JPH04323558A - Gas chromatograph fourier-transform type infrared spectrophotometer - Google Patents

Gas chromatograph fourier-transform type infrared spectrophotometer

Info

Publication number
JPH04323558A
JPH04323558A JP3091926A JP9192691A JPH04323558A JP H04323558 A JPH04323558 A JP H04323558A JP 3091926 A JP3091926 A JP 3091926A JP 9192691 A JP9192691 A JP 9192691A JP H04323558 A JPH04323558 A JP H04323558A
Authority
JP
Japan
Prior art keywords
flow path
gas chromatograph
gas
divider
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3091926A
Other languages
Japanese (ja)
Inventor
Genzo Hirata
源蔵 平田
Hisashi Kimoto
木元 尚志
▲吉▼田 秀夫
Hideo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3091926A priority Critical patent/JPH04323558A/en
Publication of JPH04323558A publication Critical patent/JPH04323558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform separation, qualititative analysis and quantitative analysis of the trace components of unstable materials, especially vital samples and agricultural chemicals, etc., with high sensitivity and good reproducibility using a GC-FT/IR system and to enable GC-FT/IR and GC to be readily used alone when using a glass-packed column in a gas chromatograph. CONSTITUTION:The total constitution of a GC-FT/IR analytical system includes a gas chromatograph(GC), a Fourier-transform infrared spectrophotometer and the interface of GC-IR. The gas chromatograph consists of a flow regulator 1, a sample inlet 2, a separation column 3, a detector 15 and a data processing unit. The Fourier-transform infrared spectrophotometer consists of a sample room, a spectroscope, a CPU and a control portion.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、GC−FT/IRに係
り、特にガスクロマトグラフで分離した成分をGCとI
Rで同時に測定し、なおかつIRの検出感度をより向上
させることを目的とした。又、GCにおいては、複数個
の検出器と各種の分離用カラム(パックド,キャピラリ
ー等)を使用できるか、その内でガラスのパックドカラ
ムがGC−FT/IRとGC単独に容易に使いわけが可
能にしたGC−FT/IRに関する。
[Industrial Application Field] The present invention relates to GC-FT/IR, and in particular, the present invention relates to GC-FT/IR.
The purpose was to measure simultaneously with R and to further improve the detection sensitivity of IR. In addition, in GC, it is possible to use multiple detectors and various separation columns (packed, capillary, etc.), and among these, a glass packed column can be easily used for GC-FT/IR and GC alone. Regarding the GC-FT/IR that has been made possible.

【0002】0002

【従来の技術】従来のGC−FT/IRの構成図を図1
に示し、従来例について説明する。
[Prior Art] Figure 1 shows a configuration diagram of a conventional GC-FT/IR.
A conventional example will be explained below.

【0003】ガスクロマトグラフ(GC)は、キャリア
ガス(通常N2 ガス)を流量調節器1で最適流量に調
節し、試料注入口2に導き測定試料をマイクロシリンジ
等で注入口より注入し、分離カラム3,3′に導入し、
目的成分を分離させる。分離した成分は流路分割器4で
GCの検出器とIRの測定セルの2流路に分流される。 流路分割器と中継コネクタ7は、ステンレスパイプ5,
5′で接続されパイプは別に設けられるコントローラ6
で加温されている。分流比は中継コネクタより接続され
る抵抗コイル8とIRの測定セル11までの流路抵抗に
より決まる。
[0003] In a gas chromatograph (GC), a carrier gas (usually N2 gas) is adjusted to an optimum flow rate with a flow rate controller 1, guided to a sample injection port 2, and a measurement sample is injected from the injection port using a microsyringe or the like, and then the sample is injected into a separation column. Introduced into 3, 3′,
Separate the target component. The separated components are divided into two channels by a channel divider 4, one for the GC detector and one for the IR measurement cell. The flow path divider and relay connector 7 are made of stainless steel pipe 5,
Controller 6 connected at 5' and provided with a separate pipe
It is heated by The current division ratio is determined by the flow path resistance between the resistance coil 8 connected from the relay connector and the IR measurement cell 11.

