JPH04320959A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPH04320959A
JPH04320959A JP3088704A JP8870491A JPH04320959A JP H04320959 A JPH04320959 A JP H04320959A JP 3088704 A JP3088704 A JP 3088704A JP 8870491 A JP8870491 A JP 8870491A JP H04320959 A JPH04320959 A JP H04320959A
Authority
JP
Japan
Prior art keywords
signal
reflected
measured
acoustic
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3088704A
Other languages
Japanese (ja)
Inventor
Motoyuki Tagawa
田川 元之
Hisayoshi Watanabe
久芳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3088704A priority Critical patent/JPH04320959A/en
Publication of JPH04320959A publication Critical patent/JPH04320959A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable a plurality of pieces of information which are in series in depth direction of an object to be measured to be taken out at one operation and an optimum gain for forming an image to be set to a signal-reception circuit for extracting each reflection component. CONSTITUTION:An ultrasonic microscope consists of a transmission portion 1 for generating a high-frequency transmission signal and an electrical - acoustic conversion portion 3 for changing a transmission signal into a supersonic wave, emitting it to the object to be measured, and then converting the reflection wave into a reflection signal, thus enabling a plurality of reflection wave components of the object to be measured to be extracted from the reflection signal and then an internal structure of the object to be measured to be formed as an image. A plurality of reception circuits 6 which are connected in parallel to an output terminal of the acoustic- electrical conversion portion 3, extracts mutually different reflection wave components from each input reflection signal from the electrical-acoustic conversion element 3, and at the same time sets a gain for each reflection component individually and a gain control means 7 which controls a gain of each reception circuit according to a signal strength of the reflection wave component to be extracted from each reception circuit are provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超音波を用いて測定対
象物の内部構造を画像化して観察することのできる超音
波顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic microscope capable of imaging and observing the internal structure of an object to be measured using ultrasonic waves.

【0002】0002

【従来の技術】従来、測定対象物に超音波を入射して、
その反射波を電気的な信号に変換して得られた反射信号
から試料内部情報を持った必要部分のみを取出し、その
内部情報から試料内部構造を画像表示する超音波顕微鏡
が知られている。
[Prior Art] Conventionally, ultrasonic waves are applied to an object to be measured.
An ultrasonic microscope is known that converts the reflected wave into an electrical signal, extracts only a necessary portion containing internal information of the sample from the obtained reflected signal, and displays an image of the internal structure of the sample from the internal information.

【0003】かかる超音波顕微鏡では、反射信号をアン
プ系にて所定増幅率で増幅した後、ゲート回路に入力し
、ゲート回路に与えるゲート信号のタイミングを調整し
て反射信号の必要部分のみを取出す。さらに、その取出
した信号成分を検波回路でピーク検波して、その検波信
号値を画像化していた。
In such an ultrasound microscope, a reflected signal is amplified by a predetermined amplification factor in an amplifier system, and then inputted to a gate circuit, and the timing of the gate signal applied to the gate circuit is adjusted to extract only the necessary portion of the reflected signal. . Furthermore, the extracted signal components are subjected to peak detection using a detection circuit, and the detected signal values are converted into images.

【0004】試料反射波から得られる一連の反射信号に
は、試料の深さ方向の情報が時系列的に含まれることか
ら、この反射信号に対して順次ゲート信号をかけること
によって、一回の動作で試料の深さ方向に連なる複数の
情報を得ることができる。例えば、特開平2−8095
4号には、増幅から検波までの受信回路を複数並列に設
けて、それぞれの受信回路で同一の反射信号に対して順
次ゲート信号をかけて並列処理を行うことのできる超音
波顕微鏡が記載されている。
[0004] Since a series of reflected signals obtained from sample reflected waves contain information in the depth direction of the sample in a time-series manner, by sequentially applying a gate signal to these reflected signals, one Through this operation, it is possible to obtain multiple pieces of information that are continuous in the depth direction of the sample. For example, JP-A-2-8095
No. 4 describes an ultrasonic microscope that is equipped with multiple receiving circuits from amplification to detection in parallel and can perform parallel processing by sequentially applying a gate signal to the same reflected signal in each receiving circuit. ing.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記公報に
記載された超音波顕微鏡は、各受信回路の増幅器の増幅
率が一律に所定値に固定されており、試料内部の異なる
場所からの反射成分をそれぞれ同じ増幅率で増幅してい
た。
[Problems to be Solved by the Invention] Incidentally, in the ultrasonic microscope described in the above publication, the amplification factor of the amplifier of each receiving circuit is uniformly fixed to a predetermined value, and the reflected components from different locations inside the sample are were amplified at the same amplification rate.

