JPH04324300A - Undulator - Google Patents

Undulator

Info

Publication number
JPH04324300A
JPH04324300A JP9554091A JP9554091A JPH04324300A JP H04324300 A JPH04324300 A JP H04324300A JP 9554091 A JP9554091 A JP 9554091A JP 9554091 A JP9554091 A JP 9554091A JP H04324300 A JPH04324300 A JP H04324300A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
undulator
magnet
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9554091A
Other languages
Japanese (ja)
Inventor
Yoshio Tanabe
田邊 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9554091A priority Critical patent/JPH04324300A/en
Publication of JPH04324300A publication Critical patent/JPH04324300A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain emitted light of high intensity by a specific wavelength by improving accuracy of a periodic magnetic field on a beam passing axis, formed by a parmanent magnet, and increasing an interference effect of the undulator emitted light. CONSTITUTION:A structure of plane type undulator is provided. That is, a plurality of permanent magnets 12 for forming a periodic magnetic field are arranged in both sides of a beam duct 11 and held by magnetic holders 13(non- magnetic) to hold each plurality of these magnetic holders 13 by holder fixing beds 14(formed of magnetic material). The holder fixing beds 14 is mounted to a mount base 15. Of the permanent magnets 12, in a magnet position in a magnetizing direction orthogonal to the duct 11, a through hole 20 of passing through the magnetic holder 13 and the holder fixing bed 14 is drilled to insert a magnetic flux adjusting bolt 21, consisting of magnetic material, retractably into this through hole 20. In a position of the through hole 20 in the mount base 15, an adjusting hole 22 is drilled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】〔発明の目的〕[Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、放射光を利用する加速
器などに設置されるアンジュレータに係り、とくに、複
数個の永久磁石を電子ビームダクトに沿って配列した構
造のアンジュレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an undulator installed in an accelerator or the like that utilizes synchrotron radiation, and more particularly to an undulator having a structure in which a plurality of permanent magnets are arranged along an electron beam duct.

【0003】0003

【従来の技術】高エネルギー状態の電子が円運動や振動
をするとき種々の電磁波を放射することが知られており
、その放射の一つにシンクロトロン放射がある。このシ
ンクロトロン放射は、数億電子ボルト(数百MeV)以
上の高エネルギー状態に加速されて真空中をほぼ光速で
伝搬する電子が、偏向磁場によりその軌跡が曲げられる
と、その軌道の接線方向に放射光と呼ばれる光が放射さ
れる現象である。このシンクロトロン放射は一般には、
円形加速器において、偏向電磁石の偏向磁場が加速電子
ビームを電子軌道に直角な方向に加速することにより実
施されている。
2. Description of the Related Art It is known that high-energy electrons emit various electromagnetic waves when they undergo circular motion or vibration, and one of these types of radiation is synchrotron radiation. This synchrotron radiation occurs when electrons are accelerated to a high energy state of hundreds of millions of electron volts (several hundred MeV) and propagate in vacuum at almost the speed of light, and when their trajectory is bent by a deflecting magnetic field, it occurs in the tangential direction of their trajectory This is a phenomenon in which light called synchrotron radiation is emitted. This synchrotron radiation is generally
In a circular accelerator, the deflecting magnetic field of the deflecting electromagnet is implemented by accelerating the accelerated electron beam in a direction perpendicular to the electron trajectory.

【0004】このシンクロトロン放射による放射光は波
長が数オングストロームから数千オングストロームまで
の連続光であり、積分した放射パワーは極めて大きい。 しかし、使用する波長以外の光は被照射体に損傷を与え
てしまうから、狭い波長範囲を分光して使いたいとう要
求がある。この要求に応えるため短波長化すると、今度
は放射光の強度が低下し、高輝度な光源とはならない。 そこで、この短波長化、高輝度化の要求を満足させるた
めに、挿入型光源の一つであるアンジュレータ(電子蛇
行装置)によるアンジュレータ放射が研究、使用されて
いる。
The synchrotron radiation is continuous light with a wavelength ranging from several angstroms to several thousand angstroms, and the integrated radiation power is extremely large. However, since light at wavelengths other than those used can damage the irradiated object, there is a demand for spectroscopy in a narrow wavelength range. If the wavelength is shortened to meet this demand, the intensity of the emitted light will decrease, and a high-brightness light source will not be obtained. Therefore, in order to satisfy the demands for shorter wavelengths and higher brightness, undulator radiation using an undulator (electronic meandering device), which is one of the insertion type light sources, has been studied and used.