【0004】中継コネクタから測定セルまではステンレ
スパイプ9で接続され、パイプ及びIR測定セルは別に
設けられたコントローラ10,10′にて加温されてい
る。本法のシステムは流路系の配管やIRのセル筒等の
材質はステンレスであった。その為に、試料によっては
管壁での吸着や、分解が起こり検出感度の低下や定量性
の悪化を起こしていた。又、IR測定セルは流通方式の
ため、目的成分のスペクトルを測定する際、セル内に溜
る時間が短時間となり、スキャン回数を多くとるとがで
きないことや、スキャンタイミングの設定が難しくなる
。従って、スペクトルのS/Nの向上が期待できないこ
とと、スペクトルの再現性が得られない問題がある。
A stainless steel pipe 9 connects the relay connector to the measurement cell, and the pipe and the IR measurement cell are heated by separately provided controllers 10, 10'. In the system of this method, the material of the flow path system piping, IR cell cylinder, etc. was stainless steel. Therefore, depending on the sample, adsorption or decomposition occurs on the tube wall, resulting in a decrease in detection sensitivity and deterioration in quantitative performance. Furthermore, since the IR measurement cell is of a circulation type, when measuring the spectrum of a target component, the time spent in the cell is short, making it impossible to increase the number of scans and making it difficult to set the scan timing. Therefore, there are problems in that the S/N ratio of the spectrum cannot be expected to improve and that the reproducibility of the spectrum cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、1)
FT−IR測定用セル内に試料をストップせずにフロー
的に測定するため、FT−IRの積算回数の制限があり
、微量成分の測定が不可能であった。2)ガスクロマト
グラフで分離された成分をGC検出器とFT−IR検出
側に分流するのに抵抗コイルの種類によって容易にその
比率を変えることにある。3)ガスクロマトグラフの分
離用カラムでパックドカラム及びキャピラリーカラムの
両方を容易に使用できるが、GC単独で分離性能を確認
する際、特にガラスのパックドカラムがGC単独とGC
−FT/IRに容易に使いわけ可能にする事を目的とし
ており、微量成分を安定的に分析が行なえる分析計を提
供することを目的とする。
[Problems to be Solved by the Invention] The above prior art is as follows: 1)
Since the sample is measured in a flow manner without stopping it in the FT-IR measurement cell, there is a limit to the number of FT-IR integrations, making it impossible to measure trace components. 2) The ratio of components separated by gas chromatography to the GC detector and FT-IR detection side can be easily changed depending on the type of resistance coil. 3) Both packed columns and capillary columns can be easily used for separation columns in gas chromatographs, but when checking the separation performance with GC alone, especially glass packed columns are better than GC alone and GC.
- The purpose is to provide an analyzer that can be easily used for FT/IR, and that can stably analyze trace components.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、FT/IRの積算回数を増やすため1)FT/IR
のフローセルを測定時、キャリアガスをストップ状態で
測定できるようにストップドフローの方式とした。
[Means for solving the problem] In order to achieve the above objective, in order to increase the number of FT/IR integrations, 1) FT/IR
The flow cell was designed as a stopped flow system so that the measurement can be performed with the carrier gas stopped.

【0007】2)GCとFT/IR側に測定成分を分流
する比率を最大限FT/IR側に流すことが容易にする
為、抵抗コイル方式で分流比の決定を可能にした。
[0007] 2) In order to easily divert the measurement component to the FT/IR side to the maximum extent possible, the division ratio can be determined using a resistance coil method.

【0008】3)試料が流路系に吸着,分解を防ぐため
流路系の配管をフューズドシリカ及びガラスライニング
のガスセル等を使用することで安定した定量結果を得る
ことを可能にした。
3) In order to prevent the sample from being adsorbed and decomposed in the flow path system, it is possible to obtain stable quantitative results by using fused silica and glass-lined gas cells for the flow path system piping.

【0009】4)GC−FT/IRのGCを単独のGC
としても容易に使用可能にすることで特にガラスのパッ
クドカラムに注目して、各検出器と流路分割器を試料注
入口の円周上に配置することで可能にした。
4) GC-FT/IR GC as an independent GC
In particular, we focused on glass packed columns to make them easy to use, and we made this possible by arranging each detector and flow path divider around the circumference of the sample injection port.

【0010】0010

【作用】GC−FT/IR分析システムは目的試料とG
Cで分離し、FT/IRでスペクトル測定を行なえるこ
とで成分の同定を行なうシステムである。その際、試料
によっては高分離モードのキャピラリーカラムで分離す
る必要があり、1成分当たりの量が極少量になることが
多い。従って、FT/IRの検出感度を上げる必要があ
る。それらのことからGCに導入する試料量を増やすこ
とも考えられるが、特に高分離モードのキャピラリカラ
ムは試料の付加量には限界があり、それほど効果は見ら
れない。又、FT/IRのスキャン積算回数を増やすこ
とも考えられるが、スキャン回数(n)は    のノ
イズレベルを減少させることに寄与すると言われている
ので、むやみにスキャン回数を増やしてもあまり検出感
度を向上させる効果はない。(そこで比較的分離能を得
ながら試料量を増やすことができるワイドボワーキャピ
ラリーカラムの使用等が容易に可能にする。)そこでG
Cに注入して分離した成分を極力IRガスセル側に多く
分流するように、中継コネクタに接続する抵抗コイルを
選択することで効果が得られる。又、1台のガスクロマ
トグラフに複数個の検出器を装置しておき、GC単独で
しかも目的に合った検出器を容易に使用できるように検
出器及び流路分割器の配置を考慮したことで、使用面で
効果が得られる。
[Operation] The GC-FT/IR analysis system
This system identifies components by separating them using C and performing spectrum measurements using FT/IR. At that time, depending on the sample, it is necessary to separate it using a capillary column in a high separation mode, and the amount per component is often extremely small. Therefore, it is necessary to increase the detection sensitivity of FT/IR. For these reasons, it may be possible to increase the amount of sample introduced into the GC, but there is a limit to the amount of sample that can be added, especially for capillary columns in high separation mode, so this is not very effective. It is also possible to increase the number of FT/IR scans, but it is said that the number of scans (n) contributes to reducing the noise level of It has no effect on improving. (This makes it easy to use a wide-bower capillary column that can increase the amount of sample while obtaining relatively high resolution.)
An effect can be obtained by selecting the resistance coil connected to the relay connector so that as much of the component injected into C and separated as possible is diverted to the IR gas cell side. In addition, by equipping one gas chromatograph with multiple detectors, we have considered the placement of the detectors and flow path dividers so that you can easily use the detector that suits your purpose independently. , the effect can be obtained in terms of use.

【0011】[0011]

【実施例】以下、本発明の一実施例を図2及び図3によ
り説明する。ガスクロマトグラフのキャリア流調器1で
分析条件に合った流量に調節されたキャリアガスは試料
注入口2に導かれる。試料は注入口によりマイクロシリ
ンジ等により注入され、ガス化される。ガス化された試
料は、分離用カラム3もしくは3′により分離される。 カラムはカラム恒温槽内に収納されており、分析条件に
合った温度で制御される。カラム出口は流路分割器4に
接続されている。カラムを通ってきたキャリアガスは流
路分割器で3流路に分割され、フューズドシリカチュー
ブもしくはガラスライニングパイプ等の配管パイプ5,
5′,5″で中継コネクタ6に配管されている。配管パ
イプはコントローラ7により最適温度に保温されている
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. A carrier gas whose flow rate is adjusted to match analysis conditions by a carrier flow regulator 1 of a gas chromatograph is guided to a sample injection port 2. The sample is injected with a microsyringe or the like through the injection port and gasified. The gasified sample is separated by a separation column 3 or 3'. The column is housed in a column constant temperature bath, and the temperature is controlled to match the analysis conditions. The column outlet is connected to a flow path divider 4. The carrier gas that has passed through the column is divided into three channels by a channel divider, and then connected to a piping pipe 5 such as a fused silica tube or a glass-lined pipe.
5' and 5'' are connected to a relay connector 6. The piping is kept at an optimum temperature by a controller 7.

【0012】中継コネクタの出口側は3流路になり、1
流路は抵抗コイル8を介してガスクロマトグラフの検出
器、他の2流路は配管パイプ9,9′を介して赤外分光
器の試料室へと導かれている。一方は測定用ガスセル1
0に、もう一方はダミーガスセル11に接続されており
、いずれのパイプも不活性材質のものを使用し、トラン
スファーラインと測定用ガスセルは、別に設けられたコ
ントロール電源12,12′で一定温度にコントロール
されている。
[0012] The outlet side of the relay connector has three flow paths, one
The flow path is led to a gas chromatograph detector via a resistance coil 8, and the other two flow paths are led to a sample chamber of an infrared spectrometer via piping 9, 9'. One side is the measurement gas cell 1
0 and the other to a dummy gas cell 11. Both pipes are made of inert material, and the transfer line and measurement gas cell are kept at a constant temperature using separately provided control power supplies 12 and 12'. controlled.

【0013】測定用ガスセル及びダミーガスセルの出口
は、2流路の切替電磁バルブ13に接続されており、通
常は測定用ガスセル側が開放状態としておき、目的成分
がガスクロマトグラフで検出されたら、電磁バルブの流
路を切替えてダミーガスセル側を開放状態にし、測定セ
ル内に目的成分を溜めておき、FT/IRのスキャンを
数10〜数100回行なってS/Nを向上させたスペク
トル測定を行なう。電磁バルブの制御は別に設けられた
タイマーコントローラ14により行う。
The outlets of the measurement gas cell and the dummy gas cell are connected to a two-channel switching electromagnetic valve 13. Normally, the measurement gas cell side is left open, and when the target component is detected by the gas chromatograph, the electromagnetic valve is closed. Switch the flow path to open the dummy gas cell side, store the target component in the measurement cell, and perform FT/IR scans several tens to hundreds of times to perform spectrum measurement with improved S/N. . Control of the electromagnetic valve is performed by a timer controller 14 provided separately.

【0014】図3はガスクロマトグラフの試料注入口2
,検出器15,15′及び流路分割器4の配置図を示す
もので、特に分離カラムにガラスパックドカラムを使用
する際、同一カラムを容易にGC単独測定及び流路分割
器を経由してGCとFT/IRの同時測定が可能にする
ことを可能にしたことにある。そのことは検出器及び流
路分割器が試料注入口を中心とした円周上に配置するこ
とによる。
FIG. 3 shows the sample injection port 2 of the gas chromatograph.
, detectors 15, 15', and flow path divider 4. Especially when using a glass packed column as a separation column, the same column can be easily used for GC measurement alone and via the flow path divider. The reason is that it is possible to perform simultaneous GC and FT/IR measurements. This is because the detector and the flow path divider are arranged on the circumference around the sample injection port.

【0015】[0015]

【発明の効果】本発明によれば、GC−FT/IRシス
テムにおいてFT/IRのスペクトル測定時、GCとF
T/IRへの試料分割を適宜に行なわせることと、目的
成分をガスセル内に溜めおくことで、FT/IRのスキ
ャン回数を増やすこと等により微量成分でもS/Nをを
向上させることができる。又、測定試料が流路系で分解
,吸着,拡散等を極力少なくすることを考慮するため、
ヒューズドシリカキャピラリーパイプ及びガラスライニ
ングパイプ等を使用し、又接続部のデッドボリウムを極
力少なくすることにより、流路系での試料の拡散をも少
なくし、分解能を低下させない配慮も行なっている。従
って最適なGC−FT/IRの効果がある。
According to the present invention, when measuring FT/IR spectra in a GC-FT/IR system, GC and F
By dividing the sample into T/IR appropriately and storing the target component in the gas cell, it is possible to improve the S/N even for trace components by increasing the number of FT/IR scans. . In addition, in order to minimize decomposition, adsorption, diffusion, etc. of the measurement sample in the flow path system,
By using fused silica capillary pipes, glass-lined pipes, etc., and by minimizing the dead volume at the connections, we are taking precautions to reduce sample diffusion in the flow path system and to avoid deterioration of resolution. Therefore, there is an optimal GC-FT/IR effect.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】従来のGC−FT/IRシステムの説明図であ
る。
FIG. 1 is an explanatory diagram of a conventional GC-FT/IR system.

【図2】本発明のGC−FT/IRシステムの説明図で
ある。
FIG. 2 is an explanatory diagram of the GC-FT/IR system of the present invention.

【図3】本発明のガスクロマトグラフ(GC)の説明図
である。
FIG. 3 is an explanatory diagram of a gas chromatograph (GC) of the present invention.

【符号の説明】[Explanation of symbols]

1…流量調節器、2…試料注入口、3…分離カラム、4
…流路分割器、5…配管パイプ、6…中継コネクタ、7
…コントローラ、8…抵抗コイル、9…配管パイプ、1
0…測定用ガスセル、11…ダミーガスセル、12…コ
ントロール電源、13…電磁バルブ、14…タイマーコ
ントローラ、15…検出器。
1...Flow rate controller, 2...Sample injection port, 3...Separation column, 4
...Flow path divider, 5...Piping pipe, 6...Relay connector, 7
...Controller, 8...Resistance coil, 9...Plumbing pipe, 1
0... Gas cell for measurement, 11... Dummy gas cell, 12... Control power supply, 13... Solenoid valve, 14... Timer controller, 15... Detector.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ガスクロマトグラフ−フーリエ変換形赤外
分光光度計(以下GC−FT/IRと記す)において、
ガスクロマトグラフの分離用カラムで分離され多成分を
流路分割器で赤外分光光度計(以下IRと記す)と、ガ
スクロマトグラフ(以下GCと記す)に分割し、GC検
出記録しながら、IRで同時に測定可能なことを特徴と
するGC−FT/IR。
Claim 1: In a gas chromatograph-Fourier transform infrared spectrophotometer (hereinafter referred to as GC-FT/IR),
The multi-components separated by the separation column of the gas chromatograph are divided by a flow path splitter into an infrared spectrophotometer (hereinafter referred to as IR) and a gas chromatograph (hereinafter referred to as GC), and while the GC detects and records, the components are analyzed using the IR. GC-FT/IR characterized by simultaneous measurement.
【請求項2】請求項1記載のGC−FT/IRにおいて
流路分割器の後方に中継コネクタを設け、IRの検出感
度を向上させるため、GC側に抵抗コイルを入れること
により、キャリアガスの分流比を容易に変えることの可
能なことを特徴とするGC−FT/IR流路分割器。
[Claim 2] In the GC-FT/IR according to Claim 1, a relay connector is provided behind the flow path divider, and a resistance coil is inserted on the GC side to improve the detection sensitivity of the carrier gas. A GC-FT/IR flow path divider characterized by being able to easily change the division ratio.
【請求項3】請求項2記載のGC−FT/IR流路分割
器においてIR側の流路系を測定ガスセルとダミーガス
セルの2流路にし、その後方に流路切換え用の電磁弁を
設けておき、IR測定時試料を保持しておくことができ
ることと、その流路切換え時に極力圧力変動を少なくす
ることが可能なことを特徴とするGC−FT/IR流路
分割方式IR用ガスセル。
3. In the GC-FT/IR flow path divider according to claim 2, the flow path system on the IR side has two flow paths, a measurement gas cell and a dummy gas cell, and a solenoid valve for flow path switching is provided behind the flow path system. A gas cell for IR using a GC-FT/IR channel split method, which is characterized by being able to hold a sample during IR measurement, and minimizing pressure fluctuations when switching channels.
【請求項4】請求項2記載GC−FT/IR流路分割器
において、流路分割器,中継コネクタ,GC検出器及び
IRガスセル等の測定成分が通るキャピラリーチューブ
は、試料の吸着,分解等を防止することを目的としたフ
ィールドシリカチューブを用いることを特徴とするGC
−FT/IR流路分割器。
4. In the GC-FT/IR flow path divider according to claim 2, the capillary tube through which components to be measured such as the flow path divider, the relay connector, the GC detector, and the IR gas cell pass is used for adsorption, decomposition, etc. of the sample. A GC characterized by using a field silica tube aimed at preventing
- FT/IR flow path divider.
【請求項5】請求項1記載のGC−FT/IRにおいて
特にGCの分析用ガラスカラムを用いる際、ガラスカラ
ムの出口側が流路分割器及びGCの各種検出器(水素炎
イオン化検出器,熱イオン化検出器,炎光光度計検出器
等)に容易に接続可能な様に流路分割器及び各種検出器
を試料注入口の円周上の位置に設けることを特徴とする
GC−FT/IR。
5. In the GC-FT/IR according to claim 1, when a glass column for GC analysis is used, the outlet side of the glass column is connected to a flow path divider and various GC detectors (flame ionization detector, thermal GC-FT/IR characterized in that a flow path divider and various detectors are provided at positions on the circumference of the sample injection port so that they can be easily connected to ionization detectors, flame photometer detectors, etc. .
JP3091926A 1991-04-23 1991-04-23 Gas chromatograph fourier-transform type infrared spectrophotometer Pending JPH04323558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3091926A JPH04323558A (en) 1991-04-23 1991-04-23 Gas chromatograph fourier-transform type infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091926A JPH04323558A (en) 1991-04-23 1991-04-23 Gas chromatograph fourier-transform type infrared spectrophotometer

Publications (1)

Publication Number Publication Date
JPH04323558A true JPH04323558A (en) 1992-11-12

Family

ID=14040193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091926A Pending JPH04323558A (en) 1991-04-23 1991-04-23 Gas chromatograph fourier-transform type infrared spectrophotometer

Country Status (1)

Country Link
JP (1) JPH04323558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041989A (en) * 2018-09-13 2020-03-19 株式会社島津製作所 Thermal conductivity detector and gas chromatograph having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041989A (en) * 2018-09-13 2020-03-19 株式会社島津製作所 Thermal conductivity detector and gas chromatograph having the same

Similar Documents

Publication Publication Date Title
US8448493B2 (en) Gas chromatograph-combustion system and method for mass spectrometry
US8968560B2 (en) Chromatography using multiple detectors
US5983703A (en) Analytical engine for gas chromatograph
JP4861107B2 (en) Chromatograph apparatus and analysis method
JP3607997B2 (en) Analyzer for trace impurities in gas
US4359891A (en) Repetitive chromatographic apparatus
US3735565A (en) Enrichment of chromatograph output
JP5251727B2 (en) Multi-dimensional gas chromatograph
EP1007959B1 (en) Gas inlet system
JPH04323558A (en) Gas chromatograph fourier-transform type infrared spectrophotometer
Snow Split, splitless, and beyond—Getting the most from your inlet
JP3410017B2 (en) Liquid chromatograph mass spectrometer
JP3648902B2 (en) Gas chromatograph mass spectrometer
US5554540A (en) Method and apparatus for preserving the sensitivity of a thermionic ionization detector
Hicks et al. Portable capillary LC for in‐line UV monitoring and MS detection: Comparable sensitivity and much lower solvent consumption
Krishnan et al. Design and Applications of a High Sensitivity Gas Chromatographic Fourier Transform Infrared System
JP7161595B2 (en) Flow Equivalence with Liquid Chromatography Single-Flow Calibration
CN107014936A (en) The detection method of epiphysin sulfate in urine
JPS62190464A (en) Gas chromatograph
JPH06201538A (en) Gas sampling method and device in plurality of systems
SU1631415A1 (en) Gas chromatograph
JP2016211866A (en) Column adjustment device and column adjustment method
JP2861336B2 (en) Applied flow path of gas chromatograph
Balkon Rapid CI-MS determination of valproic acid; adaptation of a gas chromatographic assay
Kern et al. Precision of an automated all‐glass capillary gas chromatography system with an electron capture detector for the trace analysis of estrogens