JPH0432503A - Method for compacting powder - Google Patents
Method for compacting powderInfo
- Publication number
- JPH0432503A JPH0432503A JP13833090A JP13833090A JPH0432503A JP H0432503 A JPH0432503 A JP H0432503A JP 13833090 A JP13833090 A JP 13833090A JP 13833090 A JP13833090 A JP 13833090A JP H0432503 A JPH0432503 A JP H0432503A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- pattern
- metal
- ceramic
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims description 16
- 238000005245 sintering Methods 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000000919 ceramic Substances 0.000 claims abstract description 18
- 239000012778 molding material Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 abstract description 17
- 238000002844 melting Methods 0.000 abstract description 9
- 230000008018 melting Effects 0.000 abstract description 9
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000012856 packing Methods 0.000 abstract 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 229920003002 synthetic resin Polymers 0.000 abstract 1
- 239000000057 synthetic resin Substances 0.000 abstract 1
- 238000000465 moulding Methods 0.000 description 15
- 238000011049 filling Methods 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 8
- 239000004033 plastic Substances 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 6
- 238000001746 injection moulding Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000009694 cold isostatic pressing Methods 0.000 description 3
- 229920005749 polyurethane resin Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000000859 sublimation Methods 0.000 description 3
- 230000008022 sublimation Effects 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は金属、セラミックス等の粉体から複雑形状の
成形体を得る方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for obtaining a complex-shaped molded body from powder of metal, ceramics, or the like.
(従来の技術〕
粉体の成形方法には、−軸成形、冷間静水圧成形、射出
成形等がある。−軸成形及び冷間静水圧成形は主に異形
粉を対象とした成形方法で、高い圧力で成形することに
より粉末を塑性変形させ粉末同志を絡み合わせることに
より成形体に保形性を持たせている。容易に塑性変形し
ない硬質粉や粉末同志の絡み合いの期待できない球形粉
の成形は、ワックス等の成形助剤を粉末に添加して、そ
の粘着力により成形体に保形性を持たせて行っている。(Prior art) Powder forming methods include - shaft forming, cold isostatic pressing, injection molding, etc. - Axial forming and cold isostatic pressing are forming methods mainly for irregularly shaped powder. By molding under high pressure, the powder is plastically deformed and the powders are entangled, giving the molded body shape retention.Hard powders that do not easily undergo plastic deformation and spherical powders that cannot be expected to become entangled with each other. Molding is carried out by adding a molding aid such as wax to the powder so that the molded product has shape retention properties due to its adhesive strength.
しかし、これらの硬質粉や球形粉の成形には射出成形を
利用する場合が多い。粉体の射出成形は粉末に熱可塑性
樹脂を成形バインダーとして加え、加熱混合した混練物
を型の中に射出成形した後冷却し固化させることにより
成形体を得る方法である。However, injection molding is often used to mold these hard powders and spherical powders. Powder injection molding is a method in which a thermoplastic resin is added to powder as a molding binder, the heated and mixed kneaded product is injected into a mold, and then cooled and solidified to obtain a molded body.
一軸成形や冷間静水圧成形は塑性変形による互いの絡み
合いが起こり易い金属等の異形粉の成形に最も適した手
段とされている。硬質粉、セラミック粉、金属球形粉等
のこれらの方法を用いる場合には何らかの成形助剤を添
加しなければならない。しかし、こうして成形できたと
しても粉末粒径が10−を越えるような粉であった場合
、脱脂工程で成形助剤が分解除去されると成形体が保形
力を失い、変形ないしは崩壊することがしばしば起こっ
た。Uniaxial molding and cold isostatic pressing are considered to be the most suitable means for molding irregularly shaped powders such as metals that are likely to become entangled with each other due to plastic deformation. When using these methods such as hard powder, ceramic powder, metal spherical powder, etc., some forming aid must be added. However, even if molding is possible in this way, if the powder particle size exceeds 10, the molding aid will be decomposed and removed during the degreasing process, causing the molded product to lose its shape-retaining ability and deform or collapse. happened often.