【0005】図5、図6に従来のアンジュレータの一例
を示す。これらの図に示すアンジュレータは平面型と呼
ばれるのもので、真空ダクト1のy軸方向(図5参照、
z軸方向をビーム通過方向とする)両側に各々、隣接し
て配置された複数の永久磁石2…2と、この永久磁石2
…2を個別に保持する、アルミ合金等の非磁性体で成る
磁石ホルダ3…3と、この磁石ホルダ3…3の内の複数
個(例えば20個)ずつを1ブロックとしてボルト(図
示せず)で保持する複数のホルダ固定台4…4と、この
ホルダ固定台4…4をボルト(図示せず)で保持する、
真空ダクト1両側の架台5、5とを備えている。架台5
、5同士は図示しないスタッドを介して固定され、これ
により、永久磁石2…2はその強い磁気吸引力に抗して
真空ダクト1の両側で所定隙間を保持している。
FIGS. 5 and 6 show an example of a conventional undulator. The undulator shown in these figures is a so-called planar type, and is undulated in the y-axis direction of the vacuum duct 1 (see Fig. 5,
A plurality of permanent magnets 2...2 arranged adjacent to each other on both sides (with the z-axis direction being the beam passing direction), and the permanent magnets 2
Magnet holders 3...3 made of non-magnetic material such as aluminum alloy, which individually hold magnet holders 3...2, and bolts (not shown) each consisting of a plurality (for example, 20) of these magnet holders 3...3. ) and a plurality of holder fixing bases 4...4 held by bolts (not shown);
It is provided with frames 5, 5 on both sides of the vacuum duct 1. Frame 5
, 5 are fixed to each other via studs (not shown), so that the permanent magnets 2...2 maintain a predetermined gap on both sides of the vacuum duct 1 against the strong magnetic attraction force.

【0006】永久磁石2…2のサイズは例えば1cm(
y軸方向)×1cm(z軸方向)×10cm(x軸方向
:奥行き)であり、その永久磁石2…2は隣接するもの
同士の磁極の向き(図中、矢印の向きは磁化の方向を示
す)が90度ずつずらして並べられている。この磁石配
列によって形成される、z軸方向のビーム通過軸上の磁
場強度分布を図6に示す。図5中のA位置からE位置と
図6中のA点からE点とが各々対応している。図5のA
位置では上側、下側の永久磁石2、2により、図中、上
側から下側に向かう磁場が、C位置では逆に下側から上
側に向かう磁場となる一方、B位置及びD位置では磁場
は殆ど相殺されて零となる。またE位置はA位置と同一
であり、以下、上記磁場方向が繰り返され、永久磁石4
個で1周期を形成する。つまり、A位置〜D位置までの
磁場強度分布は図6に示すように余弦分布の周期磁場と
なり、永久磁石2の幅が1cmの場合には、一周期は4
cmである。アンジュレータ全体のz軸方向長さは例え
ば2m程度に形成されるから、上記周期磁場も高強度の
磁気力をもって、その長さ分だけ繰り返される。
The size of the permanent magnets 2...2 is, for example, 1 cm (
y axis direction) x 1 cm (z axis direction) x 10 cm (x axis direction: depth), and the permanent magnets 2... ) are arranged 90 degrees apart. FIG. 6 shows the magnetic field strength distribution on the beam passing axis in the z-axis direction, which is formed by this magnet arrangement. The positions A to E in FIG. 5 correspond to the points A to E in FIG. 6, respectively. A in Figure 5
Due to the upper and lower permanent magnets 2 and 2 at the position C, the magnetic field is directed from the upper side to the lower side in the figure, whereas at the C position, the magnetic field is oppositely directed from the lower side to the upper side. Most of them cancel out and become zero. Further, the E position is the same as the A position, and the above magnetic field direction is repeated, and the permanent magnet 4
form one period. In other words, the magnetic field strength distribution from position A to position D becomes a periodic magnetic field with a cosine distribution as shown in FIG.
cm. Since the length of the entire undulator in the z-axis direction is, for example, approximately 2 m, the above-mentioned periodic magnetic field is also repeated for that length with a high-intensity magnetic force.

