JPH04321171A - Process design preparing device - Google Patents

Process design preparing device

Info

Publication number
JPH04321171A
JPH04321171A JP3090287A JP9028791A JPH04321171A JP H04321171 A JPH04321171 A JP H04321171A JP 3090287 A JP3090287 A JP 3090287A JP 9028791 A JP9028791 A JP 9028791A JP H04321171 A JPH04321171 A JP H04321171A
Authority
JP
Japan
Prior art keywords
solution
searching
search
synthesizing
possible solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3090287A
Other languages
Japanese (ja)
Inventor
Masanori Takamoto
政典 高元
Yasuhiro Kobayashi
康弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3090287A priority Critical patent/JPH04321171A/en
Publication of JPH04321171A publication Critical patent/JPH04321171A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To widen the searching range and to increase the possibility to acquire an optimum major solution by providing a feedback means which feeds a possible solution obtained by a synthesizing means back to the executing process of a searching means to improve the searching efficiency. CONSTITUTION:A searching processor 3 searchs the solution of a merging optimization problem with use of a program stored in a searching program store part 1. Then a limit satisfying solution and other data are stored in a data store device 2. Meanwhile a synthesization processor 6 synthesizes a solution with use of a hereditary evolution program stored in a synthesizing program store part 7. This synthesized solution and other data are stored in a data store device 5. A feedback processor 4 feeds the information on the possible solution obtained in the executing process of the processor 3 and the information on the possible solution obtained by the processor 6 back to the processor 3 in a state where a searching point is controlled and the searching efficiency is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、種々のプラント建設工
程計画作成において、満たさなければならない制約条件
を満たしつつ最良の計画案を効率よく自動作成する装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for automatically and efficiently creating the best plan while satisfying the constraints that must be met in the preparation of various plant construction process plans.

【0002】0002

【従来の技術】プラント据え付け工程計画において、人
的資源の平準化を目的とした工程計画作成支援装置が、
「特開昭63−19379 号」に出願されている。こ
れは、その中で解かれるべき組み合わせ最適化問題の解
法に反復法を用いる。また、一般の組み合わせ最適化問
題の解法として、線形計画法および分枝限定法を用いた
ものがエリス・エル・ジョンソン等の「大規模計画モデ
ルに対する0−1整数計画問題の解法」,オペレーショ
ン  リサーチ,33巻,4号,7月−8月1985(
ELLISL.JONSON et al.,Solv
cing 0−1 Integer Programm
ing Problems Arisingfrom 
Large Scale Planning Mode
les,Operations Rsearch,Vo
l.33.No4.July−August 1985
)で論じられており、また、遺伝進化アルゴリズムの組
み合わせ最適化問題への適用が「小圷,須貝,平田,遺
伝的要素を取り入れた改良型アニーリーング法によるブ
ロック配置手法、電子常通信学会論文誌A、J73−A
−1,87/97(1990)」で論じられている。
[Prior Art] A process plan creation support device for the purpose of equalizing human resources in plant installation process planning.
The application has been filed in ``Japanese Patent Application Laid-open No. 19379/1983.'' It uses an iterative method to solve the combinatorial optimization problem to be solved within it. In addition, methods using linear programming and branch-and-bound methods for solving general combinatorial optimization problems are described in Ellis El Johnson et al.'s "Solution of 0-1 Integer Programming Problems for Large-Scale Programming Models," Operation Research. , Volume 33, Issue 4, July-August 1985 (
ELLISL. JONSON et al. ,Solv
sing 0-1 Integer Program
ing Problems Arising from
Large Scale Planning Mode
les, Operations Research, Vo
l. 33. No.4. July-August 1985
), and the application of genetic evolutionary algorithms to combinatorial optimization problems is also discussed in ``Otaku, Sugai, Hirata, Block placement method using an improved annealing method incorporating genetic elements, Journal of the Society of Electronics and Communications Engineers A. , J73-A
-1, 87/97 (1990).

【0003】0003

【発明が解決しようとする課題】上記の工程計画作成支
援装置は反復法による逐一的方法を用いているため、大
規模な計画案作成には多くの時間がかかる。また、組み
合わせ最適化問題を解く従来法は、分枝限定法などの解
の逐次的な探索的な探索法か、遺伝アルゴリズムやモン
テカルロ法といった確率的要素を取り入れた手法等によ
って実現されているが、時間的制約により探索範囲が限
られるので、一般に得られた最適解が大域的最適解であ
るという保証はない。
Problem to be Solved by the Invention Since the above-mentioned process planning support system uses a point-by-point method based on an iterative method, it takes a lot of time to create a large-scale plan. In addition, conventional methods for solving combinatorial optimization problems are realized using sequential exploratory search methods for solutions such as branch-and-bound methods, or methods that incorporate stochastic elements such as genetic algorithms and Monte Carlo methods. Since the search range is limited due to time constraints, there is no guarantee that the generally obtained optimal solution is the global optimal solution.

【0004】本発明の目的は、解の探索効率を高めるこ
とにより探索範囲を広げ、大域的最適解を得る可能性を
大きくしその方法を工程計画作成へ適用することにある
An object of the present invention is to widen the search range by increasing solution search efficiency, increase the possibility of obtaining a globally optimal solution, and apply this method to process planning.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、最適化問題を解くための最適解の探索手
段、探索手段の実行過程で得られる可能解から別の可能
解を合成する合成手段、得られた可能解を探索手段の実
行過程にフィードバックさせ探索を効率化するフィード
バック手段を備え、工程計画作成の際の組み合わせ最適
化問題を解くようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a means for searching for an optimal solution for solving an optimization problem, and a means for searching for another possible solution from the possible solutions obtained in the process of executing the search means. It is equipped with a synthesis means for synthesizing, a feedback means for feeding back the obtained possible solutions to the execution process of the search means to improve the efficiency of the search, and is designed to solve a combinatorial optimization problem when creating a process plan.

【0006】[0006]

【作用】探索手段は、系統的に、あるいは逐一的に、あ
るいは解析的に解を探索していこうとする。合成手段は
、確率的に、あるいは近似的に、早期に大域的最適解に
近い可能解を得ようとする。フィードバック手段は、探
索手段の実行過程で得られる可能解に関する情報と合成
手段によって得られる解に関する情報を探索手段へ、探
索点を制御して探索効率を高める方向に作用する形でフ
ィードバックする。
[Operation] The search means attempts to search for a solution systematically, one by one, or analytically. The synthesis means tries to obtain a possible solution close to the global optimal solution at an early stage, stochastically or approximately. The feedback means feeds back information on possible solutions obtained in the execution process of the search means and information on solutions obtained by the synthesis means to the search means in a manner that controls search points and increases search efficiency.

【0007】[0007]

【実施例】以下、制約充足問題の解法を用いた探索手段
と遺伝進化アルゴリズムを用いた合成手段により、人的
資源平準化を目的とした工程計画を作成する場合に対す
る、本発明の一実施例を詳細に説明する。図1に本実施
例を実現するための装置構成例を示す。探索処理装置3
は、探索プログラム格納部1に格納されたプログラムを
用いて本実施例で示す数値解析的な解の探索を行い、制
約充足解その他のデータをデータ格納装置2に格納する
。その間並行して、合成処理装置6は合成プログラム格
納部7に格納された遺伝進化プログラムを用いて解の合
成を行い、合成解その他のデータをデータ格納装置5に
格納する。探索処理装置3と合成処理装置7の間では、
フィードバック処理装置4を介して探索解に関する情報
および合成解に関する情報がやりとりされ探索手段に対
する制御が行われる。
[Example] Hereinafter, an example of the present invention for the case where a process plan for the purpose of leveling human resources is created by a search method using a constraint satisfaction problem solving method and a synthesis method using a genetic evolutionary algorithm. will be explained in detail. FIG. 1 shows an example of a device configuration for realizing this embodiment. Search processing device 3
uses the program stored in the search program storage unit 1 to search for a numerically analytical solution shown in this embodiment, and stores the constraint satisfying solution and other data in the data storage device 2. In parallel, the synthesis processing device 6 synthesizes solutions using the genetic evolution program stored in the synthesis program storage section 7, and stores the synthesis solution and other data in the data storage device 5. Between the search processing device 3 and the synthesis processing device 7,
Information regarding the search solution and information regarding the synthetic solution are exchanged via the feedback processing device 4, and the search means is controlled.

【0008】図2に、本手法による、人的資源の平準化
を目的とした工程計画作成の処理手順を示す。図3に工
程計画を表すのに用いられる統合的工程計画図およびそ
の人的資源山積みを示し、表1に工程計画の種類と種々
の制約条件を示す。
FIG. 2 shows a processing procedure for creating a process plan for the purpose of equalizing human resources using this method. FIG. 3 shows an integrated process plan diagram used to express a process plan and its human resources pile, and Table 1 shows the types of process plans and various constraints.

【0009】[0009]

【表1】[Table 1]

【0010】人的資源の平準化とは、表1のような種々
の制御条件下で必要な人的資源のピークを抑え、図3の
ような人的資源の山積みがなるべく平坦になるよう工程
計画を作成することである。
[0010] Leveling human resources is a process that suppresses the peak of required human resources under various control conditions as shown in Table 1, and flattens out the pile of human resources as much as possible as shown in Figure 3. It is about creating a plan.

【0011】図2において、まず処理8で、各工程の作
業期間,作業順序,日程に対する各種制約を表すために
適当な変数を使った条件式が作成される。例えば、図4
に示すように、M日間の各日に対応する0〜1の間の値
をとる実数変数Xi0〜Xi(M+0)を考え、必要日
数Ni 日の第i工程を、その作業が行われる日にjの
ついて変数Xijを1としてその他のXijを0とする
ことで表し、同じく0〜1の間の値をとる実数変数Yi
1〜Yi(M+1),Zi1〜Zi(M+1)を考え、
第i工程の開始日がb日、終了日がe日であることを、
Yib=1,Zi(e+1)=1としてその他Yij,
Zijを0とすることで表した場合、作業期間や工程間
の作業順序の制約,人的資源山積みピークの高さの制約
は、これらの変数を使い各工程iに対して以下のような
条件式で表される。
In FIG. 2, first, in process 8, conditional expressions are created using appropriate variables to express various constraints on the work period, work order, and schedule of each process. For example, Figure 4
As shown in Figure 2, considering real variables Xi0 to Xi (M+0) that take values between 0 and 1 corresponding to each day of M days, the i-th process on the required number of days Ni is set on the day when the work is performed. j is expressed by setting the variable Xij to 1 and the other Xij to 0, and also a real variable Yi that takes a value between 0 and 1.
Considering 1~Yi (M+1), Zi1~Zi (M+1),
The start date of the i-th step is day b, and the end date is day e,
Other Yij, with Yib=1, Zi(e+1)=1,
When expressed by setting Zij to 0, constraints on the work period, work order between processes, and constraints on the height of the peak of human resources pile up can be expressed as follows for each process i using these variables: Expressed by the formula.

【0012】まず、作業期間の式による表現を(数1)
〜(数5)に示す。(数1)はXij〜XiMのうちで
Ni 個だけ1であることを表す。(数2)はYi1〜
Yi(M+1)のうちで1個だけ1であることを表す。 (3)はZi1〜Zi(M+1)のうちで1個だけ1で
あることを表す。(数4)は(数2),(数3)とあわ
せてYij,Zijが0または1であることを表す。(
数5)は、Xijはjに関して連続して1となる(01
1011などが現れない)ことを表す。
First, the expression of the work period is expressed as (Equation 1)
~(Math. 5) shows. (Math. 1) represents that only N i of Xij to XiM are 1. (Math. 2) is Yi1~
It represents that only one of Yi(M+1) is 1. (3) represents that only one of Zi1 to Zi(M+1) is 1. (Math. 4) together with (Math. 2) and (Math. 3) represent that Yij and Zij are 0 or 1. (
In Equation 5), Xij becomes 1 continuously for j (01
1011 etc. does not appear).

【0013】Xi0=0,Xi(M+0)=0[0013] Xi0=0, Xi(M+0)=0

【001
4】
001
4]

【数1】[Math 1]

【0015】[0015]

【数2】[Math 2]

【0016】[0016]

【数3】[Math 3]

【0017】[0017]

【数4】[Math 4]

【0018】[0018]

【数5】[Math 5]

【0019】次に、作業順序の制約および日程の制約の
式による表現を(数6)〜(数10)に示す。(数6)
は第i工程の開始日がp日以前であることを表す。(数
7)は第i工程の開始日がq日以後であることを表す。 (数8)は第i工程の終了日がr日以前であることを表
す。(数9)は第i工程の終了日がs日以後であること
を表す。(数10)は工程bの開始が工程aの終了後で
あることを表す。(数11)は工程のbの終了が工程a
の終了後であることを表す。
Next, expressions of work order constraints and schedule constraints are shown in equations (6) to (10). (Number 6)
represents that the start date of the i-th step is before day p. (Equation 7) represents that the start date of the i-th step is after the q day. (Equation 8) represents that the end date of the i-th step is before r days. (Equation 9) represents that the end date of the i-th step is after the s day. (Equation 10) indicates that step b starts after step a ends. (Equation 11) means that the end of process b is process a.
Indicates that it is after the end of.

【0020】[0020]

【数6】[Math 6]

【0021】[0021]

【数7】[Math 7]

【0022】[0022]

【数8】[Math. 8]

【0023】[0023]

【数9】[Math. 9]

【0024】[0024]

【数10】[Math. 10]

【0025】[0025]

【数11】[Math. 11]

【0026】最後に、(数12)は人的資源山積みピー
クの高さに対する制約であり、各日における総必要人員
がP人以下である(山積みのピークがP以下である)こ
とを表す。
Finally, (Equation 12) is a constraint on the height of the peak of the pile of human resources, and represents that the total number of required personnel on each day is less than or equal to P (the peak of the pile is less than or equal to P).

【0027】[0027]

【数12】[Math. 12]

【0028】以上のような条件式をすべて満たすXij
,Yij,Zijを求める制約充足問題を考えると、そ
の解がそのまま人的資源山積みのピークがP人以下の工
程計画を表す。そこで図2において、初め処理9でPを
適当に大きな値に定め、処理10で山積みピークの高さ
の制約(式12)およびその他の各種制約条件式とをあ
わせて制約充足問題を作成し、処理11で充足解が存在
するかどうかを充足問題を実際に解くかまたは充足性に
対する必要条件等を用いるかして判定する。解が存在し
なければ処理15に移り、工程計画作成不可能である旨
表示して処理を終了する。処理11で解が存在すれば、
求解処理12,遺伝進化操作処理13およびPの更新処
理14へ移る。処理12では実際に、最急降下法,共役
勾配法等最適化手法またはその他解析的な求解法を用い
て充足解が求められる。
Xij that satisfies all of the above conditional expressions
, Yij, and Zij, the solution directly represents a process plan in which the peak of the pile of human resources is P people or less. Therefore, in FIG. 2, first, in process 9, P is set to an appropriately large value, and in process 10, a constraint satisfaction problem is created by combining the constraint on the height of the piled peak (formula 12) and other various constraint condition expressions, In step 11, it is determined whether a satisfying solution exists or not by actually solving a satisfying problem or by using a necessary condition for satisfying the problem. If a solution does not exist, the process moves to step 15, displays that the process plan cannot be created, and ends the process. If a solution exists in process 11,
The process moves to the solution solving process 12, the genetic evolution operation process 13, and the P update process 14. In step 12, a satisfying solution is actually found using an optimization method such as the steepest descent method or conjugate gradient method, or other analytical solution method.

【0029】処理13は、それまでに処理12で求めら
れた解、または処理13の操作によって合成された解を
親として遺伝進化操作により別の解を子孫として合成す
る処理である。処理13は、他の部分の処理と並行した
並列処理装置によって行われ、各時点での合成解中で山
積みのピークの最大値がもっとも小さい最良解の最大ピ
ーク値P′を出力して処理14へ渡す。
Process 13 is a process in which the solutions previously obtained in process 12 or the solution synthesized by the operation in process 13 are used as parents and another solution is synthesized as a descendant by genetic evolution operation. Processing 13 is performed by a parallel processing device in parallel with the processing of other parts, and outputs the maximum peak value P' of the best solution with the smallest maximum value of the piled peaks among the composite solutions at each time point, and processes 14. pass it on to

【0030】処理14では、処理12で求められた解の
山積みピークの最大値P′および処理14が行われる時
点で処理13から出力された合成解中で最小のピーク値
P″およびP−1の内で最小のものを次のPの値として
更新し、再び処理10へ戻って制約充足問題を解く操作
を繰り返す。処理10,11,12,14のループによ
りPを減少させていき、あるP以下で制約充足が不可能
となった場合、処理15にてP−1の時の制約充足解を
山積みピークが最小となる工程計画として表示,出力し
て、処理を終了する。
In process 14, the maximum value P' of the piled-up peak of the solutions obtained in process 12 and the minimum peak values P'' and P-1 among the composite solutions output from process 13 at the time when process 14 is performed are calculated. The smallest value among them is updated as the next value of P, and the operation returns to process 10 to repeat the operation of solving the constraint satisfaction problem.P is decreased through the loop of processes 10, 11, 12, and 14, and a certain If it becomes impossible to satisfy the constraint at P or less, in step 15, the solution satisfying the constraint at P-1 is displayed and output as a process plan that minimizes the stacked peak, and the process ends.

【0031】図1の装置構成例では、例えば図2の処理
10,11,12は探索処理装置で、処理13は合成処
理装置で、処理14はフィードバック処理装置で、その
他の部分はいずれかの装置に付属させるか別の入出力装
置で設けて、それぞれ行わせればよい。
In the example of the device configuration shown in FIG. 1, for example, processes 10, 11, and 12 in FIG. It may be attached to the device or provided as a separate input/output device to perform the respective operations.

【0032】処理13を並列動作させることは、処理1
3によりある時点でP−1,P′より小さな山積みピー
クP″を持つ解が合成され、処理14でPをP″まで大
幅に減少させることができる可能性があるため、全体の
処理の効率が向上するという効果が期待できる。
[0032] To operate the process 13 in parallel is to operate the process 13 in parallel.
3, at a certain point a solution with a peak P'' smaller than P-1, P' is synthesized, and in process 14 it is possible to significantly reduce P to P'', which improves the overall processing efficiency. It can be expected that the effect will be improved.

【0033】処理13での遺伝進化操作を行う装置は、
変数Xij,Yij,Zijを使った工程計画を表す変
数列どうしから別の工程計画を表す変数列を合成できる
ような遺伝オペレータが適当に定められ、それによって
解の合成を行うものである。例えば最も簡単には、図5
に示すように、各工程を互いに作業順序の制約で結ばれ
ているグループに分け、2つの工程計画を表す変数列に
対し、お互いに独立なグループ間で変数列の交換を行う
という交配規則を設けることにより、解の合成を実現す
ることができる。
[0033] The device for performing the genetic evolution operation in process 13 is as follows:
A genetic operator that can synthesize a variable sequence representing another process plan from variable sequences representing process plans using variables Xij, Yij, and Zij is appropriately determined, and a solution is thereby synthesized. For example, in the simplest case, Figure 5
As shown in Figure 2, each process is divided into groups that are connected to each other by constraints on the work order, and a cross-breeding rule is used to exchange the variable sequences between mutually independent groups for the variable sequences representing the two process plans. By providing this, it is possible to realize solution synthesis.

