleic Acids
US20230131184A1 (en) Intermittent warming of a biologic sample including a nucleic acid
JP4097523B2 (en) Gene amplification method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees