JPH04321384A - Image pickup device - Google Patents
Image pickup deviceInfo
- Publication number
- JPH04321384A JPH04321384A JP3083785A JP8378591A JPH04321384A JP H04321384 A JPH04321384 A JP H04321384A JP 3083785 A JP3083785 A JP 3083785A JP 8378591 A JP8378591 A JP 8378591A JP H04321384 A JPH04321384 A JP H04321384A
- Authority
- JP
- Japan
- Prior art keywords
- area
- evaluation value
- main subject
- exposure evaluation
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011156 evaluation Methods 0.000 claims abstract description 46
- 238000009826 distribution Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 17
- 238000003384 imaging method Methods 0.000 claims description 10
- 230000010354 integration Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 18
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
Landscapes
- Exposure Control For Cameras (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、ビデオカメラ等のレン
ズ絞り機構を有する撮像装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an imaging device such as a video camera having a lens aperture mechanism.
【0002】0002
【従来の技術】図1は、図2に示す画面分割を行った場
合の、自動利得制御機構を有する撮像装置のブロック回
路図である。図において、1はレンズ、2は絞り、3は
撮像素子、4は撮像素子3の出力を適当な大きさまで増
幅するプリアンプ、5はγ補正回路,WB回路などで構
成されるプロセス部、6はプロセス部5の出力を特定の
信号体系に変換するエンコーダ部、7は測光回路で、プ
リアンプ4から出力される映像信号のうち、図5に示す
測光領域に該当する部分の信号を抽出する。2. Description of the Related Art FIG. 1 is a block circuit diagram of an imaging apparatus having an automatic gain control mechanism when the screen is divided as shown in FIG. In the figure, 1 is a lens, 2 is an aperture, 3 is an image sensor, 4 is a preamplifier that amplifies the output of the image sensor 3 to an appropriate size, 5 is a process section consisting of a γ correction circuit, a WB circuit, etc., and 6 is a process section. An encoder section 7 converts the output of the processing section 5 into a specific signal system, and 7 is a photometric circuit that extracts a signal corresponding to the photometric region shown in FIG. 5 from the video signal output from the preamplifier 4.
【0003】8は検波回路、9はA/D変換器、10〜
18は電子スイッチ、19〜27は図2に示す画面分割
された各領域に対応した露出評価値を演算する積算回路
(露出評価値検出手段)、28〜36は各領域内の同一
輝度レベルの度数分布を演算する手段、37はインター
フェイス回路、38はマイクロコンピュータ、39は垂
直および水平同期パルスなどから、電子スイッチ10〜
18を制御するパルス信号を発生するパルス発生回路、
40はマイクロコンピュータ38から入力されるディジ
タル信号を、アナログ信号に変換するD/A変換器、4
1は絞り制御回路である。[0003] 8 is a detection circuit, 9 is an A/D converter, 10 -
18 is an electronic switch; 19 to 27 are integration circuits (exposure evaluation value detection means) that calculate exposure evaluation values corresponding to each area of the screen divided as shown in FIG. Means for calculating the frequency distribution, 37 an interface circuit, 38 a microcomputer, 39 a vertical and horizontal synchronizing pulse, etc., are connected to the electronic switches 10 to 10.
a pulse generation circuit that generates a pulse signal to control 18;
40 is a D/A converter that converts the digital signal input from the microcomputer 38 into an analog signal;
1 is an aperture control circuit.
【0004】次に、動作について説明する。レンズ1を
通過した光は、撮像素子3上に結像する。この結像され
た光学像は、撮像素子3で電気信号である映像信号に変
換され、プリアンプ4で後段で処理し易い大きさまで増
幅されたのち、A/D変換器9でディジタル信号に変換
され、パルス発生回路39の出力信号で制御される電子
スイッチ10〜18によって、画面分割された各領域に
対応した積算回路19〜27、および度数分布演算手段
28〜36に振り分けられる。Next, the operation will be explained. The light that has passed through the lens 1 forms an image on the image sensor 3. This formed optical image is converted into a video signal, which is an electrical signal, by the image sensor 3, amplified by the preamplifier 4 to a size that can be easily processed in the subsequent stage, and then converted to a digital signal by the A/D converter 9. , electronic switches 10 to 18 controlled by the output signal of the pulse generation circuit 39 distribute the signals to integration circuits 19 to 27 and frequency distribution calculation means 28 to 36 corresponding to each divided screen area.