【0006】ところが、試料からの反射信号は、試料内
部の反射位置によって信号強度が大きく異なるため、一
つの反射成分の信号強度に合わせて全受信回路の増幅率
を調整しても、他の反射成分に対しては増幅率が大き過
ぎたり、または小さ過ぎたりして、その部分の画像が白
く抜けた状態となってしまったり、黒くつぶれてしまう
等の問題がある。
However, the signal strength of the reflected signal from the sample varies greatly depending on the reflection position inside the sample, so even if the amplification factor of all receiving circuits is adjusted to match the signal strength of one reflected component, If the amplification factor is too large or too small for a component, there are problems such as the image in that part becomes blank or black.

【0007】また、特公平2−29985号に記載され
ているように、音響レンズ界面よりの反射エコーの強度
が一定の値となるように増幅器の増幅率を調整すること
のできる超音波顕微鏡があるが、この超音波顕微鏡によ
ってもやはり一連の反射信号の信号強度が異なる反射成
分の各々に対して最適な増幅率を設定することはできず
、画像劣化の無い最適な画像を得ることはできない。
Furthermore, as described in Japanese Patent Publication No. 2-29985, there is an ultrasonic microscope capable of adjusting the amplification factor of the amplifier so that the intensity of the reflected echo from the acoustic lens interface remains constant. However, even with this ultrasound microscope, it is not possible to set the optimal amplification factor for each of the reflected components with different signal intensities in a series of reflected signals, and it is not possible to obtain an optimal image without image deterioration. .

【0008】本発明は以上のような実情に鑑みてなされ
たもので、測定対象物の一連の反射信号から深さ方向の
複数の情報を取出す場合に、一回の動作で取出される全
ての反射成分を画像化に最適な信号強度に調整すること
ができ、画像劣化の無い最適な画像を得ることのできる
超音波顕微鏡を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and when a plurality of pieces of information in the depth direction are extracted from a series of reflected signals of an object to be measured, all of the information extracted in one operation is It is an object of the present invention to provide an ultrasonic microscope that can adjust reflected components to the optimal signal strength for imaging and can obtain optimal images without image deterioration.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、高周波電気信号を電気−音響変換素子で超
音波に変換し、該超音波を音響レンズによって収束球面
波として測定対象物に入射し、該測定対象物からの反射
波を前記音響レンズで受信して前記電気−音響変換素子
で電気的な反射信号に変換し、この反射信号から前記測
定対象物の複数の反射波成分を取出して前記測定対象物
の内部構造を画像化する超音波顕微鏡において、前記音
響−電気変換素子の出力端子に対して並列に接続され、
該電気−音響変換素子より各々入力する前記反射信号か
ら互いに異なる反射波成分を取出すと共に、これら各反
射波成分に対するゲインが各々個別に設定される複数の
受信回路と、前記各受信回路のゲインを各受信回路で取
出すべき反射波成分の信号強度に応じて制御するゲイン
制御手段とを具備した構成とした。
[Means for Solving the Problems] In order to achieve the above object, the present invention converts a high-frequency electric signal into an ultrasonic wave using an electro-acoustic conversion element, and converts the ultrasonic wave into a convergent spherical wave using an acoustic lens. The reflected wave from the object to be measured is received by the acoustic lens and converted into an electrical reflected signal by the electro-acoustic conversion element, and from this reflected signal, a plurality of reflected wave components of the object to be measured are detected. connected in parallel to the output terminal of the acousto-electric transducer in an ultrasonic microscope for imaging the internal structure of the object to be measured;
A plurality of receiving circuits in which mutually different reflected wave components are extracted from the reflected signals respectively inputted from the electro-acoustic transducer, and gains for each of these reflected wave components are individually set; and a gain of each of the receiving circuits. The configuration includes gain control means for controlling according to the signal strength of the reflected wave component to be extracted by each receiving circuit.