【0007】なお、アンジュレータ全体のz軸方向長さ
は上述したように例えば2mと長いため、ホルダ固定台
4毎にブロック化して組立ての便宜を図っている。
[0007] Since the length of the entire undulator in the z-axis direction is long, for example, 2 m, as described above, each holder fixing base 4 is divided into blocks for convenience of assembly.

【0008】このように形成される周期磁場に図5中の
z軸方向から電子ビームが進入すると、電子ビームはx
軸方向(紙面に垂直な方向)にローレンツ力を受け、周
期磁場と同様にほぼ余弦分布の軌道を描きながら蛇行す
る。この蛇行運動の1蛇行毎にアンジュレータ放射光が
発生し、この放射光同士が干渉し合い、ある特定波長の
光強度のみがシンクロトロン放射よりも著しく大きくな
る、鋭いピーク波形をもった放射スペクトルが得られる
When an electron beam enters the periodic magnetic field thus formed from the z-axis direction in FIG.
It is subjected to a Lorentz force in the axial direction (perpendicular to the plane of the paper), and it meanderes while drawing an almost cosine-distributed trajectory, similar to a periodic magnetic field. Undulator synchrotron radiation is generated with each meandering motion, and these synchrotron radiations interfere with each other, resulting in a radiation spectrum with a sharp peak waveform in which only the light intensity of a specific wavelength is significantly greater than that of synchrotron radiation. can get.

【0009】[0009]

【発明が解決しようとする課題】上述したようにアンジ
ュレータ放射は各蛇行毎の放射光同士の干渉効果を利用
しているため、ある特定波長の光に鋭いピークを持たせ
るには、電子ビームの各蛇行運動の位相及び振幅が高精
度に一致している必要がある。即ち、周期磁場の精度が
高くなければならない。しかし、永久磁石の磁気特性の
ばらつきは大きく、周期磁場の精度が低下し、したがっ
て、十分な強度のアンジュレータ放射光が得られないこ
ともあった。
[Problems to be Solved by the Invention] As mentioned above, undulator radiation utilizes the interference effect between the synchrotron radiation of each meander, so in order to give light of a certain wavelength a sharp peak, it is necessary to The phase and amplitude of each meandering motion must match with high precision. That is, the precision of the periodic magnetic field must be high. However, the variation in the magnetic properties of the permanent magnets is large, and the accuracy of the periodic magnetic field is reduced, so that it may not be possible to obtain undulator synchrotron radiation of sufficient intensity.

【0010】本発明は、このような従来技術の問題に鑑
みてなされたもので、永久磁石の磁気特性に大きなばら
つきがある場合でも、周期磁場の精度を適宜補正でき、
高精度な周期磁場によりアンジュレータ放射光の強度を
十分確保できるアンジュレータを提供することを目的と
する。 〔発明の構成〕
The present invention has been made in view of the problems of the prior art, and it is possible to appropriately correct the accuracy of a periodic magnetic field even when there are large variations in the magnetic properties of permanent magnets.
The object of the present invention is to provide an undulator that can ensure sufficient intensity of undulator radiation using a highly accurate periodic magnetic field. [Structure of the invention]

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
、本発明では、電子ビームの通過路に沿って、その通過
路に周期磁場を形成するように配置方向をずらした状態
で並べられた複数の永久磁石と、この永久磁石の各々を
個別に保持し且つ非磁性体で成る磁石ホルダと、この磁
石ホルダの内の複数個ずつを保持し且つ磁性体で成るホ
ルダ固定台と、このホルダ固定台を保持する架台とを備
え、前記永久磁石の内、前記ビーム通過路に直交する磁
場を発生する永久磁石に、前記ホルダ固定台及び磁石ホ
ルダを同一軸状に貫通する貫通孔を穿設し、この貫通孔
に磁性体から成る磁束調整部材を前記永久磁石に対して
進退自在に挿入した。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, electron beams are arranged along the path of the electron beam with their arrangement directions shifted so as to form a periodic magnetic field in the path of the electron beam. A plurality of permanent magnets, a magnet holder that holds each of the permanent magnets individually and is made of a non-magnetic material, a holder fixing base that holds a plurality of the magnet holders and is made of a magnetic material, and this holder. a pedestal for holding a fixed pedestal, and a through hole coaxially penetrating the holder fixing pedestal and the magnet holder is bored in a permanent magnet that generates a magnetic field orthogonal to the beam passage path among the permanent magnets. A magnetic flux adjustment member made of a magnetic material was inserted into this through hole so that it could move forward and backward with respect to the permanent magnet.

【0012】0012

【作用】磁性体で成る磁束調整部材を架台側に十分退避
させておけば、永久磁石及び磁束調整部材間の空隙の磁
気抵抗が大きく、永久磁石から磁束調整部材側に磁束が
分割されない。しかし、磁束調整部材を永久磁石側に進
入させ、永久磁石に接近させるに伴って磁気抵抗が徐々
に小さくなり、永久磁石の磁束の一部が磁束調整部材、
磁性体で成るホルダ固定台、及び隣の磁束調整部材を介
して閉磁気回路を構成する。この磁気回路を通る磁束の
数は、磁束調整部材の進退距離に応じて変わる。つまり
、貫通孔内の磁束調整部材の進退距離を調整することに
より、電子ビームの通過路の磁場強度及び位相が任意に
調整され、複数の永久磁石で形成される周期磁場全体の
分布精度を高い許容値内に収められる。
[Operation] If the magnetic flux adjusting member made of a magnetic material is sufficiently retracted to the mount side, the magnetic resistance of the gap between the permanent magnet and the magnetic flux adjusting member is large, and the magnetic flux is not divided from the permanent magnet to the magnetic flux adjusting member side. However, as the magnetic flux adjustment member enters the permanent magnet side and approaches the permanent magnet, the magnetic resistance gradually decreases, and a part of the magnetic flux of the permanent magnet is transferred to the magnetic flux adjustment member.
A closed magnetic circuit is constructed via a holder fixing base made of a magnetic material and an adjacent magnetic flux adjustment member. The number of magnetic fluxes passing through this magnetic circuit changes depending on the advancing and retreating distance of the magnetic flux adjusting member. In other words, by adjusting the advancing and retreating distance of the magnetic flux adjustment member in the through hole, the magnetic field strength and phase of the electron beam path can be adjusted arbitrarily, increasing the distribution precision of the entire periodic magnetic field formed by multiple permanent magnets. It is within the allowable value.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1〜図4を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

【0014】これらの図に示すアンジュレータは平面型
と呼ばれるのものである。まず、図3、4に基づき全体
構成を説明する。電子ビーム通過路としての真空ダクト
11のy軸方向(図3参照、z軸方向をビーム通過方向
とする)両側において、ビーム通過方向に各々隣接して
配置された複数の永久磁石12…12と、この永久磁石
12…12を個別に保持する、アルミ合金等の非磁性体
で成る磁石ホルダ13…13と、この磁石ホルダ13…
13の内の複数個(例えば20個)ずつを1ブロックと
してボルト(図示せず)で保持し且つ磁性体で成る複数
のホルダ固定台14…14と、このホルダ固定台14…
14をボルト14a…14aで保持する非磁性の架台1
5とを備えている。架台15は、図4に示すようにz軸
方向からみてコ字状を成す上下板を有し、その上下板同
士はスタッド16…16を介して固定され、これにより
、永久磁石12…12の強い磁気吸引力に抗して上下間
の所定間隔を保持している。
The undulator shown in these figures is of the so-called planar type. First, the overall configuration will be explained based on FIGS. 3 and 4. A plurality of permanent magnets 12 . , magnet holders 13...13 made of non-magnetic material such as aluminum alloy, which individually hold the permanent magnets 12...12, and magnet holders 13...
A plurality of holder fixing bases 14 . . . 14 each made of a magnetic material and holding a plurality of holders (for example, 20 pcs.) as one block with bolts (not shown);
14 with bolts 14a...14a
5. As shown in FIG. 4, the pedestal 15 has upper and lower plates that are U-shaped when viewed from the z-axis direction, and the upper and lower plates are fixed to each other via studs 16...16. A predetermined distance between the top and bottom is maintained against strong magnetic attraction.

【0015】永久磁石12…12は隣接するもの同士の
磁極の向き(図中、矢印の向きは磁化の方向を示す)が
前述した従来構成と同様に90度ずつずらして並べられ
(但し、対向するy軸方向のもの同士は同相)、これに
より、前記図6と同様に周期磁場がビーム通過軸上に形
成される。なお、電子ビームは真空ダクト11内をz軸
方向に伝搬する。
The permanent magnets 12...12 are arranged so that the magnetic pole directions of adjacent ones (in the figure, the direction of the arrow indicates the direction of magnetization) are shifted by 90 degrees as in the conventional configuration described above (however, (those in the y-axis direction are in phase), and as a result, a periodic magnetic field is formed on the beam passing axis as in FIG. 6 above. Note that the electron beam propagates in the vacuum duct 11 in the z-axis direction.

【0016】一方、図1、2に示す如く、周期磁場の内
の真空ダクト11に直交するy軸方向の磁場を形成する
1個置きの永久磁石12…12の各位置において、ダク
ト11にほぼ直交する同一軸に沿ってホルダ固定台14
及び磁石ホルダ13を貫通する貫通孔20が各々穿設さ
れている。つまり、各貫通孔20は永久磁石12及び架
台15の上下板に夫々開口した状態となっている。この
貫通孔20の内周面にはねじ切りが施されている。この
貫通孔20…20には夫々、磁性体で形成され且つ所定
長さの磁束調整ボルト(磁束調整部材)21が進退自在
に挿入されている。
On the other hand, as shown in FIGS. 1 and 2, at each position of every other permanent magnet 12 . Holder fixing base 14 along the same orthogonal axis
and a through hole 20 passing through the magnet holder 13. In other words, each through hole 20 opens in the permanent magnet 12 and the upper and lower plates of the pedestal 15, respectively. The inner peripheral surface of this through hole 20 is threaded. A magnetic flux adjusting bolt (magnetic flux adjusting member) 21 made of a magnetic material and having a predetermined length is inserted into each of the through holes 20 . . . 20 so as to be movable forward and backward.

【0017】また、架台15の上下板には、上記各貫通
孔20に到達する調整用穴22が外側から穿設されてい
る。この調整用穴22は調整ジグを挿入するため、貫通
穴20よりも拡径してある。
Further, adjustment holes 22 that reach the respective through holes 20 are bored from the outside in the upper and lower plates of the pedestal 15. This adjustment hole 22 has a larger diameter than the through hole 20 in order to insert an adjustment jig therein.

【0018】次に、本実施例の作用効果を説明する。Next, the effects of this embodiment will be explained.

【0019】永久磁石12…12により形成される周期
磁場に、真空ダクト11内のz軸方向から進入した電子
ビームは、周期磁場からx軸方向(紙面に垂直な方向)
にローレンツ力を受け、周期磁場分布と同様の軌道を描
きながら蛇行する。この蛇行運動における1蛇行毎にア
ンジュレータ放射光が発生し、この放射光同士が干渉し
合い、ある特定波長の光強度のみが著しく大きくなる、
鋭いピーク波形をもった放射スペクトルが得られる。な
お、この放射光は電子ビームの進行方向のあらゆる角度
に放射されるが、通常、z軸方向に放射される強度の大
きな干渉光が利用される。
The electron beam entering the periodic magnetic field formed by the permanent magnets 12...12 from the z-axis direction inside the vacuum duct 11 is directed from the periodic magnetic field in the x-axis direction (direction perpendicular to the plane of the paper).
It is subjected to the Lorentz force and meandering along a trajectory similar to the distribution of a periodic magnetic field. Undulator radiation is generated for each meandering motion, and these radiations interfere with each other, causing the light intensity of only a certain wavelength to become significantly large.
A radiation spectrum with a sharp peak waveform is obtained. Note that this synchrotron radiation is emitted at all angles in the traveling direction of the electron beam, but usually, interference light with high intensity emitted in the z-axis direction is used.

【0020】さらに、上記周期磁場に対する調整動作を
説明する。磁束調整ボルト21が架台15の上下板側に
十分退避され、永久磁石12とボルト21の間の空隙が
大きければ磁気抵抗も大きく、永久磁石12の発生磁束
の一部がボルト21側に迂回することも無い。つまり、
この磁気抵抗の大きい状態では、永久磁石12が形成す
る周期磁場には何等影響を及ぼさない。
Further, the adjustment operation for the above-mentioned periodic magnetic field will be explained. If the magnetic flux adjustment bolt 21 is sufficiently retracted to the upper and lower plates of the mount 15 and the gap between the permanent magnet 12 and the bolt 21 is large, the magnetic resistance is also large, and a part of the magnetic flux generated by the permanent magnet 12 detours to the bolt 21 side. No problem. In other words,
In this state of high magnetic resistance, the periodic magnetic field formed by the permanent magnet 12 is not affected in any way.