射出成形においても同様で成形体の保形性の点で粗粉の
適用は困難であった。また、成形バインダーを大量に含
んでいるため脱脂工程に1〜7日の要時間を要し、成形
バインダーを多量に用いる従来の成形方法自身に問題が
あった。この問題点は成形体の形状が大きくなればなる
ほど顕著となった。Similarly, in injection molding, it was difficult to apply coarse powder in terms of shape retention of the molded product. In addition, since it contains a large amount of molding binder, the degreasing process requires 1 to 7 days, and conventional molding methods that use a large amount of molding binder have their own problems. This problem became more pronounced as the shape of the molded article became larger.
本発明は前述の問題点を解決するものであり、金属・セ
ラミックス等の粉体から複雑形状の成形体を得る方法を
提供することを目的としている。The present invention solves the above-mentioned problems, and aims to provide a method for obtaining a complex-shaped molded body from powder of metal, ceramics, etc.
本発明は上記目的を達成すべくなされたものであり、成
形体の所望形状の模型の表面に少なくとも1箇所の開口
部を有する支持モールドを形成し、該模型を除去して得
たキャビティに前記開口部から金属またはセラミックス
等の成形材料粉体を充填してから予備焼結することによ
り成形体を得ることを特徴としている。The present invention has been made to achieve the above-mentioned object, and includes forming a support mold having at least one opening on the surface of a model of a desired shape of a molded body, and removing the model to fill a cavity obtained with the above-mentioned support mold. It is characterized in that a molded body is obtained by filling powder of a molding material such as metal or ceramics through the opening and then pre-sintering it.
成形所望形状の模型は、単体あるいは分割によって支持
モールド内から取出し可能な場合は、変形しにくい材料
であればよく、きわめて広範な材料選択の可能性がある
。金属、セラミックス、プラスチック、木材等が対象と
なる。If the model having the desired shape can be taken out from the supporting mold either singly or by dividing it, any material that is difficult to deform may be used, and there is a wide range of possibilities for selecting materials. Applicable materials include metals, ceramics, plastics, and wood.
一方、分割しても取出しが困難な場合は、支持モールド
の機能に支障をきたさない範囲で、溶融、溶解、昇華等
によって取出しあるいは消失可能な材料を選ぶ。ワック
ス等熔融により除去できる材料、PVA、PVB、PE
G、MC,CMC1尿素等、水あるいは有機溶媒に溶解
させて除去できる材料、ナフタリンのように昇華により
消失できる材料等が適用できる。このうち、成形の容易
なワックスが特に好ましい。また、強度、剛性等の調節
のために、これらの材料に金属、セラミックス、プラス
チック、木材等の粉を混合してもよい。On the other hand, if it is difficult to take out the support mold even if it is divided, select a material that can be taken out or destroyed by melting, melting, sublimation, etc., as long as it does not interfere with the function of the supporting mold. Materials that can be removed by melting such as wax, PVA, PVB, PE
Materials that can be removed by dissolving in water or organic solvents, such as G, MC, and CMC1 urea, and materials that can be eliminated by sublimation, such as naphthalene, can be used. Among these, waxes that are easily moldable are particularly preferred. Further, powder of metal, ceramics, plastic, wood, etc. may be mixed with these materials in order to adjust strength, rigidity, etc.
これらの材料を所望形状の模型にする方法に特ニ制約は
ない。大塊を機械加工してもよい。溶融して所望形状の
モールドに鋳込んでもよい。溶融あるいは半凝固状態で
射出成形してもよい。There are no particular restrictions on the method of forming a model of a desired shape from these materials. Large blocks may also be machined. It may also be melted and cast into a mold of a desired shape. Injection molding may be performed in a molten or semi-solid state.
支持モールドの形成は注型あるいは塗布による。The support mold is formed by casting or coating.