【0010】0010

【作用】本発明によれば、電気−音響変換素子から出力
された同一の反射信号が複数の受信回路にそれぞれ入力
され、そこで測定対象物の深さ方向の情報を持った各反
射成分が一回の動作で取出され、各々個別に設定された
ゲインで調整されて出力される。一方、各受信回路は、
出力される反射成分の信号強度が適当な信号強度となる
ように、各々取出すべき反射成分の信号強度に応じて、
各ゲインがゲイン制御手段によって制御される。このよ
うに、各受信回路は適正な画像を形成し得るゲインに設
定され、画像劣化の無い最適な画像が得られることにな
る。
[Operation] According to the present invention, the same reflected signal output from the electro-acoustic transducer is input to a plurality of receiving circuits, where each reflected component having information in the depth direction of the object to be measured is The signals are taken out in one operation, each adjusted with an individually set gain, and output. On the other hand, each receiving circuit is
Depending on the signal strength of each reflected component to be extracted, so that the signal strength of the output reflected component becomes an appropriate signal strength,
Each gain is controlled by gain control means. In this way, each receiving circuit is set to a gain that can form an appropriate image, and an optimal image without image deterioration can be obtained.

【0011】[0011]

【実施例】以下、図面を参照しながら本発明の一実施例
に係る超音波顕微鏡について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic microscope according to an embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は、本実施例となる超音波顕微鏡の原
理的な機能ブロックを示す図である。同図に示すように
、送信信号発生手段1から所定のタイミングで発生され
た高周波の送信信号がサーキュレータ2を介して電気−
音響変換素子3に供給され超音波に変換される。この超
音波は音響レンズ4の焦点位置付近に配置される測定対
象物Sに入射される。音響レンズ4で受波される測定対
象物Sからの反射波は電気−音響変換素子3で電気的な
反射信号に変換されて前置増幅器5に入力される。これ
らサーキュレータ2,電気−音響変換素子3,音響レン
ズ4,前置増幅器5から電気−音響変換部が構成される
FIG. 1 is a diagram showing the basic functional blocks of an ultrasonic microscope according to this embodiment. As shown in the figure, a high frequency transmission signal generated at a predetermined timing from a transmission signal generating means 1 is transmitted through a circulator 2 to an electrical source.
The sound is supplied to the acoustic conversion element 3 and converted into ultrasonic waves. This ultrasonic wave is incident on the object to be measured S placed near the focal position of the acoustic lens 4. The reflected wave from the measurement object S received by the acoustic lens 4 is converted into an electrical reflected signal by the electro-acoustic conversion element 3 and input to the preamplifier 5. The circulator 2, the electro-acoustic conversion element 3, the acoustic lens 4, and the preamplifier 5 constitute an electro-acoustic conversion section.

【0013】複数の受信回路6−1,6−2は、この電
気−音響変換部に対して並列に接続される。各受信回路
6−1,6−2は、入力する反射信号から測定対象物S
の深さ方向に連な情報をそれぞれ含んだ各反射成分を抽
出すると共に、これら各反射成分を任意の増幅率で出力
する。
[0013] A plurality of receiving circuits 6-1 and 6-2 are connected in parallel to this electro-acoustic converter. Each receiving circuit 6-1, 6-2 receives the measurement target S from the input reflected signal.
Each reflected component containing continuous information in the depth direction is extracted, and each reflected component is outputted at an arbitrary amplification factor.

【0014】ゲイン制御手段7は、これら各受信回路6
−1,6−2の増幅率を別々に制御可能に接続されてい
て、各受信回路6−1,6−2の増幅率を、それぞれ抽
出する反射成分の信号強度に応じた値に設定する。
The gain control means 7 controls each of these receiving circuits 6.
-1 and 6-2 are connected so that the amplification factors of 6-1 and 6-2 can be controlled separately, and the amplification factors of each receiving circuit 6-1 and 6-2 are set to a value corresponding to the signal strength of the reflected component to be extracted. .