【0021】これに対して、架台15の上下板側から調
整用穴22を通して磁束調整ボルト21を回し、そのボ
ルト21を真空ダクト11側に徐々に接近させると、永
久磁石12及びボルト21間の空隙が小さくなり、磁気
抵抗も徐々に小さくなる。この磁気抵抗の減少に伴って
、周期磁場を形成していた磁束の一部が例えば図1中の
仮想線Hで示すように、閉磁路に分割して迂回する。 つまり、その磁束の一部は永久磁石12、空隙、ボルト
21、ホルダ固定台14、隣接のボルト21、及び空隙
を介して隣接永久磁石12に入る。このため、永久磁石
12、12間の周期磁場における中心磁界強度は、磁束
の分流分だけ低下する。このように、磁束の分流量は磁
束調整ボルト21の挿入量が大きくなるにつれて大きく
なり、その分流量に応じて永久磁石12、12間の周期
磁場強度が変わる。
On the other hand, when the magnetic flux adjustment bolt 21 is turned through the adjustment hole 22 from the upper and lower plate sides of the frame 15 and the bolt 21 is gradually brought closer to the vacuum duct 11 side, the gap between the permanent magnet 12 and the bolt 21 is As the air gap becomes smaller, the magnetic resistance gradually decreases as well. As the magnetic resistance decreases, a part of the magnetic flux forming the periodic magnetic field is divided into a closed magnetic path and detoured, for example, as shown by the imaginary line H in FIG. That is, a part of the magnetic flux enters the adjacent permanent magnet 12 via the permanent magnet 12, the air gap, the bolt 21, the holder fixing base 14, the adjacent bolt 21, and the air gap. Therefore, the strength of the central magnetic field in the periodic magnetic field between the permanent magnets 12, 12 is reduced by the amount of the shunt of magnetic flux. In this way, the amount of divided magnetic flux increases as the amount of insertion of the magnetic flux adjustment bolt 21 increases, and the strength of the periodic magnetic field between the permanent magnets 12 and 12 changes according to the amount of divided magnetic flux.

【0022】そこで、永久磁石12…12の磁気特性に
大きなばらつきがあり、周期磁場の精度が落ちている場
合でも、永久磁石12…12に対して1個置きに設けて
ある、磁束調整ボルト21を適宜、微調整することによ
って、電子ビームが通るビーム通過軸上の磁場分布の精
度(位相、強度)を所定精度内に容易に収めることがで
きる。そして、そのように周期磁場の精度を向上させる
ことにより、電子ビームの各蛇行毎に発生する放射光の
干渉効果が大きくなり、ある特定波長のアンジュレータ
放射光の強度を十分に高めることができる。
Therefore, even if there are large variations in the magnetic properties of the permanent magnets 12...12 and the accuracy of the periodic magnetic field is degraded, the magnetic flux adjusting bolts 21 provided every other permanent magnet 12...12. By suitably fine-tuning , the precision (phase, intensity) of the magnetic field distribution on the beam passing axis along which the electron beam passes can be easily kept within a predetermined precision. By improving the precision of the periodic magnetic field in this way, the interference effect of the synchrotron radiation generated with each meandering of the electron beam increases, and the intensity of the undulator radiation of a certain specific wavelength can be sufficiently increased.

【0023】また、本実施例の構成によれば、ホルダ固
定台14は、磁石ホルダ13…13を一ブロック毎に保
持する保持機能の他、積極的に磁性体で形成して磁束調
整用の磁気閉回路の一部を担う機能をも兼備させたため
、全体の構造が簡単でコンパクトになっている。
Further, according to the configuration of this embodiment, the holder fixing base 14 has a holding function of holding the magnet holders 13...13 block by block, and is actively made of a magnetic material to have a function for adjusting the magnetic flux. Because it also functions as part of a magnetic closed circuit, the overall structure is simple and compact.

