JPH04322696A - Washing machine - Google Patents

Washing machine

Info

Publication number
JPH04322696A
JPH04322696A JP3088883A JP8888391A JPH04322696A JP H04322696 A JPH04322696 A JP H04322696A JP 3088883 A JP3088883 A JP 3088883A JP 8888391 A JP8888391 A JP 8888391A JP H04322696 A JPH04322696 A JP H04322696A
Authority
JP
Japan
Prior art keywords
motor
speed
line
washing
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3088883A
Other languages
Japanese (ja)
Other versions
JP2644386B2 (en
Inventor
Hiroaki Eda
浩明 詠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3088883A priority Critical patent/JP2644386B2/en
Priority to US07/775,542 priority patent/US5207764A/en
Priority to CA002053445A priority patent/CA2053445C/en
Priority to EP91117635A priority patent/EP0481442B1/en
Priority to DE69112333T priority patent/DE69112333T2/en
Publication of JPH04322696A publication Critical patent/JPH04322696A/en
Application granted granted Critical
Publication of JP2644386B2 publication Critical patent/JP2644386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To meet revolution ranging from low speed to high speed without using a speed-changing means, by a method wherein the duty of line voltage applied to stator windings for a d.c. brushless motor is controlled and the revolution of the motor is controlled corresponding to the state of washing. CONSTITUTION:For a d.c. brushless motor 11, the distribution of d.c. voltage made from a commercial electric source 25 through a d.c. electric source 30 for the motor is controlled by a transistor module 31, and the d.c. brushless motor 11 is three-phase driven. By internal operation processing in a microcomputer 24, each base control signal for the three-phase transistor module 31 is outputted, and pulse-duration modulation is done in a PWM circuit 35 for controlling the number of revolution, following which the amplification thereof is done in a base drive circuit 36 and the transistor module 31 is operated. At this point, the value of an on-off duty ratio of line voltage patterns applied to motor-stator windings is, for example, made 1/3 in a low speed and 1/2 in a high speed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,洗濯機における洗い,
脱水等を行う主モータの回転制御により,1台のモータ
で低速回転から高速回転まで対応させる洗濯機に関する
[Industrial Application Field] The present invention is applicable to washing in a washing machine.
This invention relates to a washing machine that allows a single motor to handle rotations from low to high speeds by controlling the rotation of the main motor that performs dehydration, etc.

【0002】0002

【従来の技術】従来の全自動洗濯機においては,単相誘
導モータとギア等による変速切換手段およびプーリとベ
ルトで構成される減速手段とを用いて,洗いやすすぎ等
の低速運転時はモータ回転数を2段減速して攪拌翼を低
速回転させ,脱水等の高速運転時には前記減速手段のみ
を用いて回転槽を高速回転させている。また,ドラム式
洗濯機においては,2台の単相誘導モータを用いて,各
々を低速用と高速用に使い分けている。また,前記2例
と異なり,モータ自体の回転数を制御する構成もあり,
全自動洗濯機においてDCブラシレスモータを使用して
その固定子巻線に加える線間印加電圧をパルス幅変調し
,低速運転と高速運転とで数倍の変速を行うものや,ド
ラム式洗濯機において整流子モータを位相制御して低速
から高速運転まで1台のモータで対応するものもある。
[Prior Art] Conventional fully automatic washing machines use a single-phase induction motor, speed change means using gears, etc., and deceleration means consisting of pulleys and belts, and during low-speed operations such as washing or rinsing, the motor The rotational speed is reduced in two steps to rotate the stirring blades at low speed, and during high-speed operations such as dehydration, only the speed reduction means is used to rotate the rotating tank at high speed. In addition, a drum-type washing machine uses two single-phase induction motors, each of which is used for low speed and high speed. Also, unlike the two examples above, there is also a configuration that controls the rotation speed of the motor itself.
Fully automatic washing machines use a DC brushless motor to pulse-width-modulate the line-to-line voltage applied to the stator windings, changing the speed several times between low-speed and high-speed operation, and drum-type washing machines. Some motors control the phase of the commutator motor so that a single motor can operate from low to high speeds.