【0015】受信回路6−1,6−2の出力側には、信
号取出し手段8が設けられていて、各受信回路6−1,
6−2で抽出され増幅された各反射成分を順次選択して
取出して一連の信号列となして画像表示手段9に出力す
る。画像表示手段9は、信号取出し手段8によって取出
された信号列を処理して測定対象物Sの音響内部構造を
画像表示する機能を有する。図2は、本実施例のさらに
具体的な構成を示す図である。
A signal extraction means 8 is provided on the output side of the receiving circuits 6-1, 6-2, and the receiving circuits 6-1, 6-2 each have a signal extracting means 8.
Each of the reflected components extracted and amplified in step 6-2 is sequentially selected and taken out and outputted to the image display means 9 as a series of signals. The image display means 9 has a function of processing the signal string extracted by the signal extraction means 8 and displaying an image of the acoustic internal structure of the measurement object S. FIG. 2 is a diagram showing a more specific configuration of this embodiment.

【0016】主制御部20は、送信トリガ信号、ゲート
トリガ信号、リセットトリガ信号等の各タイミング信号
を出力して、装置全体の動作タイミングを制御するもの
である。
The main control section 20 outputs timing signals such as a transmission trigger signal, a gate trigger signal, and a reset trigger signal to control the operation timing of the entire apparatus.

【0017】送信信号発生回路21は、主制御部20か
ら送信トリガ信号を受信すると高周波数の送信信号を発
生させる回路である。主制御部20の送信トリガ信号発
生機能と送信信号発生回路21とから送信手段1が構成
されている。
The transmission signal generation circuit 21 is a circuit that generates a high frequency transmission signal when receiving a transmission trigger signal from the main control section 20. The transmission means 1 is constituted by the transmission trigger signal generation function of the main control section 20 and the transmission signal generation circuit 21.

【0018】電気−音響変換部は、圧電材料等からなる
電気−音響変換素子3に音響レンズ4が結合されていて
、この音響レンズ4と測定対象物Sとの間に超音波の伝
達媒体となる音響カプラ22が介在されている。
The electro-acoustic transducer includes an acoustic lens 4 coupled to an electro-acoustic transducer element 3 made of a piezoelectric material, etc., and an ultrasonic transmission medium between the acoustic lens 4 and the object S to be measured. An acoustic coupler 22 is interposed.

【0019】並列配置された一方の受信回路6−1は、
増幅器23a,ゲート回路24a,可変増幅器25a,
検波回路26a,リセットスイッチ27a,増幅器28
aが直列接続されて構成されている。同様に、他方の受
信回路6−2も、増幅器23b,ゲート回路24b,可
変増幅器25b,検波回路26b,リセットスイッチ2
7b,増幅器28bが直列接続されて構成されている。
One of the receiving circuits 6-1 arranged in parallel is
Amplifier 23a, gate circuit 24a, variable amplifier 25a,
Detection circuit 26a, reset switch 27a, amplifier 28
a are connected in series. Similarly, the other receiving circuit 6-2 also includes an amplifier 23b, a gate circuit 24b, a variable amplifier 25b, a detection circuit 26b, and a reset switch 2.
7b and an amplifier 28b are connected in series.

【0020】ゲート信号発生回路31は、各ゲート回路
24a,24bにそれぞれ所定のタイミングでゲート信
号を与えるための回路である。ゲート信号発生タイミン
グは、主制御部30からのゲートトリガ信号によって制
御される。
The gate signal generation circuit 31 is a circuit for applying a gate signal to each gate circuit 24a, 24b at a predetermined timing. The gate signal generation timing is controlled by a gate trigger signal from the main control section 30.

【0021】ゲイン制御手段7は、可変増幅器25a,
25bの増幅率をそれぞれ任意の増幅率に設定するため
のものである。各々の可変増幅器25a,25bに設定
されるそれぞれの増幅率は、対応するゲート回路24a
,24bで切り出される反射波成分の信号強度に応じて
、画像化に適した適当な値が選択される。
The gain control means 7 includes variable amplifiers 25a,
This is for setting the amplification factors of 25b to arbitrary amplification factors. Each amplification factor set for each variable amplifier 25a, 25b is determined by the corresponding gate circuit 24a.
, 24b, an appropriate value suitable for imaging is selected depending on the signal strength of the reflected wave component cut out by .

【0022】リセットスイッチ27a,27bは、検波
回路26a,26bをリセットするための回路であり、
リセットパルス発生回路32からのリセットパルス信号
を受けて開閉制御される。リセットパルス信号の出力は
、主制御部30からリセットパルス発生回路32に与え
られるリセットトリガ信号によって制御される。
The reset switches 27a and 27b are circuits for resetting the detection circuits 26a and 26b.
Opening and closing are controlled in response to a reset pulse signal from the reset pulse generation circuit 32. The output of the reset pulse signal is controlled by a reset trigger signal given from the main control section 30 to the reset pulse generation circuit 32.