【0034】[0034]

【発明の効果】探索手段に加え、確率的に、あるいは近
似的に、早期に大域的最適解に近い可能解を得ようとす
る合成手段を有し、お互いにフィードバック手段によっ
て探索手段の探索効率を高める方向に作用させることに
より、より早期に探索範囲を広げ、またはより早期に最
適解に近づき、全体の処理の効率を向上させる効果を得
る。
Effects of the Invention: In addition to the search means, there is a synthesis means that tries to quickly obtain a possible solution close to the global optimal solution, stochastically or approximately, and the search efficiency of the search means is improved by mutual feedback means. By acting in the direction of increasing the search range, the search range can be expanded earlier, or the optimal solution can be approached sooner, thereby achieving the effect of improving the efficiency of the overall processing.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例である人的資源平準化を目的
とした工程計画装置の装置構成例のブロック図。
FIG. 1 is a block diagram of a device configuration example of a process planning device for the purpose of leveling human resources, which is an embodiment of the present invention.

【図2】図1の処理フローチャート。FIG. 2 is a processing flowchart of FIG. 1;

【図3】工程計画を表すのに使用される統合的工程計画
図および人的資源の山積みを表した説明図。
FIG. 3 is an explanatory diagram showing an integrated process plan diagram used to represent a process plan and a pile of human resources.

【図4】各工程の作業期間の変数による表現の仕方を示
す説明図。
FIG. 4 is an explanatory diagram showing how to express the work period of each process using variables.

【図5】本発明における解の合成部を遺伝進化アルゴリ
ズムで実現した場合に必要な遺伝オペレータの例を示す
説明図。
FIG. 5 is an explanatory diagram showing an example of genetic operators required when the solution synthesis section of the present invention is implemented using a genetic evolutionary algorithm.

【符号の説明】[Explanation of symbols]

1…探索プログラム格納部、2,5…データ格納装置、
3…探索処理装置、4…フィードバック処理装置、6…
合成処理装置、7…合成プログラム格納装置。
1... Search program storage unit, 2, 5... Data storage device,
3... Search processing device, 4... Feedback processing device, 6...
Synthesis processing device, 7...Synthesis program storage device.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】最適化問題を解くための最適解の探索手段
、探索手段の実行過程で得られる可能解から別の可能解
を合成する合成手段、得られた可能解を探索手段の実行
過程にフィードバックさせ探索を効率化するフィードバ
ック手段を備えたことを特徴とする工程計画作成装置。
Claims 1: A means for searching for an optimal solution for solving an optimization problem, a composition means for synthesizing another possible solution from possible solutions obtained in the process of executing the search means, and a process for using the obtained possible solution in the process of executing the search means. A process planning device characterized by comprising a feedback means for providing feedback to improve search efficiency.
【請求項2】請求項1において、探索手段あるいは合成
手段から得られる複数の可能解から合成規則によって別
の可能解を合成する手段を用いた工程計画作成装置。
2. A process planning device according to claim 1, which uses means for synthesizing another possible solution from a plurality of possible solutions obtained from the searching means or the synthesizing means according to a synthesis rule.
【請求項3】請求項1において、探索手段あるいは合成
手段から得られる可能解を変形規則によって変形させて
別の可能解を生成する手段を用いた工程計画作成装置。
3. A process planning device according to claim 1, which uses means for generating another possible solution by transforming a possible solution obtained from the searching means or the synthesizing means according to a transformation rule.
【請求項4】請求項1において、目的関数を制約条件と
して与え、制約値を変化させることにより最適化を行う
手段を用いた工程計画作成装置。
4. A process planning apparatus according to claim 1, which uses means for performing optimization by giving an objective function as a constraint condition and changing the constraint value.
【請求項5】請求項1において、組み合わせの枝刈りを
する数え上げアルゴリズムを用いた工程計画作成装置。
5. A process planning device according to claim 1, which uses a counting algorithm for pruning combinations.
【請求項6】請求項1において、フィードバック手段が
探索手段による可能解と合成手段による可能解を比較し
て探索手段内の探索点を制御する手段を用いた工程計画
作成装置。
6. The process planning device according to claim 1, wherein the feedback means compares a possible solution by the searching means with a possible solution by the synthesizing means to control the search points in the searching means.
【請求項7】請求項1において、探索手段による解の探
索と合成手段よる解の合成を並列処理によって行わせる
手段を用いた工程計画作成装置。
7. The process planning apparatus according to claim 1, wherein the process planning device uses means for performing the search for a solution by the searching means and the synthesis of solutions by the synthesizing means in parallel processing.
【請求項8】請求項1において、目的関数を制約条件と
して与え制約値を変化させることにより最適化を行う探
索手段と、遺伝進化アルゴリズムを用いて解の合成を行
う合成手段とを備えた工程計画作成装置。
8. The step according to claim 1, comprising a search means for performing optimization by giving an objective function as a constraint condition and changing a constraint value, and a synthesis means for synthesizing a solution using a genetic evolutionary algorithm. Planning device.
JP3090287A 1991-04-22 1991-04-22 Process design preparing device Pending JPH04321171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3090287A JPH04321171A (en) 1991-04-22 1991-04-22 Process design preparing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3090287A JPH04321171A (en) 1991-04-22 1991-04-22 Process design preparing device

