JPH04324351A - Sensor - Google Patents

Sensor

Info

Publication number
JPH04324351A
JPH04324351A JP3122636A JP12263691A JPH04324351A JP H04324351 A JPH04324351 A JP H04324351A JP 3122636 A JP3122636 A JP 3122636A JP 12263691 A JP12263691 A JP 12263691A JP H04324351 A JPH04324351 A JP H04324351A
Authority
JP
Japan
Prior art keywords
membrane
sensor
electrode
group
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3122636A
Other languages
Japanese (ja)
Other versions
JP3105940B2 (en
Inventor
Kaoru Santo
山藤 馨
Kiyoshi Toko
潔 都甲
Kenji Hayashi
健司 林
Hidekazu Ikezaki
秀和 池崎
Rieko Higashikubo
理江子 東久保
Katsushi Sato
佐藤 勝史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP03122636A priority Critical patent/JP3105940B2/en
Publication of JPH04324351A publication Critical patent/JPH04324351A/en
Application granted granted Critical
Publication of JP3105940B2 publication Critical patent/JP3105940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To improve orienting property and endurance while enabling a non- electrolytic measurement by arranging a group of hydrophobic groups each bonded chemically to a substrate electrode to cover the entire surface thereof contacting a solution to be measured of the substrate electrode. CONSTITUTION:A functional group is introduced into the surface of a substrate electrode 1 comprising a carbon-based electrode and a metal electrode or a metal oxide semiconductor electrode. A hydrophobic group 2 of an amphipathic substance or a bitter substance for various sensors is modified using a normal organic chemical reaction so that the group of hydrophobic groups 2 is bonded 3 chemically to the substrate electrode 1 immediately. This enables the producing of a taste sensor using a monomolecular film made of the group of hydrophobic groups 2, amphipathic substance or the like having endurance, excellent orienting propery and limited variations in quality and moreover, a sensor highly sensitive to non-electrolyte such as sugar.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、主として非電解質水
溶液の濃度センサに関する。用途として、人の五感とく
に味覚に関するセンサを意図している。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates primarily to a concentration sensor for non-electrolyte aqueous solutions. It is intended to be used as a sensor for the five human senses, especially taste.

【0002】0002

【従来の技術】同一出願人は、先に「味覚センサ及びそ
の製造方法」の発明につき特許出願をし(特願平1−1
90819号;以下、同一出願人の先願発明Aという)
、その明細書及び図面によって、ある種の高分子重合体
の表面マトリックス内に特定の分子配列をもって収納さ
れたいわゆる脂質性分子群が、基本味と呼ばれる塩味、
酸味、苦味、甘味に対して、感度を示すセンサとなるこ
とを示した。しかも、この種のセンサは、人間の五感の
一つである味覚に代わり味を測定できるものであること
を示した。
[Prior Art] The same applicant previously filed a patent application for the invention of "taste sensor and method for manufacturing the same" (Japanese Patent Application No.
No. 90819 (hereinafter referred to as the earlier invention A of the same applicant)
, its specification and drawings show that a so-called lipid molecule group housed in a specific molecular arrangement within the surface matrix of a certain kind of high molecular weight polymer produces a salty taste called a basic taste.
It was shown that the sensor can be sensitive to sour, bitter, and sweet tastes. Moreover, this type of sensor has been shown to be able to measure taste in place of taste, which is one of the five human senses.

【0003】これを、少しく具体的に説明すると、同一
出願人の先願発明Aでは、たとえば、高分子重合体とし
てポリ塩化ビニル(PVC)を用い、それにフタル酸ジ
オクチル(DOP)のような可塑剤と脂質とを概ね2:
3:1の重量比で混合したものをテトラヒドロフラン(
THF)に溶融し、平底の容器に移して、均一に加熱さ
れた板上で約30℃に2時間保持して、THFを揮発さ
せ、脂質膜すなわち、PVCの表面マトリックス内に収
納された脂質性分子膜を得ていた。この脂質膜が味覚セ
ンサとなることを実験で確認している。また、この際に
、脂質膜を塩化カリウム(KCl)の水溶液に浸してみ
ると、脂質性分子の親水基が脂質膜の表面に顔を出す形
で配列するようであり、センサ(膜電位)の感度と安定
度が改善されることを示した(特願平1−190819
号)。
[0003] To explain this in more detail, in the prior invention A of the same applicant, for example, polyvinyl chloride (PVC) is used as a polymer, and a plasticizer such as dioctyl phthalate (DOP) is used. The agent and lipid are approximately 2:
Tetrahydrofuran (mixed at a weight ratio of 3:1)
THF), transferred to a flat-bottomed container, and held at approximately 30°C for 2 hours on a uniformly heated plate to volatilize the THF and remove the lipids housed within the lipid membrane, i.e., the surface matrix of PVC. A molecular membrane was obtained. Experiments have confirmed that this lipid membrane serves as a taste sensor. In addition, when a lipid membrane is immersed in an aqueous solution of potassium chloride (KCl), the hydrophilic groups of lipid molecules appear to be arranged on the surface of the lipid membrane, and the sensor (membrane potential) It was shown that the sensitivity and stability of
issue).

【0004】しかし、こうして作られた脂質膜をセンサ
とすることは、一応の測定結果は得られるものの、高分
子重合体の表面マトリックス内に脂質性分子を納めると
いう製造方法では、分子レベルでの構造が一定しない、
すなわち表面マトリックスそのものが一定したものが常
に得られるとは限らず、そこに脂質性分子が収納された
脂質膜も、一定品質のものがいつも作られるという保証
も得られにくく、脂質膜内の脂質性分子の配向性も悪く
、したがって、膜電位や電気抵抗の測定も、データにバ
ラツキが生じ易く、感度も不充分であるという事情は避
けられなかった。
[0004] However, although it is possible to obtain some measurement results by using the lipid membrane produced in this way as a sensor, the production method of placing lipid molecules within the surface matrix of a high molecular weight polymer does not allow measurement at the molecular level. The structure is not constant,
In other words, it is not always possible to obtain a constant surface matrix, and it is difficult to guarantee that the lipid membrane in which lipid molecules are housed will always be of a constant quality. The orientation of the sexual molecules is also poor, and therefore, it is unavoidable that measurements of membrane potential and electrical resistance tend to have data that fluctuate and have insufficient sensitivity.