【0023】信号取出し手段8は、切換えパルス発生回
路33に接続されていて、該切換えパルス発生回路33
から与えられる切換え信号によって動作する。すなわち
、各受信回路6−1,6−2の最終段に設けられた増幅
器28a,28bの出力端子にピーク検波値として現れ
る情報を順次取込むように動作する。
The signal extraction means 8 is connected to the switching pulse generating circuit 33.
It is operated by the switching signal given from. That is, it operates so as to sequentially take in information appearing as a peak detection value at the output terminals of amplifiers 28a and 28b provided at the final stage of each receiving circuit 6-1 and 6-2.

【0024】信号取出し手段8の出力側は増幅器34を
介して画像表示部35に接続されている。画像表示部3
5は、主制御部30に動作制御され増幅器34を介して
取込まれる情報を画像化して測定対象物Sの超音波画像
を表示するものである。以上のように構成された本実施
例の動作について図3を参照して説明する。
The output side of the signal extraction means 8 is connected to an image display section 35 via an amplifier 34. Image display section 3
Reference numeral 5 is for displaying an ultrasonic image of the object S to be measured by converting the information taken in through the amplifier 34 under the operation control of the main control unit 30 into an image. The operation of this embodiment configured as above will be explained with reference to FIG.

【0025】主制御部20から送信信号発生回路21に
送信トリガ信号が与えられて、高周波数の送信信号が発
生する。この発生した送信信号はサーキュレータ2を介
して電気−音響変換素子3に与えられ、ここで超音波に
変換される。この超音波は音響レンズ4によって収束球
面波となり音響カプラ22を伝播して測定対象物Sに照
射される。
A transmission trigger signal is applied from the main control section 20 to the transmission signal generation circuit 21, and a high frequency transmission signal is generated. The generated transmission signal is given to the electro-acoustic conversion element 3 via the circulator 2, where it is converted into an ultrasonic wave. This ultrasonic wave becomes a convergent spherical wave by the acoustic lens 4, propagates through the acoustic coupler 22, and is irradiated onto the object S to be measured.

【0026】一方、測定対象物Sの表面、内部等でそれ
ぞれ反射した反射波は音響レンズ4で受波されて電気−
音響変換素子3で電気的な反射信号に変換される。この
反射信号はサーキュレータ2により前置増幅器5へ入力
される。前置増幅器5で増幅された反射信号は、受信回
路6−1,6−2にそれぞれ入力する。
On the other hand, the reflected waves reflected from the surface, inside, etc. of the object to be measured S are received by the acoustic lens 4 and converted into electric waves.
The acoustic conversion element 3 converts the signal into an electrical reflected signal. This reflected signal is input to the preamplifier 5 by the circulator 2. The reflected signals amplified by the preamplifier 5 are input to receiving circuits 6-1 and 6-2, respectively.

【0027】受信回路6−1,6−2では、各々入力し
増幅器23a,23bで増幅された各反射信号がゲート
回路24a,24bに入力される。ゲート回路24a,
24bに入力する反射信号は、例えば、図3(a)に示
すような波形となる。測定対象物Sの表面で反射した反
射成分が先ず最初に現れ、測定対象物Sの内部で反射し
た反射成分はそれよりも時間的に遅れてより小さな信号
強度となって現れる。そこで、図3(b)(c)に示す
タイミングのゲート信号a,bによって、反射信号にゲ
ートをかけることにより、表面反射波および内部反射波
がゲート回路24a,24bでそれぞれ取出される。例
えば、ゲート信号aをゲート回路24aに与え、ゲート
信号bをゲート回路24bに与えることにより、ゲート
回路24aでは表面反射波成分が、ゲート回路24bで
は内部反射波成分がそれぞれ取出される。実際には、反
射信号とゲート信号とを不図示のオシロスコープでモニ
タしながら、図3に示すタイミングでゲートがかかるよ
うにゲートタイミングを調整する。
[0027] In the receiving circuits 6-1 and 6-2, respective reflected signals inputted and amplified by amplifiers 23a and 23b are inputted to gate circuits 24a and 24b. Gate circuit 24a,
The reflected signal input to 24b has a waveform as shown in FIG. 3(a), for example. The reflected component reflected from the surface of the measuring object S appears first, and the reflected component reflected inside the measuring object S appears later in time and with a smaller signal intensity. Therefore, by applying a gate to the reflected signal using the gate signals a and b having the timings shown in FIGS. 3(b) and 3(c), the surface reflected wave and the internal reflected wave are extracted by the gate circuits 24a and 24b, respectively. For example, by applying the gate signal a to the gate circuit 24a and the gate signal b to the gate circuit 24b, the gate circuit 24a extracts the surface reflected wave component, and the gate circuit 24b extracts the internal reflected wave component. Actually, while monitoring the reflected signal and the gate signal with an oscilloscope (not shown), the gate timing is adjusted so that the gate is applied at the timing shown in FIG.