【0003】0003

【発明が解決しようとする課題】上記従来例において,
単相誘導モータを使用するときにはモータ自体に変速機
能がないため,変速切換手段や減速手段を使わざるを得
ない。そのためギア駆動等による騒音の発生や機械的構
成部が複雑になる問題点があった。また,整流子モータ
を位相制御して回転数を変える構成では,低速時のトル
クを得ると共に高速時の高回転を得ようとすると,大型
かつ大出力のモータを使わざるを得ず,洗濯機の大型化
,コストアップをまねき,また,ブラシモータとして不
可避のブラシ摩擦音による騒音発生,ブラシ寿命等の問
題点を有していた。さらに,DCブラシレスモータの回
転数制御を行うものにおいて,モータ固定子巻線に加え
る線間印加電圧パターンのオン期間にパルス幅変調をか
けるだけでは,数倍の変速比しか得られず全自動洗濯機
のような大きい変速を必要とする場合に低速時のトルク
を得るため,変速切換手段なしで低速から高速まで所望
の回転数とトルクを得ようとすると,大型かつ大出力の
モータを使わざるを得ず,洗濯機が必要以上に大型化し
且つコストアップして実用的でなかった。本発明は上記
課題を解決するため,DCブラシレスモータを回転制御
して,変速切換手段を用いることなく低速回転から高速
回転まで対応させることを目的とする。
[Problem to be solved by the invention] In the above conventional example,
When using a single-phase induction motor, the motor itself does not have a speed change function, so a speed change means or deceleration means must be used. Therefore, there are problems in that noise is generated due to gear drive and the mechanical components become complicated. In addition, with a configuration in which the rotation speed is changed by controlling the phase of the commutator motor, if you want to obtain both torque at low speeds and high rotation at high speeds, you have no choice but to use a large and high output motor. This results in an increase in size and cost, and as a brush motor, there are problems such as noise generation due to brush friction noise that is inevitable, and the life of the brushes. Furthermore, when controlling the rotational speed of a DC brushless motor, simply applying pulse width modulation to the on-period of the line-to-line applied voltage pattern applied to the motor stator winding can only provide a speed ratio several times higher than that of a fully automatic washing machine. In order to obtain torque at low speed when a large speed change is required, such as in a machine, if you try to obtain the desired rotation speed and torque from low speed to high speed without a speed change means, you will have to use a large and high output motor. This made the washing machine unnecessarily large and expensive, making it impractical. In order to solve the above problems, the present invention aims to control the rotation of a DC brushless motor so that it can handle from low speed rotation to high speed rotation without using a speed change switching means.

【0004】0004

【課題を解決するための手段】上記目的を達成するため
の本発明は,巻線を設けた固定子と永久磁石による回転
子とを備えて構成されるDCブラシレスモータにより,
回転槽または攪拌翼を回転させる洗濯機において,前記
モータを高速回転させる脱水等の洗濯状態における前記
固定子巻線に加える線間印加電圧のオン・オフ・デュー
ティ比を,前記モータを低速回転させる洗いやすすぎ等
の洗濯状態における前記固定子巻線に加える線間印加電
圧のオン・オフ・デューティ比より大とするデューティ
制御により上記洗濯状態に応じて前記モータを回転制御
することを特徴とする洗濯機として構成されている。
[Means for Solving the Problems] To achieve the above object, the present invention uses a DC brushless motor comprising a stator provided with windings and a rotor made of permanent magnets.
In a washing machine that rotates a rotary tank or stirring blade, the on-off duty ratio of the line-to-line applied voltage applied to the stator winding in a washing state such as dehydration, where the motor is rotated at high speed, is set so that the motor is rotated at low speed. The motor is characterized in that the rotation of the motor is controlled according to the washing state by duty control that is greater than the on-off duty ratio of the line-to-line voltage applied to the stator winding in washing states such as washing and rinsing. It is configured as a washing machine.

【0005】[0005]

【作用】本発明によれば,洗い,脱水等を行う主モータ
にDCブラシレスモータを使用する洗濯機において,1
つのモータで洗いやすすぎの低速から脱水といった高速
まで数10倍の変速を得るために,モータの固定子巻線
に加える線間印加電圧のオンオフデューティ比を洗い時
等の低速回転時と脱水時等の高速回転時とで変えてモー
タを回転制御する。高速回転時にはオンオフデューティ
比を大きくして高速回転領域を上げ,低速回転時にはオ
ンオフデューティ比を小さくしてモータへの入力を減ら
し,最高回転数を低下させて大トルクが得られるよう制
御する。また,高速回転領域内,低速回転領域内におけ
る回転数の制御は,固定子巻線に加える線間印加電圧を
パルス幅変調することにより行う。
[Operation] According to the present invention, in a washing machine that uses a DC brushless motor as the main motor for washing, dehydrating, etc.
In order to obtain a speed change of several tens of times from low speed for washing and rinsing to high speed for dehydration with one motor, the on/off duty ratio of the line-to-line voltage applied to the stator winding of the motor is adjusted between low speed rotation such as washing and dehydration. The rotation of the motor is controlled differently depending on when the motor rotates at high speeds such as During high-speed rotation, the on-off duty ratio is increased to increase the high-speed rotation range, and during low-speed rotation, the on-off duty ratio is decreased to reduce the input to the motor and lower the maximum rotation speed to achieve high torque. Furthermore, the rotational speed in the high-speed rotation region and the low-speed rotation region is controlled by pulse width modulating the line-to-line voltage applied to the stator windings.