【0024】なお、本発明に係るアンジュレータは、上
記実施例記載のような平面型アンジュレータのみに限定
されるものではなく、永久磁石と透磁率の高い鋼鉄とを
組み合わせたハイブリッド型アンジュレータ、2組の平
面型アンジュレータを互いに直交させて配置した直交遅
延磁場型偏光アンジュレータ、さらに、複数組の平面型
アンジュレータを直列且つ直交させた直交直列型偏光ア
ンジュレータ等にも同様に適用できる。
[0024] The undulator according to the present invention is not limited to the planar undulator as described in the above embodiments, but may also include a hybrid type undulator that combines a permanent magnet and high permeability steel, or two sets of undulators. The present invention can be similarly applied to an orthogonal delay magnetic field polarization undulator in which planar undulators are arranged orthogonally to each other, or an orthogonal series polarization undulator in which a plurality of sets of planar undulators are arranged in series and orthogonal to each other.

【0025】また、本発明におけるx軸方向(奥行き方
向)の磁束調整部材の数は、前記実施例記載のように、
永久磁石1個当たり1個に限定されるものではなく、永
久磁石の磁化の強さや奥行き長さなどを考慮した適宜な
数にすればよい。
Furthermore, the number of magnetic flux adjusting members in the x-axis direction (depth direction) in the present invention is as described in the above embodiments.
The number is not limited to one per permanent magnet, but may be an appropriate number taking into consideration the magnetization strength and depth of the permanent magnet.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、電
子ビーム通過路のビーム通過軸上に周期磁場を形成する
複数の永久磁石と、その永久磁石を個別に保持する非磁
性の磁石ホルダと、この磁石ホルダの内の複数個ずつを
保持する磁性のホルダ固定台と、このホルダ固定台を保
持する架台とを備え、永久磁石の内、ビーム通過路に直
交する磁場を発生する永久磁石に、ホルダ固定台及び磁
石ホルダを同一軸状に貫通する貫通孔を穿設し、この貫
通孔に磁性体から成る磁束調整部材を永久磁石に対して
進退自在に挿入したため、磁束調整部材の進退距離を変
えて磁気抵抗を調整することにより、永久磁石から磁束
調整部材側に分割される磁束の量を零から適宜な値まで
変え、ビーム通過軸上の周期磁場の強度及び位相を適宜
に補正でき、周期磁場の精度を許容値内に収めることが
できる。このように、比較的簡単な構造の補正機構であ
りながらも、この補正後の高精度な周期磁場によって、
アンジュレータ放射光の干渉効果が著しく高まり、特定
波長を有した高強度の放射光を得ることができる。
As explained above, according to the present invention, there are provided a plurality of permanent magnets that form a periodic magnetic field on the beam passing axis of an electron beam passing path, and a non-magnetic magnet holder that individually holds the permanent magnets. , a magnetic holder fixing base for holding a plurality of the magnet holders, and a mount for holding the holder fixing base, and among the permanent magnets, a permanent magnet that generates a magnetic field orthogonal to the beam passage path. A through hole was drilled coaxially through the holder fixing base and the magnet holder, and a magnetic flux adjusting member made of a magnetic material was inserted into this through hole so that it could move forward and backward with respect to the permanent magnet. By changing the distance and adjusting the magnetic resistance, the amount of magnetic flux divided from the permanent magnet to the magnetic flux adjustment member side can be changed from zero to an appropriate value, and the strength and phase of the periodic magnetic field on the beam passage axis can be appropriately corrected. The accuracy of the periodic magnetic field can be kept within the permissible value. In this way, although it is a correction mechanism with a relatively simple structure, the highly accurate periodic magnetic field after correction allows
The interference effect of the undulator radiation light is significantly enhanced, and high-intensity radiation light having a specific wavelength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係る平面型アンジュレータ
の部分側面図(一部破断)。
FIG. 1 is a partial side view (partially cut away) of a planar undulator according to an embodiment of the present invention.

【図2】図1中のII−II線に沿った部分断面図。FIG. 2 is a partial sectional view taken along line II-II in FIG. 1;

【図3】平面型アンジュレータの全体構成を示す側面図
(一部省略)。
FIG. 3 is a side view (partially omitted) showing the overall configuration of a planar undulator.