【0005】また、高分子重合体の表面マトリックス内
に比較的容易に納めることのできる脂質性分子の種類が
限られていた。たとえば、フォスファチジルコリン(P
C)等の、生体膜を構成している脂質は、ポリ塩化ビニ
ル(PVC)等の高分子材料との相性が悪いため、味覚
センサに用いる脂質膜の形成が困難であった。上記の問
題の解決手段として、同一出願人は、先に「味覚センサ
およびその製造方法」 の発明につき特許出願をし(特
願平3− 20450号;以下、同一出願人の先願発明
Bという)、その明細書及び図面によって、両親媒性分
子群および苦味物質の単一の層の新しい形成方法を示し
、この単一の層により、同一出願人の先願発明Aと比べ
て、感度が向上し、測定の安定度が得られ、センサ毎の
測定値のバラツキが少なく、しかも対数直線性のあるセ
ンサが得られることを示した。
[0005] Furthermore, the types of lipid molecules that can be relatively easily accommodated within the surface matrix of high molecular weight polymers have been limited. For example, phosphatidylcholine (P
Lipids constituting biological membranes such as C) have poor compatibility with polymeric materials such as polyvinyl chloride (PVC), so it has been difficult to form lipid membranes for use in taste sensors. As a means of solving the above problem, the same applicant previously filed a patent application for the invention of "taste sensor and its manufacturing method" (Japanese Patent Application No. 3-20450; hereinafter referred to as the earlier invention B of the same applicant). ), its specification and drawings show a new method for forming a single layer of amphiphilic molecules and a bitter substance, and this single layer provides increased sensitivity compared to the earlier invention A of the same applicant. It was shown that a sensor with improved measurement stability, less variation in measured values from sensor to sensor, and logarithmic linearity could be obtained.

【0006】これを、少しく具体的に説明すると、同一
出願人の先願発明Bでは、例えば、両親媒性分子群また
は苦味物質の分子群の疎水性部位に親しむ性質を有する
物質で覆われている基板上に、両親媒性分子群や苦味物
質の分子群を、LB法や修飾法を用いて、両親媒性分子
群または苦味物質の分子群の親水基を表面に出したモノ
レイヤ(単分子膜)を形成した。このように、センサ表
面を均一なモノレイヤにすることで、より人の味覚特性
に近づくことを実験的に示した。この結果と生体の味受
容膜が均一の二分子膜となっていることとを考え合わせ
ると、味センサとして理想的な膜であると言える。
[0006] To explain this in a little more detail, in the prior invention B of the same applicant, for example, a compound is coated with a substance that has a property of being friendly to the hydrophobic part of an amphiphilic molecule group or a bitter substance molecule group. Using the LB method or modification method, a monolayer (single molecule) is formed on a substrate with hydrophilic groups of amphiphilic molecules or bitter substance molecules exposed on the surface. A film) was formed. In this way, we experimentally demonstrated that by creating a uniform monolayer on the sensor surface, we can more closely mimic human taste characteristics. Considering this result and the fact that the taste receptor membrane of living organisms is a uniform bilayer membrane, it can be said that this membrane is ideal as a taste sensor.

【0007】[0007]

【発明が解決しようとする課題】しかし、センサ表面を
均一なモノレイヤにすることで、特性は理想的となった
が、同一出願人の先願発明Bの膜では耐久性の面で問題
がある。それは、両親媒性物質または苦味物質がその疎
水基とベース膜の疎水基に親しむ部分との吸引力と、両
親媒性物質または苦味物質の疎水基と水との反発力のみ
でベース膜に固定されているからであり、脂質膜とベー
ス膜との間が剥がれ易い。実際の人の味受容器の寿命は
、1日で非常に新陳代謝の激しいものであり、従って味
センサも使い捨てタイプに考えれば良いが、実用性の面
から見ると非常に不便である。
[Problem to be solved by the invention] However, by making the sensor surface into a uniform monolayer, the characteristics have become ideal, but the film of the earlier invention B of the same applicant has problems in terms of durability. . It is fixed to the base membrane only by the attraction force between the hydrophobic group of the amphipathic substance or the bitter substance and the part that is familiar with the hydrophobic group of the base membrane, and the repulsive force between the hydrophobic group of the amphipathic substance or bitter substance and water. This is because the lipid membrane and base membrane are likely to separate. In reality, the lifespan of a human taste receptor is one day, and its metabolism is extremely rapid, so it would be good to consider a disposable type of taste sensor, but this is extremely inconvenient from a practical standpoint.

【0008】また、食品中の非電解質、例えば、甘味物
質を検出する場合、理想的な脂質のモノレイヤ膜であっ
ても、甘味物質はモノレイヤ膜の電荷密度に影響を及ぼ
すだけであるので、膜電位変化は電解質に比べて極めて
少ない。同一出願人の先願発明Bで示したが、甘味以外
の4基本味に対し、約 150〜200mV の出力が
得られるのに対し、甘味に対しては約 20mV の出
力しか得られない。このわずかな出力は甘味物質が脂質
の配向性に影響を及ぼした結果であると推定できる。し
かし、こうした脂質の配向性への影響は、膜電位よりも
膜抵抗や膜容量を大きく変化させると考えられる。非電
解質の濃度を測るには、配向性の優れた膜の膜抵抗、膜
容量の変化を測るほうが良いが、この時も、膜の耐久性
が問題となる。 モノレイヤであるだけに部分的な破壊であっても膜抵抗
や膜容量の測定が不能となってしまう。
[0008] Furthermore, when detecting non-electrolytes such as sweet substances in foods, even with an ideal lipid monolayer membrane, sweet substances only affect the charge density of the monolayer membrane. Potential changes are extremely small compared to electrolytes. As shown in the earlier invention B of the same applicant, an output of about 150 to 200 mV can be obtained for four basic tastes other than sweetness, whereas an output of only about 20mV can be obtained for sweetness. This small output can be presumed to be the result of the sweet substance affecting the orientation of lipids. However, such effects on lipid orientation are thought to change membrane resistance and membrane capacitance more than membrane potential. In order to measure the concentration of non-electrolyte, it is better to measure changes in membrane resistance and membrane capacitance of a membrane with excellent orientation, but in this case as well, the durability of the membrane becomes an issue. Since it is a monolayer, even partial destruction makes it impossible to measure membrane resistance and membrane capacitance.

【0009】また、従来のような、親水基が表面に出て
いる膜では、その表面の親水基に邪魔されて、苦み物質
などの、疎水基に対して吸着性を有する物質が、膜中の
疎水基と結合しにくいため、疎水基に吸着する物質と吸
着しない物質に対する膜の応答に違いがそれほど現れな
い。
In addition, in conventional membranes with hydrophilic groups exposed on the surface, substances that are adsorbed to hydrophobic groups, such as bitter substances, are hindered by the hydrophilic groups on the surface and are absorbed into the membrane. Because it is difficult to bond with hydrophobic groups, there is not much difference in the response of the membrane to substances that adsorb to hydrophobic groups and substances that do not.