【0006】[0006]

【実施例】次に,本発明をドラム式洗濯機に適用した具
体例について説明する。モータ要求条件としてドラム式
洗濯機は苛酷であり,本構成は他の全自動洗濯機等に同
様に適用できるものである。まず,図6を用いてドラム
式洗濯機の構成を説明する。ドラム式洗濯機は,外箱1
の内部に水槽2がバネ16によって弾性的に支持され,
洗濯物を収納する回転槽3は,前記水槽2の内部に収納
され,その側板に固着された回転槽水平軸4が前記水槽
2に軸受15を介して回転自在に軸支されている。回転
槽3は,洗濯液の通水及び脱水液の排出のため,周壁部
5の全面に多数の小穴6が開口され,前記周壁部5にバ
ッフル板7が回転槽水平軸4に平行に内側に向けて突出
して設けられている。回転槽3には,洗濯物を出し入れ
する投入口8が設けられ,回転槽の停止時にはこの投入
口8が上方に位置するようになっている。このドラム式
洗濯機における洗い動作は,投入口8から回転槽3内に
洗濯物を投入し,給水管10から水槽2内へ供給された
洗濯液に浸漬させた後,回転槽3を低速で回転駆動させ
ることによって洗いを行う。このとき,前記洗濯物は回
転槽3の回転から生じる遠心力により周壁部5に押し付
けられると共に,バッフル板7によって回転槽3の上部
頂点近くまで持ち上げられた後,自重により回転槽3の
底部に落下し,この動作が繰り返され,洗濯物は落下時
の衝撃力によりたたき洗いされる。また,脱水動作は,
水槽2の内部に溜られた洗濯液を排水管17より排水し
た後,回転槽3を高速で回転させることにより,前記洗
濯物を遠心力により周壁部5に押し付けて,洗濯物に含
まれた洗濯液を前記の小穴6より排出し,洗濯物を脱水
する。前記の回転槽3の回転は,DCブラシレスモータ
11(以下,モータと呼ぶ)からモータプーリ12を介
してベルト14で回転槽プーリ13に伝達駆動される。 モータ11については,前記の洗い時は洗濯液に浸漬さ
れた洗濯物を持ち上げようとするため,低速(プーリ比
=8で約400rpm )ではあっても大きなトルクが
必要(布量5kgで最大約38kg・cm)となり,脱
水時は小さなトルク(同,約2.5kg・cm)でよい
が,高速回転(同,約8000rpm )を実現させな
ければならない。 このモータ11の構成を図7により説明する。このモー
タ構成は本実施例に用いた一構成例であり,本発明を限
定するものではない。回転子の永久磁石18はフェライ
ト材料のリング状で8極着磁しており,回転子軸19は
軸受20を介してモータケース21に回転自在に軸受さ
れ,固定子22は3相を成すように巻線が巻かれ,前記
のモータケース21に固定されている。前記回転子の回
転角度位置は,永久磁石18の磁力を3ヶのホールセン
サ23で検知される。
[Embodiment] Next, a specific example in which the present invention is applied to a drum type washing machine will be explained. Since drum-type washing machines have severe motor requirements, this configuration can be similarly applied to other fully automatic washing machines. First, the configuration of a drum-type washing machine will be explained using FIG. 6. For drum type washing machines, outer box 1
A water tank 2 is elastically supported inside by a spring 16,
A rotating tub 3 for storing laundry is housed inside the water tub 2, and a rotating tub horizontal shaft 4 fixed to its side plate is rotatably supported by the tub 2 via a bearing 15. The rotating tub 3 has a large number of small holes 6 formed on the entire surface of the peripheral wall 5 for the purpose of passing the washing liquid and discharging the dehydrated fluid, and a baffle plate 7 is provided on the peripheral wall 5 on the inner side parallel to the horizontal axis 4 of the rotating tub. It is installed to protrude towards. The rotary tub 3 is provided with an inlet 8 for loading and unloading laundry, and the inlet 8 is positioned upward when the rotary tub is stopped. The washing operation in this drum type washing machine involves loading the laundry into the rotating tub 3 from the input port 8, immersing it in the washing liquid supplied from the water supply pipe 10 into the water tub 2, and then rotating the rotating tub 3 at a low speed. Washing is performed by rotating. At this time, the laundry is pressed against the peripheral wall 5 by the centrifugal force generated from the rotation of the rotating tub 3, and is lifted up to near the top of the rotating tub 3 by the baffle plate 7, and then pushed to the bottom of the rotating tub 3 due to its own weight. It falls, and this action is repeated, and the laundry is washed by the impact force from the fall. In addition, the dehydration operation is
After draining the laundry liquid accumulated inside the water tank 2 through the drain pipe 17, by rotating the rotating tank 3 at high speed, the laundry is pressed against the peripheral wall 5 by centrifugal force, and the laundry liquid contained in the laundry is The washing liquid is discharged through the small hole 6 and the laundry is dehydrated. The rotation of the rotating tank 3 is transmitted from a DC brushless motor 11 (hereinafter referred to as a motor) to a rotating tank pulley 13 via a motor pulley 12 and a belt 14 . Regarding the motor 11, in order to lift the laundry immersed in the washing liquid during the above-mentioned washing, a large torque is required even at a low speed (approximately 400 rpm with a pulley ratio of 8) (up to approximately 38 kg/cm), and while a small torque (approximately 2.5 kg/cm) is sufficient during dehydration, high-speed rotation (approximately 8,000 rpm) is required. The configuration of this motor 11 will be explained with reference to FIG. This motor configuration is an example of the configuration used in this embodiment, and does not limit the present invention. The rotor's permanent magnet 18 is a ring-shaped ferrite material magnetized with eight poles, the rotor shaft 19 is rotatably supported by a motor case 21 via a bearing 20, and the stator 22 is arranged so as to form three phases. A winding is wound around the motor case 21, and the motor case 21 is fixed to the motor case 21. The rotation angle position of the rotor is detected by the magnetic force of the permanent magnet 18 by three Hall sensors 23.