【0005】積算回路19〜27に振り分けられたディ
ジタル信号は、積算されて露出評価値が検出される。他
方、度数分布演算手段28〜36に振り分けられたディ
ジタル信号は、大きさ別に計数され、図3に示すような
度数分布を各領域ごとに検出される。これらの検出信号
は、インターフェイス回路37で保持された後、マイク
ロコンピュータ38から送出される制御信号によって選
択され、マイクロコンピュータ38に入力される。The digital signals distributed to the integrating circuits 19 to 27 are integrated to detect an exposure evaluation value. On the other hand, the digital signals distributed to the frequency distribution calculating means 28 to 36 are counted according to their size, and a frequency distribution as shown in FIG. 3 is detected for each region. These detection signals are held in the interface circuit 37, then selected by a control signal sent from the microcomputer 38, and input to the microcomputer 38.
【0006】マイクロコンピュータ38は、次に示す1
〜4項の処理を行う。
1.相関値の算出
主要被写体は、画面の中央に位置している場合が多いの
で、主要被写体は必ず中央の領域(図2に示すような画
面分割の場合は領域5)に含まれていると仮定し、この
中央の領域と、その他の領域との相関を輝度度数分布か
ら求める。この相関値は、例えば、数1に示す演算式を
用いて算出される。この演算式では、相関が強ければ相
関値が小さく、相関が弱ければ相関値は大きくなる。The microcomputer 38 has the following 1
- Perform the processing in section 4. 1. Calculation of correlation value Since the main subject is often located in the center of the screen, it is assumed that the main subject is always included in the central area (area 5 in the case of screen splitting as shown in Figure 2). Then, the correlation between this central area and other areas is determined from the brightness frequency distribution. This correlation value is calculated using the arithmetic expression shown in Equation 1, for example. In this calculation formula, if the correlation is strong, the correlation value will be small, and if the correlation is weak, the correlation value will be large.
【0007】[0007]
【数1】[Math 1]
【0008】2.主要被写体領域と非主要非領域の判別
数1の演算式で求めた相関値を用いて、主要被写体領域
の判別を行う。あらかじめ定めたしきい値より相関が強
ければ(前述した数1による相関値は小さくなる)主要
被写体領域、そうでなければ非主要被写体領域とする。2. The main subject area is determined using a correlation value obtained using an arithmetic expression with a discrimination number of 1 between the main subject area and the minor non-main area. If the correlation is stronger than a predetermined threshold value (the correlation value according to Equation 1 described above becomes smaller), it is determined as a main subject region, and if not, it is determined as a non-main subject region.
【0009】3.露出評価値の比の算出主要被写体領域
と非主要被写体領域の露出評価値の比(非主要被写体領
域の露出評価値/主要被写体領域の露出評価値)を算出
する。算出された比は、1より大きいときは逆光の度合
を、1より小さいときは過順光の度合を示す。3. Calculating the ratio of exposure evaluation values The ratio of the exposure evaluation values of the main subject area and the non-main subject area (exposure evaluation value of the non-main subject area/exposure evaluation value of the main subject area) is calculated. When the calculated ratio is greater than 1, it indicates the degree of backlighting, and when it is smaller than 1, it indicates the degree of over-frontlighting.