塗布手段に特に制約はなく、刷毛塗り、浸漬、噴霧等が
適用できる。注型法の場合、原料として液状のポリウレ
タン樹脂、エポキシ樹脂、石膏等が適用できる。これら
の硬化によって支持モールドは形成されるが、強度、剛
性の制御のために金属、セラミックス、プラスチック等
の粉体を混合してもよい。一方、塗布法の場合、水ガラ
ス、金属アルコキシドの加水分解液、液状フェノール樹
脂、ポリウレタン樹脂、エポキシ樹脂、石膏等が適用で
きる。これらの硬化によって支持モールドは形成される
が、強度、剛性の制御のために金属、セラミックス、プ
ラスチック等の粉体を混合してもよいし、外側からふり
かけてもよい。支持モールド材料は予備焼結温度等を考
慮して適当なものを選択する。すなわち、支持モールド
材料は予備焼結が開始されて少なくともキャビティ内の
粉体充填体に保形性が生じるまで耐える材料でなければ
ならない。従ってポリウレタン樹脂等のプラスチック類
は低融点金属等を成形する際に使用される。There are no particular restrictions on the application method, and brushing, dipping, spraying, etc. can be applied. In the case of the casting method, liquid polyurethane resin, epoxy resin, plaster, etc. can be used as raw materials. A supporting mold is formed by curing these materials, and powders of metal, ceramics, plastic, etc. may be mixed therein in order to control strength and rigidity. On the other hand, in the case of a coating method, water glass, metal alkoxide hydrolyzate, liquid phenol resin, polyurethane resin, epoxy resin, plaster, etc. can be used. A support mold is formed by curing these materials, and in order to control strength and rigidity, powders of metals, ceramics, plastics, etc. may be mixed or sprinkled from the outside. An appropriate supporting mold material is selected in consideration of the preliminary sintering temperature, etc. That is, the supporting mold material must be able to withstand at least until the powder filling in the cavity has shape retention after preliminary sintering is started. Therefore, plastics such as polyurethane resins are used when molding low melting point metals and the like.
支持モールドが形成された後に模型を除去する。The model is removed after the support mold is formed.
模型の除去方法は使用した模型の種類に応して、例えば
単体あるいは分割により支持モールドから取出し可能な
場合はそのようにして取り出す。また、溶融除去の場合
は加熱して溶融させ支持モールド内から流出させる。溶
解の場合は模型を溶解する溶媒を用いて溶出させる。そ
の際必要により加熱することができる。昇華は加熱ある
いは減圧によって行う。これらは完全に行う必要はなく
、要は模型全体を支持モールドを損なわないで取出せる
程度に溶融、溶解あるいは昇華していればよい。The method for removing the model depends on the type of model used, for example, if it can be taken out from the support mold singly or in parts, it is taken out in that way. In addition, in the case of melting and removal, the material is heated to melt it and flow out from the support mold. In the case of dissolution, elution is performed using a solvent that dissolves the model. At that time, heating can be performed if necessary. Sublimation is performed by heating or reduced pressure. It is not necessary to completely carry out these steps; it is sufficient to melt, dissolve, or sublimate the entire model to the extent that it can be taken out without damaging the support mold.
こうして得られたキャビティに金属、セラミックス等の
成形材料粉末を充填する。金属、セラミックス等の種類
は流動性さえよければよく、例えば、ステンレス鋼粉、
高速度工具鋼粉、タングステンカーバイド・コバルト混
合粉、アルミナ粉、窒化珪素粉、2ホウ化チタン粉など
である。これらは必要により2種以上を混合して使用す
ることもできる。流動性の観点から粉末粒径は10〜1
000p程度のものが好ましい。この目的のために造粒
してもよい。また、要求される物性等に応じて種々の添
加剤、例えば、窒化珪素の場合は、アルミナ、イツトリ
ア等を添加することもできる。充填は前記の支持モール
ドの開口部を利用して行う。The cavity thus obtained is filled with powder of a molding material such as metal or ceramics. The type of metal, ceramic, etc. only needs to have good fluidity; for example, stainless steel powder,
These include high-speed tool steel powder, tungsten carbide/cobalt mixed powder, alumina powder, silicon nitride powder, and titanium diboride powder. These can also be used in combination of two or more types, if necessary. From the viewpoint of fluidity, the powder particle size is 10 to 1
000p is preferable. It may also be granulated for this purpose. Furthermore, various additives may be added depending on the required physical properties, such as alumina, ittria, etc. in the case of silicon nitride. Filling is performed using the opening of the support mold.
その際、必要があれば振動を加えて振動充填することも
できる。At this time, if necessary, vibration can be added to perform vibration filling.