【0007】次いで,図1の回転構成ブロック図により
モータ11の回転制御方法を説明する。マイクロコンピ
ュータ24は,商用電源25からDC電源26を介した
定電圧で動作され,モータ以外の給水弁や排水弁等の負
荷を動作させる負荷制御回路27,表示・操作部回路2
8,水位センサや蓋スイッチ等のセンサ回路29を制御
する。モータ11は,商用電源25からモータ用DC電
源30により作られたDC電圧(本実施例ではDC28
2V)を,トランジスタモジュール31にて分配制御し
て3相駆動される。モータ11の回転子回転角度位置は
ホールセンサ23より検出され,回転子位置信号回路3
2を介して,マイクロコンピュータ24に入力され,マ
イクロコンピュータ24の内部演算処理により3相のト
ランジスタモジュール31の各ベース制御信号を出力し
,回転数制御のためのPWM回路35でパルス幅変調し
,ベースドライブ回路36で増幅された後,トランジス
タモジュール31を駆動する。
Next, a method for controlling the rotation of the motor 11 will be explained with reference to the block diagram of the rotation configuration shown in FIG. The microcomputer 24 is operated with a constant voltage from a commercial power source 25 via a DC power source 26, and includes a load control circuit 27 that operates loads other than the motor, such as water supply valves and drain valves, and a display/operation section circuit 2.
8. Control the sensor circuit 29 such as the water level sensor and the lid switch. The motor 11 receives a DC voltage (DC 28 in this embodiment) generated by a motor DC power supply 30 from a commercial power supply 25.
2V) is distributed and controlled by the transistor module 31 and driven in three phases. The rotation angle position of the rotor of the motor 11 is detected by the Hall sensor 23, and the rotor position signal circuit 3
2, is inputted to the microcomputer 24, which outputs each base control signal of the three-phase transistor module 31 through internal arithmetic processing, and pulse width modulated by the PWM circuit 35 for rotation speed control. After being amplified by the base drive circuit 36, the transistor module 31 is driven.