【0010】4.基準電圧の制御
例えば、図4に示すような特性図から、3項でもとめた
比により決定される基準電圧と、現在の基準電圧とを比
較し、現在の基準電圧の方が大きければ、基準電圧を予
め定められた値だけ小さくして出力し、現在の基準電圧
の方が小さければ、基準電圧を予め定められた値だけ大
きくして出力する。そして、両者の差が予め定められた
値以内になるまで以上の動作を繰り返す。4. Control of reference voltage For example, from the characteristic diagram shown in Figure 4, compare the reference voltage determined by the ratio found in section 3 with the current reference voltage, and if the current reference voltage is larger, the reference voltage The voltage is output after being decreased by a predetermined value, and if the current reference voltage is smaller, the reference voltage is increased by a predetermined value and output. The above operations are then repeated until the difference between the two becomes within a predetermined value.
【0011】マイクロコンピュータ38から出力された
基準電圧は、D/A変換器40によってアナログ信号に
変換され、基準電圧として、絞り制御回路41に入力さ
れる。プリアンプ4で増幅された映像信号は、測光回路
7によって、例えば、図5に示される検波領域の信号だ
けが検波回路8に入力されて積分される。この積分され
た映像信号は、測光領域(図5参照)の平均の明るさに
対応したレベルの検波信号となって、絞り制御回路41
に入力される。絞り制御回路41は、この値と基準電圧
が一致するように絞り2をフィードバック制御する。The reference voltage output from the microcomputer 38 is converted into an analog signal by a D/A converter 40, and is input to an aperture control circuit 41 as a reference voltage. From the video signal amplified by the preamplifier 4, only the signal in the detection region shown in FIG. 5, for example, is input to the detection circuit 8 and integrated by the photometry circuit 7. This integrated video signal becomes a detection signal with a level corresponding to the average brightness of the photometric area (see FIG. 5), and is sent to the aperture control circuit 41.
is input. The aperture control circuit 41 performs feedback control on the aperture 2 so that this value matches the reference voltage.
【0012】0012
【発明が解決しようとする課題】以上のように、従来の
撮像装置では、相関値があるしきい値より大きいか小さ
いかによって主要被写体領域を判別していたので、被写
体の位置が少しずれると、逆光・過順光の度合の検出結
果が大きく変化してしまうことがあった。そのため、補
正量が大きく変化して絞りの調節による逆光・過順光の
補正が正確にできないという問題点があった。本発明は
上記のような課題を解消するためになされたもので、被
写体の位置が少しずれたような場合には逆光・過順光の
度合の検出結果が大きく変化せず、絞りの調節による逆
光・過順光の補正が正確にできる撮像装置を得ることを
目的とする。[Problems to be Solved by the Invention] As described above, in conventional imaging devices, the main subject area is determined based on whether the correlation value is larger or smaller than a certain threshold value. , the detection results for the degree of backlighting and excessive forwardlighting sometimes changed significantly. Therefore, there is a problem in that the amount of correction changes greatly, making it impossible to accurately correct backlight and forward light by adjusting the aperture. The present invention has been made to solve the above-mentioned problems, and the detection result of the degree of backlighting/excessive lighting does not change significantly when the position of the subject shifts slightly, and it is possible to adjust the aperture by adjusting the aperture. An object of the present invention is to obtain an imaging device that can accurately correct backlighting and excessive forwardlighting.