次にこの充填体を、支持モールドに入れたまま焼結炉に
セットし、支持モールドから取り出してもくずれない程
度に予備焼結し、充填体内の粉体を軽く接合させ成形体
に仕上げる。予備焼結温度は材質や粉末の粒径にもよる
が、液相発生温度(以下、Tm (K)と略す。)の直
下からTmの70%程度の温度すなわち0.7Tm〜1
.OTmが好ましい。予備焼結時間は温度にもよるが通
常1〜10時間程時間待に3〜5時間程度が適当である
。Next, this filling body is set in a sintering furnace while still in the support mold, and pre-sintered to such an extent that it does not collapse even when taken out from the support mold, and the powder in the filling body is lightly bonded to form a molded body. The preliminary sintering temperature varies depending on the material and particle size of the powder, but it ranges from just below the liquid phase generation temperature (hereinafter abbreviated as Tm (K)) to about 70% of Tm, that is, 0.7Tm to 1
.. OTm is preferred. The preliminary sintering time depends on the temperature, but is usually about 1 to 10 hours, or about 3 to 5 hours.
予備焼結は常圧下で行えばよいが必要により5〜100
kg/Cu1l程度の加圧を行ってもよい。予備焼結
後に成形体を取り出す必要はなく引続き目的の特性ので
る温度で焼結を行うことができる。Preliminary sintering can be performed under normal pressure, but if necessary,
Pressure of about kg/Cu1l may be applied. There is no need to take out the compact after preliminary sintering, and sintering can be continued at a temperature that produces the desired characteristics.
成形材料粉体を支持モールドのキャビティに充填した状
態で予備焼結することにより粉体粒子間を軽く接合させ
て保形性を付与、あるいは向上させている。この手法に
より、成形困難な金属球形物、硬質粉、セラミックス粉
等を成形助剤なしで、成形することが可能となっている
。By pre-sintering the molding material powder filled in the cavity of the support mold, the powder particles are lightly bonded to impart or improve shape retention. This method makes it possible to mold metal spheres, hard powders, ceramic powders, etc. that are difficult to mold without using molding aids.
実施例1
第1図に従って説明する。融点48°C〜50°Cのパ
ラフィンワックスの塊を切削して、直径40mm、長さ
120 mmのシャフト、直径120 mm、厚さ40
肛のディスク及び直径120 mm、厚さ40mm 〜
60mmの異形ディスクの組合せからなる模型lを作っ
た。この上部に直径40mm、長さ40胴の木製のスペ
ーサー2を接着した。これを木枠4の内部に設置し、焼
き石膏を水で練ってスペーサー2の上面相当レベルまで
注ぎ24時間放置して硬化させ、支持モールド3を得た
。次にスペーサー2を抜き取り、沸騰水中に10分入れ
、パラフィンワックスを完全に排出した。こうしてキャ
ビティを形成した。Example 1 This will be explained according to FIG. A block of paraffin wax with a melting point of 48°C to 50°C was cut to form a shaft with a diameter of 40 mm and a length of 120 mm, a diameter of 120 mm and a thickness of 40 mm.
Anal disc and diameter 120 mm, thickness 40 mm ~
A model 1 was made consisting of a combination of 60 mm irregularly shaped disks. A wooden spacer 2 having a diameter of 40 mm and a length of 40 mm was adhered to the upper part. This was placed inside the wooden frame 4, and calcined gypsum was kneaded with water and poured to a level corresponding to the upper surface of the spacer 2, and left to harden for 24 hours to obtain a support mold 3. Next, Spacer 2 was removed and placed in boiling water for 10 minutes to completely drain the paraffin wax. A cavity was thus formed.
このキャビティを第4図に示すように振動テーブル5の
上に置き、平均粒径30trmのステンレス鋼球彫物6
を振動充填した。充填後ただちに焼結炉内に挿入し11
00”Cで3時間焼結した。予備焼結後、炉から取り出
し、支持モールドを崩壊して得た成形体は転写性・保形
性ともに優れ、同様の操作を10回繰り返しても失敗が
なく再現性も良好であった。This cavity was placed on a vibrating table 5 as shown in FIG.
was filled with vibration. Immediately insert it into the sintering furnace after filling.
Sintering was carried out at 00"C for 3 hours. After preliminary sintering, the molded product obtained by taking it out of the furnace and collapsing the support mold had excellent transferability and shape retention, and there was no failure even after repeating the same operation 10 times. The reproducibility was also good.