【0010】従来の脂質膜(または両親媒性分子もしく
は苦味物質の分子を用いた膜)を用いた味覚センサを脂
質の配向性にすぐれた脂質膜であるという条件下で、耐
久性、つまり脂質膜の固定化に注目して改良することが
この発明の課題である。
[0010] A taste sensor using a conventional lipid membrane (or a membrane using amphiphilic molecules or molecules of a bitter substance) has durability, that is, a lipid membrane with excellent lipid orientation. The object of this invention is to focus on and improve membrane immobilization.

【0011】その結果として、膜の抵抗や容量が安定し
て測れることにより、甘味といった従来電位では計れな
かった非電解質の測定を可能とすることがこの発明の課
題である。
[0011] As a result, it is an object of the present invention to make it possible to measure non-electrolytes such as sweetness, which could not be measured using conventional potentials, by stably measuring the resistance and capacitance of the membrane.

【0012】また、従来の脂質膜(または両親媒性分子
もしくは苦味物質の分子を用いた膜)の構造を変え、苦
味物質等の疎水基に吸着する物質に対する応答を上げ、
疎水基に吸着しない物質に対する応答を下げ、センサに
選択性を持たせて、情報量を増やす。
[0012] Furthermore, the structure of conventional lipid membranes (or membranes using amphiphilic molecules or molecules of bitter substances) has been changed to increase the response to substances adsorbed to hydrophobic groups such as bitter substances.
It lowers the response to substances that do not adsorb to hydrophobic groups, gives the sensor selectivity, and increases the amount of information.

【0013】[0013]

【課題を解決するための手段】この発明では、配向性に
優れ、耐久性に優れたセンサ用の膜を得るために、製造
方法を変え、それによって、電極上に耐久性に優れた一
様な脂質の層を形成するととしている。すなわち、同一
出願人の先願発明Bでは、配向性に優れた一様な脂質膜
が得られたものの、その固定が疎水基同士の吸引力と疎
水基と水との反発力のみの弱い力によるものであったた
め、耐久性に問題があった。この固定を強い結合による
ものとし、耐久性を増す工夫をする。結合の方法として
大きく分けて以下の4つが考えられる。
[Means for Solving the Problems] In this invention, in order to obtain a sensor film with excellent orientation and excellent durability, the manufacturing method is changed, and thereby a highly durable and uniform film is formed on the electrode. It is said that it forms a layer of lipids. In other words, in the earlier invention B of the same applicant, a uniform lipid film with excellent orientation was obtained, but the fixation was only due to the weak forces of attraction between hydrophobic groups and repulsion between hydrophobic groups and water. Because of this, there was a problem with durability. This fixation is done by strong bonding and devised to increase durability. The following four methods can be considered for the connection.

【0014】■電極表面に官能基を導入し、これに通常
の有機化学反応を用いて種々のセンサ用の両親媒性物質
または苦味物質を修飾させて製造する。図2および図3
に化学修飾の系統図を示す。各系統の製造手順を流れ図
にしたものを図26乃至図46に示す。また、表1に基
板電極1となる電極の例を示す。
(2) A functional group is introduced onto the electrode surface, and an amphipathic substance or a bitter substance for various sensors is modified using a conventional organic chemical reaction. Figures 2 and 3
shows a systematic diagram of chemical modification. Flowcharts of the manufacturing procedure of each system are shown in FIGS. 26 to 46. Further, Table 1 shows examples of electrodes that will become the substrate electrode 1.

【0015】[0015]

【表1】[Table 1]

【0016】■チオール基(SH基)と疎水基を持つ分
子群の該チオール基を、金、白金等の電極上に修飾させ
て製造する。 ■チオール基(SH基)と疎水基と官能基を持つ分子群
の該チオール基を、金、白金等の電極上に修飾させて製
造する。 ■チオール基(SH基)と他の官能基の両方を持つ化合
物を用い、該チオールを金、白金等の電極上に修飾させ
、上記官能基と味覚センサ用脂質の官能基をそれぞれ化
学結合させて製造する。
(2) Produced by modifying the thiol group of a molecular group having a thiol group (SH group) and a hydrophobic group on an electrode such as gold or platinum. (2) Produced by modifying the thiol group of a molecular group having a thiol group (SH group), a hydrophobic group, and a functional group on an electrode such as gold or platinum. ■Using a compound that has both a thiol group (SH group) and another functional group, the thiol is modified on an electrode such as gold or platinum, and the above functional group and the functional group of the taste sensor lipid are chemically bonded to each other. Manufactured by

【0017】各々のセンサの構成を図1および図4乃至
図6に示す。図7乃至図9はセンサの構成を化学式を用
いて表したものである。特にチオール基(SH基)は、
金、白金と非常に強力に結合する。
The configuration of each sensor is shown in FIG. 1 and FIGS. 4 to 6. 7 to 9 show the structure of the sensor using chemical formulas. In particular, the thiol group (SH group)
It combines very strongly with gold and platinum.

【0018】ただし、上記■、■、■の構造では、セン
サの表面に疎水基が配向性良くしっかりと固定されてい
ると考えられ、糖などの非電解質に対し、膜抵抗を測る
ことで、味を明確に検知できる。当然、苦味などの疎水
基に吸着する物質に対しては、吸着が激しいため応答感
度が上がり、逆に疎水基に吸着しない物質は電荷を持っ
ていても膜電位に影響を及ぼせないため応答感度が下が
り、その結果選択性が増し情報量が増える。
However, in the structures of (1), (2), and (3) above, it is thought that the hydrophobic groups are firmly fixed on the surface of the sensor with good orientation, and by measuring the membrane resistance against non-electrolytes such as sugar, Taste can be clearly detected. Naturally, for substances that adsorb to hydrophobic groups, such as bitter substances, the adsorption is intense and the response sensitivity increases; conversely, substances that do not adsorb to hydrophobic groups respond because they do not affect the membrane potential even if they have a charge. Sensitivity decreases, resulting in increased selectivity and information content.