【0013】[0013]
【課題を解決するための手段】本発明に係る撮像装置は
、画面を複数に区分した各領域の映像信号の輝度成分の
積算値から露出評価値を求め、また、各領域の輝度成分
を複数段階に区分して各段階ごとの出現回数を計数して
輝度度数分布を求め、これらの輝度度数分布から、画面
中央部の領域と他の領域との相関を求め、この相関値か
ら各領域の主要被写体成分の重みαと非主要被写体成分
の重みβとを求め、各領域の重みα,βおよび露出評価
値とから主要被写体成分の露出評価値と非主要被写体成
分の露出評価値を求め、この主要被写体領域の露出評価
値と非主要被写体領域の露出評価値の比から逆光・過順
光の度合いを検出し、この検出値にもとづいて撮像手段
から得られた映像信号の輝度が一定レベルとなるように
絞りを調節するようにしたものである。[Means for Solving the Problems] The imaging device according to the present invention obtains an exposure evaluation value from the integrated value of the luminance components of the video signal of each region of a screen divided into a plurality of regions, and also calculates a plurality of luminance components of each region. Dividing the screen into stages and counting the number of appearances at each stage to obtain a luminance frequency distribution, from these luminance frequency distributions, calculate the correlation between the area in the center of the screen and other areas, and from this correlation value Calculate the weight α of the main subject component and the weight β of the non-main subject component, calculate the exposure evaluation value of the main subject component and the exposure evaluation value of the non-main subject component from the weights α, β of each area and the exposure evaluation value, The degree of backlighting/excessive lighting is detected from the ratio of the exposure evaluation value of the main subject area and the exposure evaluation value of the non-main subject area, and based on this detected value, the brightness of the video signal obtained from the imaging means is set to a certain level. The aperture is adjusted so that
【0014】本発明によれば、各領域の主要被写体成分
の露出評価値と非主要被写体成分の露出評価値とを求め
、両者の比較値から逆光・過順光の度合を検出するよう
にしたので、被写体が少し移動した場合に、逆光・過順
光の検出結果が大きく変化することはない。According to the present invention, the exposure evaluation value of the main subject component and the exposure evaluation value of the non-main subject component in each area are determined, and the degree of backlighting/excessive lighting is detected from the comparison value between the two. Therefore, even if the subject moves a little, the detection results for backlighting and forward lighting will not change significantly.
【0015】[0015]
【実施例】以下、本発明の一実施例を図について説明す
る。本実施例のハードウエアは、図1に示した従来例と
同じである。図6は、主要被写体成分の露出評価値を求
めるための、各領域の重みと相関値の関係を示す特性図
、図7は、非主要被写体成分の露出評価値を求めるため
の、各領域の重みと相関値の関係を示す特性図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The hardware of this embodiment is the same as that of the conventional example shown in FIG. Figure 6 is a characteristic diagram showing the relationship between the weight and correlation value of each area for determining the exposure evaluation value of the main subject component, and Figure 7 is a characteristic diagram of each area for determining the exposure evaluation value of the non-main subject component. FIG. 3 is a characteristic diagram showing the relationship between weights and correlation values.
【0016】次に、動作について説明する。マイクロコ
ンピュータ38で、相関値を求めるところまでは従来例
と同様であるので省略する。次に、マイクロコンピュー
タ38は、各領域に含まれている主要被写体の成分と、
非主要被写体の成分を、各領域の相関値から求める。図
6は、相関値と主要被写体成分の重みαとの関係を示す
図で、相関値の中間部分で相関が強いほど重みが小から
大となるように変化している。図7は、相関値と非主要
被写体成分の重みβとの関係を示す図で、相関値の中間
部分で相関が弱いほど重みが小から大となるように変化
している。Next, the operation will be explained. The steps up to the point where the correlation value is determined by the microcomputer 38 are the same as in the conventional example, and will therefore be omitted. Next, the microcomputer 38 determines the components of the main subject included in each area,
Components of non-main subjects are found from the correlation values of each area. FIG. 6 is a diagram showing the relationship between the correlation value and the weight α of the main subject component, and the weight changes from small to large as the correlation becomes stronger in the middle part of the correlation value. FIG. 7 is a diagram showing the relationship between the correlation value and the weight β of the non-main subject component, and the weight changes from small to large as the correlation becomes weaker in the middle part of the correlation value.
【0017】次に、マイクロコンピュータ38は、主要
被写体成分の露出評価値と非主要被写体成分の露出評価
値とを、数2に示した次式より求める。Next, the microcomputer 38 calculates the exposure evaluation value of the main subject component and the exposure evaluation value of the non-main subject component using the following equation shown in Equation 2.