実施例2
第2図に従って説明する。融点48°C〜50″Cのパ
ラフィンワックスを加熱溶融し、モールドに鋳込むこと
により直径40口、長さ120皿のシャフト、直径12
0 Mjl、厚さ40mmのディスク及び直径120I
Ml、厚さ40埴〜60mmの異形ディスクの組合せか
らなる模型1を成形した。この上部に直径40世、長さ
40肛の木製のスペーサー2を接着した。スペーサー2
の上面を除く面全体にコロイダルシリカに一325メツ
シュのジルコンフラワーを70重量%分散したスラリー
の塗布と乾燥を5回繰り返して、厚さ2〜4閣の支持モ
ールド3を形成させた。次にスペーサー2を抜き取り、
沸騰水中に10分入れ、パラフィンワックスを完全に排
出した。こうしてキャビティを形成した。Example 2 This will be explained according to FIG. By heating and melting paraffin wax with a melting point of 48°C to 50"C and casting it into a mold, a shaft with a diameter of 40 holes and a length of 120 pieces, diameter 12
0 Mjl, 40mm thick disc and diameter 120I
A model 1 consisting of a combination of Ml and irregularly shaped disks with a thickness of 40 mm to 60 mm was molded. A wooden spacer 2 with a diameter of 40mm and a length of 40mm was glued to the top of this. spacer 2
A slurry of 70% by weight of 1325 mesh zircon flour dispersed in colloidal silica was applied and dried 5 times on the entire surface except the top surface to form a support mold 3 having a thickness of 2 to 4 mm. Next, remove spacer 2,
It was placed in boiling water for 10 minutes to completely drain the paraffin wax. A cavity was thus formed.
このキャビティを第4図に示すように振動チーフル5の
上に置き、平均粒径30tnnのステンレス調法彫物6
を振動充填した。充填後ただちに焼結炉内に挿入し11
00°Cで3時間予備焼結した。予備焼結後、炉から取
り出し、支持モールドを崩壊して得た成形体は転写性・
保形性ともに優れ、同様の操作を10回繰り返しても失
敗がなく再現性も良好であった。This cavity was placed on a vibrating chiffle 5 as shown in FIG.
was filled with vibration. Immediately insert it into the sintering furnace after filling.
Pre-sintering was carried out at 00°C for 3 hours. After preliminary sintering, the molded body obtained by removing it from the furnace and collapsing the support mold has transferability and
Both shape retention properties were excellent, and even when the same operation was repeated 10 times, there was no failure and the reproducibility was also good.
実施例3
第3図に従って説明する。直径40胴、長さ280皿の
ナイロン製円柱状の模型1にコロイダルシリカに一32
5メツシュのジルコンフラワーを70重量%分散したス
ラリーの塗布と乾燥を5回繰り返して、厚さ2〜4I1
11Tlの支持モールド3を形成させた。Example 3 This will be explained according to FIG. A cylindrical model 1 made of nylon with a diameter of 40 mm and a length of 280 mm was made of colloidal silica.
Applying and drying a slurry containing 70% by weight of zircon flower dispersed in 5 meshes was repeated 5 times to create a slurry with a thickness of 2 to 4I1.
A support mold 3 of 11 Tl was formed.
そして模型1を抜き取りキャビティが形成された。Then, model 1 was extracted and a cavity was formed.
このキャビティを第4図に示すように振動テーブル5の
上に置き、平均粒径30tnnのステンレス鋼球彫物6
を振動充填した。充填後ただちに焼結炉内に挿入し11
00°Cで3時間予備焼結した。予備焼結後、炉から取
り出し、支持モールドを崩壊して得た成形体は転写性・
保形性ともに優れ、同様の操作を10回繰り返しても失
敗がなく再現性もよかった。This cavity was placed on a vibrating table 5 as shown in FIG.
was filled with vibration. Immediately insert it into the sintering furnace after filling.
Pre-sintering was carried out at 00°C for 3 hours. After preliminary sintering, the molded body obtained by removing it from the furnace and collapsing the support mold has transferability and
It had excellent shape retention, and even after repeating the same operation 10 times, there was no failure and the reproducibility was good.
以上のように、支持モールド内で充填体が予備焼結され
るため、成形助剤や成形バインダーが全くなくても成形
体の作製が可能となるばかりでなく、支持モールドの内
面がそのまま転写されるため寸法精度の高い成形体の作
製も可能となった。As described above, since the filler is pre-sintered within the support mold, it is not only possible to produce a molded body without any molding aid or molding binder, but also the inner surface of the support mold can be transferred as is. This makes it possible to produce molded bodies with high dimensional accuracy.