【0008】次に,図3により,マイコン24の内部演
算処理で回転子位置信号によりトランジスタモジュール
31の各相のベース信号を作るタイミングチャートを説
明する。本実施の場合,モータ固定子巻線に加える線間
印加電圧パターンのオンオフデューティ比は,低速時は
1/3,高速時は1/2としている。回転子位置信号は
モータ11の所定位置に配した3ヶのホールセンサ23
により,永久磁石18の極ごと(本実施例では8極なの
で1周期90°)に検知される。3ヶのホールセンサ2
3からの回転子位置信号を(1)(2)(3)で示す。 CCW(反時計方向)の低速時(実線で表記)のベース
制御信号は,U相の場合でみると,回転子位置信号(1
)が立ち下がりをしたときON出力し,その後,回転子
角度30°保持された後,オフされることにより,全体
的なオンオフデューティ比は1/3となる。同様に,V
相およびW相は各々回転子位置信号(2)および(3)
の立ち下がりを基準に出力制御される。また,X,Y,
Z相は各々回転子位置信号(1),(2),(3)の立
ち上がりを基準として,同様に出力制御される。これら
の回転子角度で30°のオン時間は,実際にはU相の場
合で示すと,回転子位置信号(2)の立ち下がりを検知
してオフに移行する処理を行っている。また,高速時(
破線で表記)は回転子角度を低速時より15°早めにオ
ン出力するよう制御して,全体的なオンオフデューティ
比を1/2としている。実際には,U相の場合で示せば
,回転子位置信号2の立ち上がりを基準にしている。C
W(時計方向)のベース信号のオン出力時期は,CCW
の場合の立ち下がり基準が立ち上がり基準となり,オフ
出力時期はU,V,W相及びX,Y,Z相の順序が逆に
なり,立ち上がりと立ち下がりの基準を反対にすれば,
図3に示すようになり,CCW同様のモータ特性が得ら
れる。
Next, with reference to FIG. 3, a timing chart for generating base signals for each phase of the transistor module 31 based on rotor position signals through internal arithmetic processing of the microcomputer 24 will be explained. In this embodiment, the on/off duty ratio of the line-to-line applied voltage pattern applied to the motor stator winding is 1/3 at low speed and 1/2 at high speed. The rotor position signal is generated by three Hall sensors 23 placed at predetermined positions on the motor 11.
Accordingly, each pole of the permanent magnet 18 (in this embodiment, since there are 8 poles, one cycle is 90°) is detected. 3 Hall sensors 2
The rotor position signals from 3 are shown as (1), (2), and (3). The base control signal at low speed (indicated by a solid line) in CCW (counterclockwise direction) is the rotor position signal (1
) is turned ON when the signal falls, and then turned OFF after the rotor angle is maintained at 30°, so that the overall ON/OFF duty ratio becomes 1/3. Similarly, V
Phase and W phase are rotor position signals (2) and (3), respectively.
The output is controlled based on the falling edge of . Also, X, Y,
The output of the Z phase is similarly controlled based on the rise of the rotor position signals (1), (2), and (3). The on time of 30° at these rotor angles is actually a process of detecting the falling edge of the rotor position signal (2) and turning off, in the case of the U phase. Also, at high speed (
(denoted by a broken line), the rotor angle is controlled to turn on the output 15 degrees earlier than at low speeds, making the overall on-off duty ratio 1/2. Actually, in the case of the U phase, the rising edge of the rotor position signal 2 is used as the reference. C
The ON output timing of the W (clockwise) base signal is CCW.
In the case of , the falling reference becomes the rising reference, and the order of the U, V, W phases and the X, Y, Z phases is reversed at the off-output timing, and if the rising and falling criteria are reversed,
As shown in FIG. 3, motor characteristics similar to CCW can be obtained.