【0018】[0018]
【数2】[Math 2]
【0019】次に、マイクロコンピュータ38は、主要
被写体成分の露出評価値と非主要被写体成分の露出評価
値の比(非主要被写体成分の露出評価値/主要被写体成
分の露出評価値)を算出する。次に、図8に示す特性図
から、主要被写体成分と非主要被写体成分の露出評価値
の比により決定される基準電圧と、現在の基準電圧とを
比較し、現在の基準電圧が大きければ、基準電圧を予め
定められた値だけ小さくして絞り制御回路41に出力す
る。また、現在の基準電圧が小さければ、基準電圧を予
め定められた値だけ大きくして絞り制御回路41に出力
する。そして、両者の差が予め定められた値以内になる
まで以上の動作を繰り返す。ここから先の動作は従来例
と同様である。Next, the microcomputer 38 calculates the ratio of the exposure evaluation value of the main subject component to the exposure evaluation value of the non-main subject component (exposure evaluation value of the non-main subject component/exposure evaluation value of the main subject component). . Next, from the characteristic diagram shown in FIG. 8, the reference voltage determined by the ratio of the exposure evaluation values of the main subject component and the non-main subject component is compared with the current reference voltage, and if the current reference voltage is larger, then The reference voltage is decreased by a predetermined value and output to the aperture control circuit 41. Furthermore, if the current reference voltage is small, the reference voltage is increased by a predetermined value and output to the aperture control circuit 41. The above operations are then repeated until the difference between the two becomes within a predetermined value. The operation from here on is similar to the conventional example.
【0020】このような制御を行うと、ある領域の相関
値が中くらいのとき、例えば、図6中のV点、および、
図7中のW点のとき、この領域には主要被写体成分がα
vの割合で、また、非主要被写体成分がβwの割合で含
まれているということを意味する。ここで、図6を図9
のような、図7を図10のような重みづけ特性にすると
、従来例と同様の動作をする。このようにすると、任意
の領域は主要被写体成分だけ、あるいは、非主要被写体
成分だけが含まれているということになる。つまり、両
方の成分が含まれていることはない。When such control is performed, when the correlation value in a certain area is medium, for example, point V in FIG.
At point W in Figure 7, the main object component is α in this area.
This means that the non-main subject components are included at a rate of v, and the non-main subject components are included at a rate of βw. Here, Figure 6 is changed to Figure 9.
If the weighting characteristics shown in FIG. 7 are changed to those shown in FIG. 10, the same operation as the conventional example will be obtained. In this way, any given area will contain only the main subject component or only the non-main subject component. In other words, it does not contain both components.
【0021】次に、本実施例のように制御した場合の作
用について説明する。主要被写体が中央の領域からずれ
ると、ある領域では、相関が弱い状態から徐々に強い状
態へと変化していくので、主要被写体の少しのずれでは
非主要被写体成分と主要被写体説明の露出評価値が大き
く変化することがなく、その結果、(主要被写体成分の
露出評価値/非主要被写体成分の露出評価値)の比が大
きく変化することはないので、逆光・過順光の度合の検
出結果が大きく変化することはない。Next, the operation when controlled as in this embodiment will be explained. When the main subject shifts from the central area, the correlation will gradually change from weak to strong in a certain area, so a slight shift in the main subject will cause the exposure evaluation values of the non-main subject components and the main subject description to change. does not change significantly, and as a result, the ratio of (exposure evaluation value of main subject component / exposure evaluation value of non-main subject component) does not change significantly, so the detection result of the degree of backlighting/excessive lighting will not change significantly.
【0022】なお、上記実施例では、各領域の重みα,
βと、相関値の関係を、図6および図7に示すような直
線で変化する場合を示したが、必ずしも直線である必要
はなく、例えば2次曲線のような曲線、或いは、直線と
曲線が組み合わさったような関係としてもよい。[0022] In the above embodiment, the weights α,
Although the relationship between β and the correlation value is shown as changing in a straight line as shown in FIGS. 6 and 7, it does not necessarily have to be a straight line; The relationship may be a combination of the following.