【0019】また、上記■の構造では、センサの表面に
親水基をむけ、内側に疎水基をむけた両親媒性物質がチ
オール基(SH基)を介して配向性良くしっかりと固定
されていると考えられる。これは、構造的には先願特許
Bと同様に理想的な脂質のモノレイヤであり、センサと
して特性が非常に優れている。また、チオール基(SH
基)を介して電極に固定されていて、有機溶剤で洗浄し
ても剥がれない。
[0019] Furthermore, in the above structure (2), an amphiphilic substance with a hydrophilic group on the surface of the sensor and a hydrophobic group on the inside is firmly fixed with good orientation via a thiol group (SH group). it is conceivable that. Structurally, this is an ideal lipid monolayer similar to the prior patent B, and has very excellent characteristics as a sensor. In addition, thiol group (SH
It is fixed to the electrode via a group (group) and does not come off even when washed with an organic solvent.

【0020】[0020]

【実施例】図8および図9は実験用に製作したセンサの
模式図(断面図)である。図8は金電極,メルカプトス
ルホン酸,ジオクタデシルメチルアンモニウムブロマイ
ドの構成となっており(以後A膜と呼ぶ)、図9は金電
極,n−オクタデシルメルカプタンの構成となっている
(以後B膜と呼ぶ)。
EXAMPLE FIGS. 8 and 9 are schematic diagrams (cross-sectional views) of sensors manufactured for experiments. Figure 8 shows a configuration of gold electrodes, mercaptosulfonic acid, and dioctadecylmethylammonium bromide (hereinafter referred to as A membrane), and Figure 9 shows a configuration of gold electrodes and n-octadecyl mercaptan (hereinafter referred to as B membrane). call).

【0021】センサの製作手順を次に示す。電極はφ1
.5mmの金電極をアクリル板に穴をあけ詰め込んだも
のを用いた。 製作手順 1.電極を蒸留水で洗浄する。 2.電極の表面をエメリー紙(粗さ0.3μm)で研磨
する。 3.電極を蒸留水で洗浄する。 4.手順2.および3.を3回繰り返す。 5.電極の表面に触らないように注意して表面の水を吸
い取る。 6.電極をエタノールで洗浄する。
The manufacturing procedure of the sensor will be described below. The electrode is φ1
.. An acrylic plate with holes made and stuffed with 5 mm gold electrodes was used. Production procedure 1. Wash the electrode with distilled water. 2. The surface of the electrode is polished with emery paper (roughness 0.3 μm). 3. Wash the electrode with distilled water. 4. Step 2. and 3. Repeat 3 times. 5. Absorb the water from the surface of the electrode, being careful not to touch it. 6. Clean the electrode with ethanol.

【0022】以下の手順はA膜とB膜とでは異なる。ま
ずA膜の手順を示す。 7A.  メルカプトスルホン酸をエタノール溶液に1
00mM溶かす。これを溶液A1とする。 8A.  溶液A1に電極を12時間漬ける。 9A.  ジオクタデシルメチルアンモニウムブロマイ
ドをエタノール溶液に20mM溶かす。これを溶液A2
とする。 10A.  溶液A1に電極を12時間漬ける。 11A.  電極をエタノールで洗浄する。
The following procedure is different for A film and B film. First, the procedure for film A will be shown. 7A. Mercaptosulfonic acid in ethanol solution
Dissolve 00mM. This is referred to as solution A1. 8A. Soak the electrode in solution A1 for 12 hours. 9A. Dissolve 20mM of dioctadecylmethylammonium bromide in the ethanol solution. Add this to solution A2
shall be. 10A. Soak the electrode in solution A1 for 12 hours. 11A. Clean the electrode with ethanol.

【0023】次にB膜の手順を示す。 7B.  n−オクタデシルメルカプタンをエタノール
溶液に1mM溶かす。これを溶液B1とする。 8B.  溶液B1に電極を24時間漬ける。 9B.  電極をエタノールで洗浄する。
Next, the procedure for the B film will be described. 7B. Dissolve 1mM of n-octadecyl mercaptan in the ethanol solution. This will be referred to as solution B1. 8B. Soak the electrode in solution B1 for 24 hours. 9B. Clean the electrode with ethanol.

【0024】上記の手順で製作したセンサの4基本味に
対する応答について述べる。図10はセンサの4基本味
に対する応答を測定する測定システムを示す図である。 容器の中に被測定溶液をいれ、その被測定溶液の中にセ
ンサ4と参照電極6とセンサに電流を流すための白金製
の電極5とを入れる。センサは両端に乾電池9によって
1.5ボルトの電圧を印加された可変抵抗8の可動点に
22MΩの抵抗7を介して接続する。白金製の電極5は
前記乾電池9のマイナス側と前記可変抵抗8との接続点
に接続する。前記参照電極6はアースに接続する。図中
のV0 およびV1 は前記参照電極6を基準とするそ
れぞれの点の電位である。また、R0は前記抵抗7の抵
抗値である。
The response of the sensor manufactured by the above procedure to the four basic tastes will be described. FIG. 10 is a diagram showing a measurement system for measuring the response of a sensor to four basic tastes. A solution to be measured is placed in a container, and a sensor 4, a reference electrode 6, and a platinum electrode 5 for passing a current through the sensor are placed in the solution to be measured. The sensor is connected via a 22 MΩ resistor 7 to the movable point of a variable resistor 8 to which a voltage of 1.5 volts is applied by a dry battery 9 to both ends. The platinum electrode 5 is connected to the connection point between the negative side of the dry battery 9 and the variable resistor 8. The reference electrode 6 is connected to ground. V0 and V1 in the figure are potentials at respective points with reference to the reference electrode 6. Further, R0 is the resistance value of the resistor 7.

【0025】膜抵抗測定は次のようにして行った。図1
0の測定システムにおいて、電極面上での化学変化が測
定に影響を及ぼさない程度の微少な電流I(0.005
μAから0.015μAの領域を使用した)を流し、そ
のときのV0 およびV1 を測定する。測定には入力
インピーダンスが数百MΩ以上の電位計を用いる。電位
計を通して流れる電流は電流Iに比べて充分小さいもの
とする。
Membrane resistance measurements were carried out as follows. Figure 1
0 measurement system, the current I (0.005
(using a range from μA to 0.015 μA), and measure V0 and V1 at that time. For measurement, an electrometer with an input impedance of several hundred MΩ or more is used. It is assumed that the current flowing through the electrometer is sufficiently smaller than the current I.