【0009】次に,図3のタイミングチャートに従って
駆動した場合のモータ実測特性を図4により説明する。 図においてA点とB点は,それぞれ前記のドラム式洗濯
機が必要とする動作点である。また,実線は低速時,破
線は高速時の制御特性である。図4から見て,高速時の
制御方法ではA,Bどちらの動作点も満足していること
が判る。しかし,Aの洗い動作点はあくまで回転槽の起
動時や洗濯物がからまった場合の動作点で,実際の運転
では400rpm で最大トルクの1/3以下となるが
,消費電流の少ない低速時の制御方法でなければ,高速
時の制御方法では消費電流が大きくモータの発熱が高く
なり過ぎ,モータを大型化しなければならなくなる。希
土類等の永久磁石を使用すれば,磁力が強くなるので発
熱は抑えられるが,現在では希土類磁石は,フェライト
磁石と比較して20倍程度の価格であり,家電製品への
採用は原価的に困難な状況である。また,高速制御時の
B点では,洗い動作とは異なり,回転槽が回転し始めれ
ば負荷トルクは変動せず,且つ,回転加速時を過ぎれば
モータに必要とされるトルクは,回転機構の摩擦分だけ
であるので,オンオフデューティ比を1/2にしても消
費電流は小さく,モータ発熱の心配は無い。これらのこ
とが,本発明の重要な特長で,安価な磁力の弱い磁石で
小型形状ながら,低速の大トルクから高速回転までを,
変速切換手段なしで駆動できる所以である。
Next, the actually measured characteristics of the motor when driven according to the timing chart of FIG. 3 will be explained with reference to FIG. In the figure, points A and B are the operating points required by the drum-type washing machine, respectively. Also, the solid line shows the control characteristics at low speeds, and the broken line shows the control characteristics at high speeds. From FIG. 4, it can be seen that the control method at high speed satisfies both operating points A and B. However, the washing operating point of A is only the operating point when the rotary tub is started or when the laundry gets tangled.In actual operation, the torque is less than 1/3 of the maximum torque at 400 rpm, but at low speeds with low current consumption. If the control method is not used at high speeds, the current consumption will be large and the motor will generate too much heat, making it necessary to make the motor larger. If permanent magnets such as rare earth magnets are used, the magnetic force will be stronger and heat generation can be suppressed, but rare earth magnets are currently about 20 times more expensive than ferrite magnets, making it difficult to use them in home appliances due to the cost. The situation is difficult. Also, at point B during high-speed control, unlike in the washing operation, the load torque does not change once the rotating tank starts rotating, and after the rotational acceleration period, the torque required by the motor is reduced by the rotation mechanism. Since it is only due to friction, the current consumption is small even if the on/off duty ratio is reduced to 1/2, and there is no need to worry about motor heat generation. These are the important features of the present invention, which is an inexpensive magnet with weak magnetic force that can handle everything from low-speed large torque to high-speed rotation, despite its small size.
This is the reason why it can be driven without a gear changeover means.

【0010】ここまでは,図3に示したタイミングチャ
ートでのモータ駆動について説明したが,次に図2によ
りモータの回転数制御方法について説明する。図4のA
,B点の各動作点は前記のモータ出力の範囲内にあり,
回転槽の駆動は可能であることは説明したが,実際の設
定回転数での運転時には,これらの動作点を通るような
モータ出力が必要となる。図5は,図3で示した出力ベ
ース信号にパルス幅変調をかけた波形で,Aは約2/3
のデューティ比,Bは約1/3のデューティ比となって
おり,図5に示すように,このデューティ比を小さくす
れば,曲線が左下になって出力が低下していく。モータ
11の駆動中,マイクロコンピュータ24は常に図3に
ある回転子位置信号状態を検知しており,毎秒1回転の
回転数設定ならば,本実施例の場合,回転子位置信号の
周期が1/4秒(4周期で1回転のため)になるように
,前記のデューティ比を増減制御している。もし,計算
した1/4秒たっても,回転子位置信号パルスが入力さ
れないなら,負荷が大きく回転子の回転が遅れていると
マイクロコンピュータ24は判断し,次回の出力ベース
信号のデューティ比を大きくする。逆に,計算した1/
4秒以前にパルスが入力されれば,回転子の回転が速す
ぎるとマイクロコンピュータ24は判断し,次回の出力
ベース信号のデューティ比を小さくする。このようにし
て,負荷の動作点を常に通るようにするので,モータは
負荷トルクの変動にもかかわらず,設定回転数が保たれ
る。以上のモータ回転数制御方法は本発明を限定するこ
とはなく,出力ベース信号のパルスごとに制御しなくて
も,回転数の安定性が少し悪くても良いのなら,例えば
1秒に1回の割合で前記のデューティ比を変更してもか
まわない。
Up to this point, motor driving has been explained using the timing chart shown in FIG. 3. Next, a method for controlling the rotational speed of the motor will be explained with reference to FIG. A in Figure 4
, each operating point of point B is within the range of the motor output mentioned above,
Although it has been explained that it is possible to drive the rotating tank, when operating at the actual set rotation speed, a motor output that passes through these operating points is required. Figure 5 is a waveform obtained by applying pulse width modulation to the output base signal shown in Figure 3, where A is approximately 2/3
The duty ratio B is about 1/3, and as shown in FIG. 5, if this duty ratio is decreased, the curve becomes lower left and the output decreases. While the motor 11 is being driven, the microcomputer 24 always detects the state of the rotor position signal shown in FIG. The duty ratio is controlled to increase/decrease so that the rotation time is /4 seconds (because one rotation takes four cycles). If the rotor position signal pulse is not input even after the calculated 1/4 second, the microcomputer 24 determines that the load is large and the rotation of the rotor is delayed, and increases the duty ratio of the next output base signal. do. Conversely, the calculated 1/
If a pulse is input before 4 seconds, the microcomputer 24 determines that the rotor is rotating too fast and reduces the duty ratio of the next output base signal. In this way, the motor always passes through the operating point of the load, so the set rotation speed of the motor is maintained despite fluctuations in the load torque. The above motor rotation speed control method does not limit the present invention, and if it is acceptable even if the rotation speed is slightly unstable without having to control every pulse of the output base signal, the motor rotation speed may be controlled once every second, for example. The duty ratio may be changed by a ratio of .