【図4】図4のアンジュレータの右側面図。FIG. 4 is a right side view of the undulator in FIG. 4.

【図5】従来の平面型アンジュレータの部分側面図。FIG. 5 is a partial side view of a conventional planar undulator.

【図6】周期磁場を説明するグラフ。FIG. 6 is a graph explaining a periodic magnetic field.

【符号の説明】[Explanation of symbols]

11  真空ダクト 12  永久磁石 13  磁石ホルダ 14  ホルダ固定台 15  架台 20  貫通孔 21  磁束調整ボルト 11 Vacuum duct 12 Permanent magnet 13 Magnet holder 14 Holder fixing base 15 Mount 20 Through hole 21 Magnetic flux adjustment bolt

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電子ビームの通過路に沿って、その通
過路に周期磁場を形成するように配置方向をずらした状
態で並べられた複数の永久磁石と、この永久磁石の各々
を個別に保持し且つ非磁性体で成る磁石ホルダと、この
磁石ホルダの内の複数個ずつを保持し且つ磁性体で成る
ホルダ固定台と、このホルダ固定台を保持する架台とを
備え、前記永久磁石の内、前記ビーム通過路に直交する
磁場を発生する永久磁石に、前記ホルダ固定台及び磁石
ホルダを同一軸状に貫通する貫通孔を穿設し、この貫通
孔に磁性体から成る磁束調整部材を前記永久磁石に対し
て進退自在に挿入したことを特徴とするアンジュレータ
Claim 1: A plurality of permanent magnets arranged along a passage of an electron beam with their arrangement directions shifted so as to form a periodic magnetic field in the passage, and each of the permanent magnets being held individually. A magnet holder made of a non-magnetic material, a holder fixing base made of a magnetic material and holding a plurality of the magnet holders, and a pedestal for holding the holder fixing base. , a through hole coaxially penetrating the holder fixing base and the magnet holder is bored in a permanent magnet that generates a magnetic field orthogonal to the beam passage path, and a magnetic flux adjusting member made of a magnetic material is inserted into the through hole. An undulator characterized by being inserted into a permanent magnet so that it can move forward and backward.
JP9554091A 1991-04-25 1991-04-25 Undulator Pending JPH04324300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9554091A JPH04324300A (en) 1991-04-25 1991-04-25 Undulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9554091A JPH04324300A (en) 1991-04-25 1991-04-25 Undulator

Publications (1)

Publication Number Publication Date
JPH04324300A true JPH04324300A (en) 1992-11-13

Family

ID=14140401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9554091A Pending JPH04324300A (en) 1991-04-25 1991-04-25 Undulator

Country Status (1)

Country Link
JP (1) JPH04324300A (en)

Similar Documents

Publication Publication Date Title
US5383049A (en) Elliptically polarizing adjustable phase insertion device
US4996496A (en) Bending magnet
US4757208A (en) Masked ion beam lithography system and method
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
JPH1126198A (en) Electromagnet, accelerator and magnetic field generator
JP4799093B2 (en) Linear X-ray laser generator
US6495826B2 (en) Monochrometer for electron beam
KR100560601B1 (en) Hybrid wiggler
JP2019050163A (en) Magnet for undulator, undulator, and radiant light generation device
JPH04324300A (en) Undulator
JP5030893B2 (en) Charged particle beam accelerator and particle beam irradiation medical system using the accelerator
WO2016124269A1 (en) An undulator
JPH0515305U (en) Iron core structure of laminated bending magnet
JP4294158B2 (en) Charged particle accelerator
JP3204920B2 (en) Permanent magnet type bending magnet device and electron storage ring
JP4341147B2 (en) Magnetic field compensation mechanism
JPH04242196A (en) Controlling of magnetic field intensity in magnetic circuit for insertion light source
JP3164771B2 (en) Magnetic Field Adjustment Method for Planar Variable Polarization Undulator
JPH0574600A (en) Undulator
Weidman et al. Time‐resolving electron energy spectrometer
Moog et al. Design and Manufacture of a Prototype Undulator for the LCLS Project
Biswas et al. Design, construction and characterization of the compact ultrafast terahertz free-electron laser undulator
KR970009413B1 (en) Helical undulator
JPS60146500A (en) Synchrotron radiating light generator
Marcelli Insertion devices