【0023】[0023]
【発明の効果】以上のように、本発明によれば、相関値
にもとづいて各領域に含まれている主要被写体成分と非
主要被写体成分の重み付けを施し、この重み付けを加味
して主要被写体成分の露出評価値および非主要被写体成
分の露出評価値を求め、この両者の比から逆光・過順光
の度合を検出して絞りを調節するようにしたので、被写
体の位置が少しずれても逆光・過順光の度合の検出結果
が大きく変化しない。その結果、正確な逆光・過順光の
補正が行える撮像装置が得られる効果がある。As described above, according to the present invention, the main subject component and non-main subject component included in each area are weighted based on the correlation value, and the main subject component is The exposure evaluation value of the subject and the exposure evaluation value of the non-main subject components are calculated, and the degree of backlighting/over-frontlighting is detected from the ratio of the two and the aperture is adjusted, so even if the position of the subject is slightly shifted, the backlighting will be avoided.・The detection result of the degree of excessive light does not change significantly. As a result, it is possible to obtain an imaging device that can accurately correct backlighting and excessive forwardlighting.
【図1】本発明の一実施例および従来例の撮像装置のハ
ードウエアの構成を示すブロック回路図である。FIG. 1 is a block circuit diagram showing the hardware configuration of an imaging device according to an embodiment of the present invention and a conventional example.
【図2】画面分割の一例を示す図である。FIG. 2 is a diagram showing an example of screen division.
【図3】各領域における輝度の度数分布図である。FIG. 3 is a frequency distribution diagram of brightness in each region.
【図4】主要被写体成分の露出評価値と、非主要被写体
成分の露出評価値との比に対する基準電圧の関係を示す
特性図である。FIG. 4 is a characteristic diagram showing the relationship between the reference voltage and the ratio between the exposure evaluation value of the main subject component and the exposure evaluation value of the non-main subject component.
【図5】検波回路8による画面上の検波領域を示す図で
ある。5 is a diagram showing a detection area on the screen by the detection circuit 8. FIG.
【図6】各領域の相関値と主要被写体成分の重みαとの
関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the correlation value of each region and the weight α of the main subject component.
【図7】各領域の相関値と非主要被写体成分の重みβと
の関係を示す特性図である。FIG. 7 is a characteristic diagram showing the relationship between the correlation value of each region and the weight β of the non-main subject component.
【図8】本実施例における、主要被写体の露出評価値と
非主要被写体成分の露出評価値との比に対する基準電圧
の関係を示す特性図である。FIG. 8 is a characteristic diagram showing the relationship between the reference voltage and the ratio between the exposure evaluation value of the main subject and the exposure evaluation value of the non-main subject component in this embodiment.
【図9】従来例に相当する各領域の相関値と主要被写体
成分の重みαとの関係を示す特性図である。FIG. 9 is a characteristic diagram showing the relationship between the correlation value of each region and the weight α of the main subject component, corresponding to a conventional example.
【図10】従来例に相当する各領域の相関値と非主要被
写体成分の重みβとの関係を示す特性図である。FIG. 10 is a characteristic diagram showing the relationship between the correlation value of each region and the weight β of a non-main subject component, corresponding to a conventional example.