Publications (1)

Publication Number Publication Date
JPH04321171A true JPH04321171A (en) 1992-11-11

Family

ID=13994315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3090287A Pending JPH04321171A (en) 1991-04-22 1991-04-22 Process design preparing device

Country Status (1)

Country Link
JP (1) JPH04321171A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036812A (en) * 2006-07-11 2008-02-21 Mitsubishi Electric Corp Working condition searching device
JP2013152648A (en) * 2012-01-25 2013-08-08 Mitsubishi Heavy Ind Ltd Plan creation device, plan creation method, and plan creation program
JP2017165407A (en) * 2010-10-22 2017-09-21 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド System and method for parking vehicle near obstacles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036812A (en) * 2006-07-11 2008-02-21 Mitsubishi Electric Corp Working condition searching device
JP2017165407A (en) * 2010-10-22 2017-09-21 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド System and method for parking vehicle near obstacles
JP2013152648A (en) * 2012-01-25 2013-08-08 Mitsubishi Heavy Ind Ltd Plan creation device, plan creation method, and plan creation program

Similar Documents

Publication Publication Date Title
Tseng et al. A discrete particle swarm optimization for lot-streaming flowshop scheduling problem
Sadegheih Scheduling problem using genetic algorithm, simulated annealing and the effects of parameter values on GA performance
JP2779736B2 (en) Optimization device and process plan creation device using the same
Li et al. An effective genetic algorithm for the resource levelling problem with generalised precedence relations
Bester et al. Finding good nurse duty schedules: a case study
Wang et al. A graph-based ant colony optimization approach for integrated process planning and scheduling
Barlatt et al. Ford motor company implements integrated planning and scheduling in a complex automotive manufacturing environment
Krenczyk et al. Production planning and scheduling with material handling using modelling and simulation
JPH04321171A (en) Process design preparing device
Tatum Integration: emerging management challenge
CN105844028A (en) Computer aided design system of energetic compound
JP2002229624A (en) Production planning device for shipbuilding
Yano et al. Safety stocks for assembly systems with fixed production intervals
Badoni et al. Ant colony optimization algorithm for the university course timetabling problem using events based on groupings of students
CN114881301A (en) Simulation scheduling method and system for production line, terminal device and storage medium
Kanoglu An integrated system for duration estimation in design/build projects and organizations
Gupta Mathematical Modeling and Analysis of Improved Grey Wolf Optimization Algorithm-Based Multi-Objective Power Flow Optimization for IEEE-118 Bus Test System
JPH07182420A (en) Production planning device
JPH05128093A (en) Method and device for optimizing combination
Rai et al. Optimization in Manufacturing Systems Using Evolutionary Techniques
Handa et al. Construction production planning
Foulds et al. A Decision Support System for sustainable maize harvesting operations scheduling
Ma et al. A Lagrangian relaxation-based heuristic for the bus driver scheduling problem: a case study of Beijing
Avraamidou Mixed-integer multi-level optimization through multi-parametric programming
JP2778457B2 (en) Production planning equipment