【0026】前記V0 、V1 、I、R0 、R(膜
抵抗)およびVAu(センサの電極の参照電極を基準と
した界面電位)には次の式が成り立つ。         V0 =VAu+RI       
                         
          (1)        I  =
(V1 −V0 )/R0             
                    (2)ここ
で、電流Iを強制的に微量ΔI(約0.01μAとした
)変動させる。このとき、VAuは変動しないと仮定す
ると、         V0 +ΔV0 =VAu+R(I+
ΔI)                      
  (3)        I  +ΔI=〔(V1 
+ΔV1 )−(V0 +ΔV0 )〕/R0   (
4)であり、式(1)乃至(4)から         R=R0 /〔(ΔV1 /ΔV0 
)−1〕                     
 (5)となるから、電流Iを微量ΔI変化させてΔV
1 、ΔV0 を測定し膜抵抗Rを求めた。
The following equation holds true for V0, V1, I, R0, R (membrane resistance) and VAu (interfacial potential with respect to the reference electrode of the sensor electrode). V0=VAu+RI

(1) I =
(V1-V0)/R0
(2) Here, the current I is forcibly varied by a minute amount ΔI (approximately 0.01 μA). At this time, assuming that VAu does not change, V0 +ΔV0 = VAu+R(I+
ΔI)
(3) I +ΔI=[(V1
+ΔV1)−(V0+ΔV0)]/R0(
4), and from equations (1) to (4), R=R0 /[(ΔV1 /ΔV0
)-1]
(5), so by changing the current I by a small amount ΔI, ΔV
1, ΔV0 was measured to determine the membrane resistance R.

【0027】図11は前記測定システムにおいて、セン
サの代わりに何も修飾されていない金電極(以後無修飾
金電極という)を用いて電流を0.007μAから0.
08μAまで変化させこの間のV0 、V1 を測定し
た結果を示す。傾きΔV1 /ΔV0 はほぼ一定とな
っている。抵抗測定の繰り返し実験の結果を表2に示す
。出力に対するばらつきの標準偏差は2%であり、充分
信頼性のあるデータである。
FIG. 11 shows the measurement system described above, in which an unmodified gold electrode (hereinafter referred to as an unmodified gold electrode) is used in place of the sensor, and the current is varied from 0.007 μA to 0.00 μA.
The results are shown in which V0 and V1 were measured while changing the current to 0.08 μA. The slope ΔV1 /ΔV0 is almost constant. Table 2 shows the results of repeated resistance measurement experiments. The standard deviation of the variation in output is 2%, which is sufficiently reliable data.

【0028】[0028]

【表2】[Table 2]

【0029】これを用いてA膜およびB膜の味物質に対
する膜抵抗の変化を調べる。味物質は甘味としてショ糖
、苦味として塩酸キニーネ、塩味として塩化ナトリウム
、酸味として酒石酸を用いた。被測定溶液の濃度はそれ
ぞれ人の感じる領域とした。
Using this, changes in membrane resistance of membrane A and membrane B to taste substances are investigated. The taste substances used were sucrose for sweetness, quinine hydrochloride for bitterness, sodium chloride for salty taste, and tartaric acid for sourness. The concentration of each solution to be measured was within the range that humans could feel.

【0030】測定結果を図12乃至図25に示す。基準
液(1mM塩化カリウム溶液)における膜抵抗を1とし
た比を縦軸にとってある。ちなみに、基準液における膜
抵抗は無修飾金電極が約5MΩ、A膜が約10MΩ〜2
0MΩそしてB膜が同じく約10MΩ〜20MΩである
The measurement results are shown in FIGS. 12 to 25. The vertical axis represents the ratio with the membrane resistance in the reference solution (1 mM potassium chloride solution) being 1. By the way, the membrane resistance in the standard solution is about 5MΩ for the unmodified gold electrode, and about 10MΩ~2 for the A membrane.
0 MΩ and the B film is also about 10 MΩ to 20 MΩ.

【0031】図12はA膜のショ糖に対する膜抵抗の濃
度特性である。無修飾金電極の膜抵抗変化がほぼ零であ
るのに対して、A膜の膜抵抗はショ糖の濃度が増すに従
って増加し1000mMでは1.4倍となっている。こ
の数字は誤差が±2〜3%としても充分有意な数字であ
る。これは、センサ表面の疎水基群の間にショ糖が吸着
して、疎水基の配列の密度が上がったためと考えられる
FIG. 12 shows the concentration characteristics of the membrane resistance of membrane A to sucrose. While the membrane resistance change of the unmodified gold electrode is almost zero, the membrane resistance of the A membrane increases as the concentration of sucrose increases, and at 1000 mM, it increases 1.4 times. This number is sufficiently significant even if the error is ±2 to 3%. This is thought to be because sucrose was adsorbed between the hydrophobic group groups on the sensor surface, increasing the density of the hydrophobic group arrangement.

【0032】図13はA膜の塩酸キニーネに対する膜抵
抗の濃度特性である。無修飾金電極の膜抵抗変化がほぼ
零であるのに対して、A膜の膜抵抗は塩酸キニーネの濃
度が増すに従って増加し3mMでは約3倍となっている
。これは、センサ表面の疎水基群にキニーネが吸着して
、疎水基の配列の密度が上がったためと、キニーネの分
子が持っているプラスの電荷により拡散電気二重層が発
生し、これが電気的障壁となったためと考えられる。 実際に膜電位は80mVほど増加している。
FIG. 13 shows the concentration characteristics of membrane resistance of membrane A to quinine hydrochloride. While the membrane resistance change of the unmodified gold electrode is almost zero, the membrane resistance of the A membrane increases as the concentration of quinine hydrochloride increases, and at 3 mM, it increases about three times. This is because quinine adsorbs to the group of hydrophobic groups on the sensor surface, increasing the density of the arrangement of hydrophobic groups, and the positive charge of the quinine molecules generates a diffuse electric double layer, which creates an electrical barrier. This is thought to be because. In fact, the membrane potential increased by about 80 mV.

【0033】図14はB膜のショ糖に対する膜抵抗の濃
度特性である。A膜とほぼ同じで1000mMで1.4
倍である。
FIG. 14 shows the concentration characteristics of the membrane resistance of membrane B to sucrose. Almost the same as A membrane, 1.4 at 1000mM
It's double.

【0034】図15はB膜の塩酸キニーネに対する膜抵
抗の濃度特性である。A膜ほどの増加はないが1mMで
1.7倍である。
FIG. 15 shows the concentration characteristics of membrane resistance of membrane B to quinine hydrochloride. Although the increase is not as great as that of A membrane, it is 1.7 times greater at 1 mM.