2 絞り
7 測光回路
8 検波回路
9 A/D変換器
10〜18 電子スイッチ
19〜27 積算回路(評価値検出手段)28〜36
度数分布演算手段
38 マイクロコンピュータ
39 パルス発生回路
40 D/A変換器
41 絞り制御回路2 Aperture 7 Photometric circuit 8 Detection circuit 9 A/D converters 10 to 18 Electronic switches 19 to 27 Integration circuit (evaluation value detection means) 28 to 36
Frequency distribution calculation means 38 Microcomputer 39 Pulse generation circuit 40 D/A converter 41 Aperture control circuit
Claims (1)
映像信号を増幅する自動利得制御手段と、画面上に分割
された複数個の領域における個々の映像信号の輝度成分
を各領域毎の露出評価値として検出する評価値検出手段
と、前記複数個の領域ごとに入力輝度成分を複数段階に
区分し各段階毎の輝度出現回数を計数する輝度度数分布
演算手段と、画面中央部の領域および各領域の輝度度数
分布から画面中央部の領域に対する各領域の相関値を算
出する相関演算手段と、各領域の主要被写体成分の重み
付けαと各領域の非主要被写体成分の重み付けβを前記
相関値から求める重み演算手段と、主要被写体成分の露
出評価値および非主要被写体成分の露出評価値を各領域
の前記重みαおよびβと前記露出評価値とから算出する
手段と、前記主要被写体成分の露出評価値と非主要被写
体成分の露出評価値との比から逆光または過順光の度合
いを検出する手段と、この検出結果にもとづいて映像信
号の平均輝度が一定となるように前記自動利得制御手段
を制御する手段とを備えた撮像装置。Claims: 1. Imaging means for outputting a video signal; automatic gain control means for amplifying the video signal; an evaluation value detection means for detecting an evaluation value; a luminance frequency distribution calculation means for dividing the input luminance component into a plurality of stages for each of the plurality of regions and counting the number of times the luminance appears in each stage; Correlation calculation means for calculating a correlation value of each area with respect to the area at the center of the screen from the luminance frequency distribution of each area, and a weighting α of the main subject component of each area and a weighting β of the non-main subject components of each area to the correlation value. means for calculating the exposure evaluation value of the main subject component and the exposure evaluation value of the non-main subject component from the weights α and β of each area and the exposure evaluation value, and the exposure evaluation value of the main subject component. means for detecting the degree of backlighting or overlighting from the ratio of the evaluation value and the exposure evaluation value of the non-main subject component; and the automatic gain control means for controlling the average brightness of the video signal to be constant based on the detection result. An imaging device comprising means for controlling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3083785A JPH04321384A (en) | 1991-04-16 | 1991-04-16 | Image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3083785A JPH04321384A (en) | 1991-04-16 | 1991-04-16 | Image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04321384A true JPH04321384A (en) | 1992-11-11 |
Family
ID=13812295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3083785A Pending JPH04321384A (en) | 1991-04-16 | 1991-04-16 | Image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04321384A (en) |
-
1991
- 1991-04-16 JP JP3083785A patent/JPH04321384A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5504525A (en) | White balance adjustment device | |
US5272538A (en) | Exposure control device | |
US6690424B1 (en) | Exposure control apparatus for controlling the exposure of an image pickup plane in a camera | |
US5512947A (en) | Video camera | |
US20050179789A1 (en) | Color image processing method, and color imaging apparatus | |
US20050264682A1 (en) | Exposure control apparatus and exposure control method | |
JPH0254487B2 (en) | ||
JPH11220739A (en) | Video camera device | |
JPH04321384A (en) | Image pickup device | |
JP3477936B2 (en) | Automatic exposure control device | |
JPH04104668A (en) | Image pickup device | |
JPH04284072A (en) | Image pickup device | |
JPH04340875A (en) | Image pickup device | |
JP2966064B2 (en) | Imaging device | |
EP0420621B1 (en) | Method and apparatus for effecting white balance control in an image pickup apparatus | |
JPH02163714A (en) | Automatic focus adjustor | |
JPH0628479B2 (en) | White balance circuit | |
JPH05137060A (en) | Automatic exposure controller | |
JP2912691B2 (en) | AF priority aperture control method | |
JPH0484574A (en) | Image pickup device | |
JPH06326919A (en) | Automatic exposure control device | |
JPH04175076A (en) | Image pickup device | |
JPH05211628A (en) | Image pickup device | |
JPS63132225A (en) | Image pickup device | |
JPH05191714A (en) | Image pickup device |