【0011】[0011]

【発明の効果】以上の説明の通り本発明によれば,低速
回転時に大きなトルクが必要で高速回転も必要な洗濯機
の主となる駆動源として,DCブラシレスモータを低速
回転時と高速回転時の制御方法を分けて駆動すれば,こ
のモータ自身の回転子を磁力の小さい安価な永久磁石で
構成でき,且つモータが小型形状となるので,洗濯機の
価格低減や小型化に大きく貢献できる。特にドラム式洗
濯機にとっては,整流子モータのような騒音や寿命問題
も無く,1台のモータで任意の回転槽回転数が得られる
ので非常に有効な効果を奏する。
[Effects of the Invention] As explained above, according to the present invention, the DC brushless motor is used as the main drive source for a washing machine that requires large torque during low speed rotation and also requires high speed rotation. By driving the motor using separate control methods, the rotor of the motor itself can be constructed from an inexpensive permanent magnet with low magnetic force, and the motor can be made smaller, which can greatly contribute to lowering the price and downsizing of washing machines. Particularly for drum-type washing machines, it is very effective because it does not cause the noise and life problems of commutator motors, and any rotational speed of the rotating tub can be obtained with a single motor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明実施例洗濯機の制御回路ブロック図
FIG. 1 is a control circuit block diagram of a washing machine according to an embodiment of the present invention.

【図2】  モータの回転数制御のパルス幅変調パター
ン図。
FIG. 2 is a pulse width modulation pattern diagram for motor rotation speed control.

【図3】  モータの駆動信号タイミングチャート。[Fig. 3] Motor drive signal timing chart.

【図4】  モータの出力特性グラフ。[Figure 4] Motor output characteristic graph.

【図5】  モータのパルス幅変調による出力特性変化
グラフ。
[Figure 5] Graph of output characteristic changes due to motor pulse width modulation.

【図6】  実施例ドラム式洗濯機の構成図。FIG. 6 is a configuration diagram of an example drum-type washing machine.

【図7】  実施例モータの構成図。FIG. 7 is a configuration diagram of an example motor.

【符号の説明】[Explanation of symbols]

3…回転槽 11…モータ 18…永久磁石(回転子) 22…固定子 3...Rotating tank 11...Motor 18...Permanent magnet (rotor) 22...Stator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  巻線を設けた固定子と永久磁石による
回転子とを備えて構成されるDCブラシレスモータによ
り,回転槽または攪拌翼を回転させる洗濯機において,
前記モータを高速回転させる脱水等の洗濯状態における
前記固定子巻線に加える線間印加電圧のオン・オフ・デ
ューティ比を,前記モータを低速回転させる洗いやすす
ぎ等の洗濯状態における前記固定子巻線に加える線間印
加電圧のオン・オフ・デューティ比より大とするデュー
ティ制御により上記洗濯状態に応じて前記モータを回転
制御することを特徴とする洗濯機。
[Claim 1] A washing machine in which a rotating tub or stirring blades are rotated by a DC brushless motor comprising a stator with windings and a rotor with a permanent magnet,
The on-off duty ratio of the line-to-line voltage applied to the stator winding in a washing state such as dehydration in which the motor rotates at high speed is different from the on-off duty ratio of the line-to-line applied voltage applied to the stator winding in a washing state such as washing or rinsing in which the motor rotates at low speed. A washing machine characterized in that the rotation of the motor is controlled according to the washing state by duty control that is greater than the on-off duty ratio of the line-to-line voltage applied to the line.
【請求項2】  モータの固定子巻線に加える線間印加
電圧をパルス幅変調して,前記モータの回転数を上記洗
濯状態の範囲内で制御する請求項1記載の洗濯機。
2. The washing machine according to claim 1, wherein the line-to-line voltage applied to the stator winding of the motor is pulse width modulated to control the rotational speed of the motor within the range of the washing state.
JP3088883A 1990-10-16 1991-04-20 Washing machine Expired - Lifetime JP2644386B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3088883A JP2644386B2 (en) 1991-04-20 1991-04-20 Washing machine
US07/775,542 US5207764A (en) 1990-10-16 1991-10-15 Tumbler type washing/drying machine
CA002053445A CA2053445C (en) 1990-10-16 1991-10-15 Tumbler type washing/drying machine and method of controlling the same
EP91117635A EP0481442B1 (en) 1990-10-16 1991-10-15 Tumbler type washing/drying machine
DE69112333T DE69112333T2 (en) 1990-10-16 1991-10-15 Drum washing machine / dryer.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088883A JP2644386B2 (en) 1991-04-20 1991-04-20 Washing machine