【0035】図16はB膜の塩化ナトリウムに対する膜
抵抗の濃度特性である。無修飾金電極の膜抵抗は50%
減少し、B膜は20%減少している。これはナトリウム
イオンと塩素イオンの濃度が増加したため電気伝導度が
良くなったためである。ただし、膜表面が疎水基で覆わ
れているため無修飾金電極に比べて変化が小さい。
FIG. 16 shows the concentration characteristics of membrane resistance for sodium chloride in membrane B. The membrane resistance of unmodified gold electrode is 50%
The B film has decreased by 20%. This is because the electrical conductivity improved due to the increased concentration of sodium ions and chloride ions. However, since the membrane surface is covered with hydrophobic groups, the change is smaller than that of an unmodified gold electrode.

【0036】図17はB膜の酒石酸に対する膜抵抗の濃
度特性である。無修飾金電極もB膜も20%減少してい
る。これは水素イオンと有機性の陰イオンが増加したた
めである。
FIG. 17 shows the concentration characteristics of the film resistance of film B to tartaric acid. Both the unmodified gold electrode and the B film are reduced by 20%. This is due to an increase in hydrogen ions and organic anions.

【0037】膜電位測定は次のようにして行った。測定
系は膜抵抗測定で使用したものと同じである。ただし、
センサに流す電流は最小の約0.007μAとした。各
味物質も膜抵抗測定で使用したものと同じものを使用し
た。
Membrane potential measurement was carried out as follows. The measurement system was the same as that used for membrane resistance measurement. however,
The current flowing through the sensor was set to the minimum value of about 0.007 μA. Each taste substance was the same as that used in the membrane resistance measurement.

【0038】測定結果を図18乃至図25に示す。基準
液における電位との差を縦軸としている。図18はA膜
のショ糖に対する膜電位の濃度特性である。無修飾金電
極の膜電位変化がほぼ零であるのに対して、A膜の膜電
位はショ糖の濃度が増すに従って増加し1000mMで
は約35mV増加している。これは、膜抵抗が約5MΩ
増加し、電流が0.007μAであったためと推定され
る。当然電流が大きくなると膜電位変化もそれだけ大き
くなると推定できる。
The measurement results are shown in FIGS. 18 to 25. The vertical axis represents the difference in potential from the reference solution. FIG. 18 shows the concentration characteristics of membrane potential for sucrose in membrane A. While the membrane potential change of the unmodified gold electrode is almost zero, the membrane potential of the A membrane increases as the sucrose concentration increases, and increases by about 35 mV at 1000 mM. This means that the membrane resistance is approximately 5MΩ.
This is estimated to be because the current was 0.007 μA. Naturally, it can be assumed that as the current increases, the change in membrane potential also increases accordingly.

【0039】図19はA膜の塩酸キニーネに対する膜電
位の濃度特性である。無修飾金電極の膜電位変化がほぼ
零であるのに対して、A膜の膜抵抗は塩酸キニーネの濃
度が増すに従って増加し3mMでは約80mV増加して
いる。これは、センサ表面の疎水基群にキニーネが吸着
して、キニーネの分子が持っているプラスの電荷により
電気二重層が発生したためと考えられる。閾値も人とほ
ぼ同じであり苦味のセンサとして良好である。
FIG. 19 shows the concentration characteristics of the membrane potential of membrane A for quinine hydrochloride. While the membrane potential change of the unmodified gold electrode is almost zero, the membrane resistance of the A membrane increases as the concentration of quinine hydrochloride increases, increasing by about 80 mV at 3 mM. This is thought to be because quinine was adsorbed to the hydrophobic groups on the sensor surface, and an electric double layer was generated due to the positive charge of the quinine molecules. The threshold value is almost the same as that of humans, making it a good sensor for bitterness.

【0040】図20はA膜の塩化ナトリウムに対する膜
電位の濃度特性である。無修飾金電極は濃度1000m
Mにおいて約70mV下がった。これは塩素イオンによ
る酸化還元電位によるものと思われる。また、A膜では
約30mV下がっている。これは、脂質を通過した塩素
イオンによる酸化還元電位によるものと思われる。
FIG. 20 shows the concentration characteristics of membrane potential for sodium chloride in membrane A. Unmodified gold electrode has a concentration of 1000m
The voltage dropped by about 70 mV at M. This seems to be due to the redox potential caused by chlorine ions. In addition, the voltage decreases by about 30 mV in the A film. This seems to be due to the redox potential caused by chloride ions passing through the lipid.

【0041】図21はA膜の酒石酸に対する膜電位の濃
度特性である。無修飾金電極は濃度30mMにおいて約
50mV上がった。これは水素イオンによる酸化還元電
位によるものと思われる。また、A膜では約40mV上
がっている。これは、脂質を通過した水素イオンによる
酸化還元電位によるものと思われる。
FIG. 21 shows the concentration characteristics of the membrane potential of membrane A with respect to tartaric acid. The unmodified gold electrode rose approximately 50 mV at a concentration of 30 mM. This seems to be due to the redox potential caused by hydrogen ions. In addition, the voltage has increased by about 40 mV in the A film. This seems to be due to the redox potential caused by hydrogen ions passing through the lipid.

【0042】図22はB膜のショ糖に対する膜電位の濃
度特性である。無修飾金電極はA膜のときと同様である
。B膜はA膜ほどの増加はないが、約30mV増加して
いる。
FIG. 22 shows the concentration characteristics of the membrane potential of the B membrane for sucrose. The unmodified gold electrode is the same as that for the A film. Film B does not increase as much as film A, but increases by about 30 mV.

【0043】図23はB膜の塩酸キニーネに対する膜電
位の濃度特性である。B膜はA膜の50%ほどの増加で
ある。
FIG. 23 shows the concentration characteristics of membrane potential for quinine hydrochloride in membrane B. Film B has an increase of about 50% compared to film A.

【0044】図24はB膜の塩化ナトリウムに対する膜
電位の濃度特性である。B膜はA膜とほぼ同様である。
FIG. 24 shows the concentration characteristics of membrane potential for sodium chloride in membrane B. The B film is almost the same as the A film.

【0045】図25はB膜の酒石酸に対する膜電位の濃
度特性である。B膜はA膜とほぼ同様である。
FIG. 25 shows the concentration characteristics of membrane potential for tartaric acid in membrane B. The B film is almost the same as the A film.

【0046】以上、A膜およびB膜の各味物質に対する
膜電位応答は従来の味覚センサと比べると、非電解質お
よび疎水部を持つ物質に対して特異性を持つことが分か
る。フェリシアン化カリウム等の金の酸化還元電位を一
定にする物質を被測定溶液に加えることで、塩素イオン
や水素イオンによる膜電位の変化ほぼ零に抑えられると
考えられるので、非電解質および疎水部を持つ物質に対
する特異性は更に強められると推察される。
As described above, it can be seen that the membrane potential responses of the A membrane and B membrane to each taste substance have specificity to substances having non-electrolytes and hydrophobic parts, compared to conventional taste sensors. By adding a substance that stabilizes the redox potential of gold, such as potassium ferricyanide, to the solution to be measured, it is thought that changes in membrane potential caused by chlorine ions and hydrogen ions can be suppressed to almost zero. It is inferred that the specificity to substances will be further strengthened.