第1図は模型を木枠に入れ支持モールドの原料を注入し
て形成している状態を示す断面図であり、第2図及び第
3図は支持モールド原料の注入の代わりに塗布によって
形成している状態を示す断面図である。第4図は実施例
2で得られたキャビティを振動テーブルにのせて金属、
セラミックス等の粉体を充填している状態を示す断面図
である。
1・・・模型 2・・・スペーサー 3・・・支持モー
ルド4・・・木枠 5振動テーブル 6ステンレス綱粉
出 願 人 日本釦管株式会社
代 理 人 弁理士 日中 政情
弔
図
/′
第
図Fig. 1 is a cross-sectional view showing a state in which a model is placed in a wooden frame and formed by injecting raw materials for a support mold, and Figs. 2 and 3 are a cross-sectional view showing a model formed by coating instead of injecting raw materials for a support mold. FIG. Figure 4 shows the cavity obtained in Example 2 placed on a vibrating table.
FIG. 3 is a cross-sectional view showing a state in which powder such as ceramics is filled. 1...Model 2...Spacer 3...Support mold 4...Wooden frame 5. Vibrating table 6. Stainless steel rope Applicant: Nippon Button Kan Co., Ltd. Representative Patent attorney Japan-China Political Situation Condolence Map/' No. figure
Claims (1)
口部を有する支持モールドを形成し、該模型を除去して
得たキャビティに前記開口部から金属またはセラミック
ス等の成形材料粉体を充填してから予備焼結することに
より成形体を得る、粉体の成形方法A supporting mold having at least one opening is formed on the surface of a model having a desired shape of the molded body, and the molding material powder such as metal or ceramic is filled into the cavity obtained by removing the model from the opening. A powder forming method in which a compact is obtained by pre-sintering the powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13833090A JPH0432503A (en) | 1990-05-30 | 1990-05-30 | Method for compacting powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13833090A JPH0432503A (en) | 1990-05-30 | 1990-05-30 | Method for compacting powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0432503A true JPH0432503A (en) | 1992-02-04 |
Family
ID=15219384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13833090A Pending JPH0432503A (en) | 1990-05-30 | 1990-05-30 | Method for compacting powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0432503A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110480796A (en) * | 2019-09-04 | 2019-11-22 | 王文栋 | The forming method of concreting mold |
-
1990
- 1990-05-30 JP JP13833090A patent/JPH0432503A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110480796A (en) * | 2019-09-04 | 2019-11-22 | 王文栋 | The forming method of concreting mold |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4808360A (en) | Method of producing mold for slip casting and method of molding slip casting | |
US4812278A (en) | Process for preparing mold | |
US4919193A (en) | Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core | |
JP2001511719A (en) | Metal perfect dense mold and method of forming parts | |
US3094751A (en) | Method of form removal from precision casting shells | |
JPH06315919A (en) | Manufacture of ceramic | |
JPH0432503A (en) | Method for compacting powder | |
JPH02280999A (en) | Method for forming powder of metal, ceramic or the like | |
EP0243502A1 (en) | Mold for pad molding of powder | |
TW453918B (en) | A method of precise casting of shell | |
JPH0533123B2 (en) | ||
JP3327604B2 (en) | Manufacturing method of metal products and core material used for the same | |
JPH0144124B2 (en) | ||
JPS6390350A (en) | Production of composite mold by metal and inorganic materials | |
US20030041992A1 (en) | Rapid investment casting or molding method | |
JPH08117247A (en) | Manufacture of powder-sintered dental inlay | |
JPS62148211A (en) | Manufacture of ceramic molded shape | |
SU1637946A1 (en) | Method of manufacturing metal-shell cores | |
JPH0339774B2 (en) | ||
US20190283273A1 (en) | Making an article by a casting method using a photoactivable prepolymer | |
JP2600769B2 (en) | Slip casting molding method | |
JPS59185544A (en) | Precision casting method | |
JPH0811401B2 (en) | Molding method of mold cavity for inking molding | |
JPH0453686B2 (en) | ||
JPH01289537A (en) | Production of casting mold for precision casting |