Publications (2)

Publication Number Publication Date
JPH04322696A true JPH04322696A (en) 1992-11-12
JP2644386B2 JP2644386B2 (en) 1997-08-25

Family

ID=13955391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088883A Expired - Lifetime JP2644386B2 (en) 1990-10-16 1991-04-20 Washing machine

Country Status (1)

Country Link
JP (1) JP2644386B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293286A (en) * 1992-04-20 1993-11-09 Sharp Corp Washing machine
JPH09239185A (en) * 1996-03-05 1997-09-16 Lg Electronics Inc Motor control method for washing machine
KR20180033298A (en) 2015-08-17 2018-04-02 칭다오 하이어 워싱 머신 캄파니 리미티드 washer
KR20180033299A (en) 2015-08-07 2018-04-02 칭다오 하이어 워싱 머신 캄파니 리미티드 washer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155894A (en) * 1981-12-18 1983-09-16 インステイチユト・セラク・ソシエテ・アノニム Washer driven by brushless alternating current motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155894A (en) * 1981-12-18 1983-09-16 インステイチユト・セラク・ソシエテ・アノニム Washer driven by brushless alternating current motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293286A (en) * 1992-04-20 1993-11-09 Sharp Corp Washing machine
JPH09239185A (en) * 1996-03-05 1997-09-16 Lg Electronics Inc Motor control method for washing machine
KR20180033299A (en) 2015-08-07 2018-04-02 칭다오 하이어 워싱 머신 캄파니 리미티드 washer
KR20180033298A (en) 2015-08-17 2018-04-02 칭다오 하이어 워싱 머신 캄파니 리미티드 washer

Also Published As

Publication number Publication date
JP2644386B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US6257027B1 (en) Full-automatic washing machine with two drive motors
US6341507B1 (en) Laundry treating equipment with a driving motor mounted on the drum shaft
JP4481503B2 (en) Method and apparatus for detecting an imbalance in a washing tub
US5813069A (en) Motor control method for automatic clothes washer
EP0082828B1 (en) Washing machine
US20210002808A1 (en) Washing machine driving device, and washing machine and driving method using same
US6381791B1 (en) Washing machine tub speed control method and apparatus
US8739581B2 (en) Washing machine
JP2006068504A (en) Washing machine and control method thereof
US6189171B1 (en) Washing machine having a variable speed motor
KR102572084B1 (en) Motor and method of controlling motor, washing maching having motor
KR20060020265A (en) Driving apparatus of washing machine and the controlling method of the apparats
JPH10295990A (en) Spin tub braking method of washing machine
JP3171568B2 (en) Washing machine
JP2001224889A (en) Drum type washing machine
JP2011200545A (en) Laundry apparatus
JP2007020993A (en) Drum type washing machine
US20060238152A1 (en) Method for detecting unbalanced conditions of a rotating load driven by a synchronous motor and for controlling said motor
JPH04322696A (en) Washing machine
JP2000014961A (en) Washing machine
JP2000024366A (en) Washing machine
KR20190074944A (en) Washing machine and motor
JP4367098B2 (en) Washing machine
JP2001120880A (en) Washing machine
JP2003230786A (en) Washing machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

EXPY Cancellation because of completion of term