【0047】[0047]

【発明の効果】以上、説明したように、この発明によれ
ば、例えば味のセンサとして良好な特性を持つ配向性に
優れたモノレイヤの構造でありながら耐久性のあるセン
サが得られた。このことは実用的なセンサ、特に膜抵抗
や膜容量の測定をするのに実用的なセンサが得られたこ
とを意味し、味等を判断するための情報量の増加につな
がる。味でいえば甘味等電位では測れなかった非電解質
の測定が可能となった。更に、疎水基がセンサの表面に
並んでいるものは、従来のセンサに比べ、苦味物質等疎
水基に吸着する物質に対する応答性が上がり、反対に疎
水基に吸着しない物質に対する応答性が下がったので選
択性を持ったセンサの種類が増加した。
As described above, according to the present invention, a sensor having a monolayer structure with excellent orientation and good properties as a taste sensor, for example, but with durability, can be obtained. This means that a practical sensor, particularly for measuring membrane resistance and membrane capacitance, has been obtained, leading to an increase in the amount of information for determining taste and the like. In terms of taste, it has become possible to measure non-electrolytes that could not be measured using sweetness equipotentials. Furthermore, compared to conventional sensors, sensors with hydrophobic groups lined up on the surface have increased responsiveness to substances that adsorb to hydrophobic groups, such as bitter substances, and have decreased responsiveness to substances that do not adsorb to hydrophobic groups. Therefore, the number of types of sensors with selectivity has increased.

【0048】[0048]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明のセンサの断面の模式図である。FIG. 1 is a schematic cross-sectional view of a sensor of the present invention.

【図2】この発明のセンサの炭素系電極の化学修飾系統
図である。
FIG. 2 is a chemical modification system diagram of the carbon-based electrode of the sensor of the present invention.

【図3】この発明のセンサの金属酸化物半導体電極およ
び金属電極の化学修飾系統図である。
FIG. 3 is a chemical modification system diagram of the metal oxide semiconductor electrode and the metal electrode of the sensor of the present invention.

【図4】この発明のセンサの断面の模式図である。FIG. 4 is a schematic cross-sectional view of the sensor of the invention.

【図5】この発明のセンサの断面の模式図である。FIG. 5 is a schematic cross-sectional view of the sensor of the present invention.

【図6】この発明のセンサの断面の模式図である。FIG. 6 is a schematic cross-sectional view of the sensor of the invention.

【図7】この発明のセンサの膜を化学式で表した断面の
模式図である。
FIG. 7 is a schematic cross-sectional view of the membrane of the sensor of the present invention represented by a chemical formula.

【図8】この発明のセンサの膜を化学式で表した断面の
模式図である。
FIG. 8 is a schematic cross-sectional view of the membrane of the sensor of the present invention represented by a chemical formula.

【図9】この発明のセンサの膜を化学式で表した断面の
模式図である。
FIG. 9 is a schematic cross-sectional view showing the membrane of the sensor of the present invention using a chemical formula.

【図10】センサの膜電位および膜抵抗の測定システム
図である。
FIG. 10 is a diagram of a system for measuring membrane potential and membrane resistance of a sensor.

【図11】無修飾金電極のΔV1 /ΔV0 を示す図
である。
FIG. 11 is a diagram showing ΔV1 /ΔV0 of an unmodified gold electrode.

【図12】A膜のショ糖に対する膜抵抗の濃度特性を示
す図である。
FIG. 12 is a diagram showing the concentration characteristics of the membrane resistance of membrane A to sucrose.

【図13】A膜の塩酸キニーネに対する膜抵抗の濃度特
性を示す図である。
FIG. 13 is a diagram showing the concentration characteristics of the membrane resistance of Membrane A to quinine hydrochloride.

【図14】B膜のショ糖に対する膜抵抗の濃度特性を示
す図である。
FIG. 14 is a diagram showing the concentration characteristics of the membrane resistance of membrane B to sucrose.

【図15】B膜の塩酸キニーネに対する膜抵抗の濃度特
性を示す図である。
FIG. 15 is a diagram showing the concentration characteristics of the membrane resistance of Membrane B to quinine hydrochloride.

【図16】B膜の塩化ナトリウムに対する膜抵抗の濃度
特性を示す図である。
FIG. 16 is a diagram showing the concentration characteristics of membrane resistance with respect to sodium chloride of membrane B.

【図17】B膜の酒石酸に対する膜抵抗の濃度特性を示
す図である。
FIG. 17 is a diagram showing concentration characteristics of film resistance of film B to tartaric acid.

【図18】A膜のショ糖に対する膜電位の濃度特性を示
す図である。
FIG. 18 is a diagram showing the concentration characteristics of membrane potential for sucrose in membrane A.

【図19】A膜の塩酸キニーネに対する膜電位の濃度特
性を示す図である。
FIG. 19 is a diagram showing the concentration characteristics of the membrane potential of Membrane A with respect to quinine hydrochloride.

【図20】A膜の塩化ナトリウムに対する膜電位の濃度
特性を示す図である。
FIG. 20 is a diagram showing the concentration characteristics of membrane potential with respect to sodium chloride of membrane A.

【図21】A膜の酒石酸に対する膜電位の濃度特性を示
す図である。
FIG. 21 is a diagram showing the concentration characteristics of the membrane potential of membrane A with respect to tartaric acid.

【図22】B膜のショ糖に対する膜電位の濃度特性を示
す図である。
FIG. 22 is a diagram showing the concentration characteristics of membrane potential for sucrose in B membrane.

【図23】B膜の塩酸キニーネに対する膜電位の濃度特
性を示す図である。
FIG. 23 is a diagram showing the concentration characteristics of membrane potential for quinine hydrochloride in membrane B.

【図24】B膜の塩化ナトリウムに対する膜電位の濃度
特性を示す図である。
FIG. 24 is a diagram showing the concentration characteristics of membrane potential with respect to sodium chloride in membrane B.

【図25】B膜の酒石酸に対する膜電位の濃度特性を示
す図である。
FIG. 25 is a diagram showing the concentration characteristics of membrane potential for tartaric acid in membrane B.

【図26】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 26 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図27】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 27 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図28】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 28 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図29】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 29 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図30】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 30 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図31】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 31 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図32】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 32 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図33】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 33 is a flow chart showing the manufacturing procedure of the sensor of the present invention.

【図34】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 34 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図35】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 35 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図36】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 36 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図37】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 37 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図38】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 38 is a flow chart showing the manufacturing procedure of the sensor of the present invention.

【図39】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 39 is a flow chart showing the manufacturing procedure of the sensor of the present invention.

【図40】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 40 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図41】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 41 is a flow chart showing the manufacturing procedure of the sensor of the present invention.

【図42】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 42 is a flow chart showing the manufacturing procedure of the sensor of the present invention.

【図43】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 43 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図44】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 44 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図45】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 45 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【図46】この発明のセンサの製造手順を示す流れ図で
ある。
FIG. 46 is a flowchart showing the manufacturing procedure of the sensor of the present invention.

【符号の説明】[Explanation of symbols]

1  基板電極 2  疎水基(疎水基群) 3  化学結合部 4  センサ 5  電極 6  参照電極 7  抵抗 8  可変抵抗 9  乾電池 10  チオール部 11  疎水部 12  親水基 13  炭化水素部 1 Substrate electrode 2 Hydrophobic group (hydrophobic group) 3 Chemical bonding part 4 Sensor 5 Electrode 6 Reference electrode 7 Resistance 8 Variable resistance 9 Dry battery 10 Thiol part 11 Hydrophobic part 12 Hydrophilic group 13 Hydrocarbon part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  基板電極(1)と、該基板電極と化学
結合した疎水基群(2)とからなり、該疎水基群が前記
基板電極の被測定溶液に接する面全体を覆っていること
を特徴とするセンサ。
1. Consisting of a substrate electrode (1) and a hydrophobic group group (2) chemically bonded to the substrate electrode, the hydrophobic group group covering the entire surface of the substrate electrode in contact with the solution to be measured. A sensor featuring:
【請求項2】  前記基板電極が炭素系電極であり、か
つ前記化学結合がアミド結合、エステル結合、エーテル
結合、ケトン結合、炭素−炭素結合または炭素−窒素結
合のうちの少なくとも一つであることを特徴とする請求
項1記載のセンサ。
2. The substrate electrode is a carbon-based electrode, and the chemical bond is at least one of an amide bond, an ester bond, an ether bond, a ketone bond, a carbon-carbon bond, or a carbon-nitrogen bond. The sensor according to claim 1, characterized in that:
【請求項3】  前記基板電極が金属電極または金属酸
化物型半導体電極のいずれかであり、かつ前記化学結合
がアミド結合、アミノ結合、エステル結合またはエーテ
ル結合のうちの少なくとも一つであることを特徴とする
請求項1記載のセンサ。
3. The substrate electrode is either a metal electrode or a metal oxide type semiconductor electrode, and the chemical bond is at least one of an amide bond, an amino bond, an ester bond, or an ether bond. The sensor according to claim 1, characterized in that:
JP03122636A 1991-04-24 1991-04-24 Sensor Expired - Lifetime JP3105940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03122636A JP3105940B2 (en) 1991-04-24 1991-04-24 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03122636A JP3105940B2 (en) 1991-04-24 1991-04-24 Sensor

Publications (2)

Publication Number Publication Date
JPH04324351A true JPH04324351A (en) 1992-11-13
JP3105940B2 JP3105940B2 (en) 2000-11-06

Family

ID=14840879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03122636A Expired - Lifetime JP3105940B2 (en) 1991-04-24 1991-04-24 Sensor

Country Status (1)

Country Link
JP (1) JP3105940B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538412A (en) * 2006-01-31 2009-11-05 サノフィ−アベンティス Method for determining organic cation transporter activity
US8137623B2 (en) 2006-06-07 2012-03-20 Shimadzu Corporation Taste analyzing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538412A (en) * 2006-01-31 2009-11-05 サノフィ−アベンティス Method for determining organic cation transporter activity
US8137623B2 (en) 2006-06-07 2012-03-20 Shimadzu Corporation Taste analyzing apparatus

Also Published As

Publication number Publication date
JP3105940B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
Crespo et al. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers
US10349878B2 (en) Electrochemical sensor having symmetrically distributed analyte sensitive areas
Švorc Determination of caffeine: a comprehensive review on electrochemical methods
Jin et al. Poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid
Ugo et al. Ion-exchange voltammetry at polymer film-coated nanoelectrode ensembles
Sa et al. Reversible cobalt ion binding to imidazole-modified nanopipettes
Song et al. Amperometric aqueous sol–gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode
CN102735734B (en) A kind of non-intervention type glucose sensor
US20200405200A1 (en) Durable Enzyme-Based Biosensor and Process for Drop Deposition Immobilization
Wen et al. Fabrication of layer-by-layer assembled biomimetic nanochannels for highly sensitive acetylcholine sensing.
Ottova et al. Self-assembled BLMs: biomembrane models and biosensor applications
Favero et al. Membrane supported bilayer lipid membranes array: preparation, stability and ion-channel insertion
Ervin et al. Sensitivity and signal complexity as a function of the number of ion channels in a stochastic sensor
Amr et al. based potentiometric sensors for nicotine determination in smokers’ sweat
Al-Haidary et al. Development of polyaniline for sensor applications: A review
Lata et al. Construction of amperometric l-amino acid biosensor based on l-amino acid oxidase immobilized onto ZnONPs/c-MWCNT/PANI/AuE
Chang et al. Dopamine sensing with robust carbon nanotube implanted polymer micropillar array electrodes fabricated by coupling micromolding and infiltration coating processes
Rejithamol et al. Carbon paste electrochemical sensors for the detection of neurotransmitters
Tamara et al. All-solid-state astringent taste sensor using polypyrrole-carbon black composite as ion-electron transducer
Kalisz et al. 3D-drawn supports for ion-selective electrodes
Shaikshavali et al. Fabrication, characterization and application of poly (L-Cystine)/multi walled carbon nanotubes modified glassy carbon electrode towards the simultaneous determination of dopamine in presence of uric acid and folic acid
Sharafi et al. A highly sensitive and ecofriendly assay platform for the simultaneous electrochemical determination of rifampicin and isoniazid in human serum and pharmaceutical formulations
Zare et al. A comparison of the electrochemical and electroanalytical behavior of ascorbic acid, dopamine and uric acid at bare, activated and multi-wall carbon nanotubes modified glassy carbon electrodes
Tadi et al. Voltammetric determination of pindolol in biological fluids using molecularly imprinted polymer based biomimetic sensor
JPH04324351A (en) Sensor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11