【0028】この様にして取出された互いに信号強度が
異なる表面反射波成分と内部反射波成分は、それぞれ適
当な増幅率に設定されている可変増幅器25a,25b
に入力して、図3(d)および同図(f)に示すように
、画像化に適した信号強度に増幅される。可変増幅器2
5a,25bで増幅された信号は対応する検波回路26
a,26bにそれぞれ入力してピーク値が検出され、そ
の後、直ちにリセットスイッチ27a,27bがオン動
作して、ピーク検波の終了した検波回路26a,26b
がリセットされる。検波回路26a,26bで検出され
たピーク検波値は、それぞれ対応する増幅器28a,2
8bで増幅される。そして、各増幅器28a,28bの
出力端子が、切換えパルス発生回路33にて制御される
信号取出し手段8によって順次スイッチングされて、図
3(e),同図(g)にピーク検波値が、図3(h)に
示すような連続した信号値として取出され、増幅器34
を介して画像表示部35に入力される。画像表示部35
ではこの信号値を画像化する。ここで、可変増幅器25
a,25bの増幅率の設定手法について説明する。
The surface reflected wave component and internal reflected wave component, which are extracted in this way and have different signal intensities, are passed through variable amplifiers 25a and 25b, each of which is set to an appropriate amplification factor.
As shown in FIGS. 3(d) and 3(f), the signal is amplified to a signal strength suitable for imaging. variable amplifier 2
The signals amplified by 5a and 25b are sent to the corresponding detection circuit 26.
a, 26b, respectively, and the peak value is detected, and then the reset switches 27a, 27b are immediately turned on, and the detection circuits 26a, 26b have completed peak detection.
is reset. The peak detection values detected by the detection circuits 26a and 26b are transmitted to the corresponding amplifiers 28a and 2, respectively.
8b. Then, the output terminals of each amplifier 28a, 28b are sequentially switched by the signal extraction means 8 controlled by the switching pulse generation circuit 33, and the peak detection values are shown in FIGS. 3(e) and 3(g). 3(h), and the amplifier 34
The image is input to the image display unit 35 via. Image display section 35
Now we will convert this signal value into an image. Here, the variable amplifier 25
A method for setting the amplification factors of a and 25b will be explained.

【0029】上記のように、一方の受信回路6−1で表
面反射波成分を取出す場合には、切換えパルス発生回路
33を制御して、受信回路6−1側を画像表示部35に
接続する。次に、不図示の走査機構によって音響レンズ
4と走査対象物Sとを相対的に移動して、例えばX方向
に走査して一走査分の検波信号値をモニタする。そして
、この検波信号値に応じて受信回路6−1の可変増幅器
25aの増幅率をゲイン制御手段7で調整し、ゲート回
路24aで取出された反射成分の信号強度が画像化に最
適な信号強度となる増幅率を設定する。
As described above, when the surface reflected wave component is extracted by one receiving circuit 6-1, the switching pulse generating circuit 33 is controlled and the receiving circuit 6-1 side is connected to the image display unit 35. . Next, the acoustic lens 4 and the object to be scanned S are relatively moved by a scanning mechanism (not shown) to scan, for example, in the X direction, and the detected signal value for one scan is monitored. Then, the amplification factor of the variable amplifier 25a of the receiving circuit 6-1 is adjusted by the gain control means 7 according to this detected signal value, and the signal strength of the reflected component extracted by the gate circuit 24a is the optimal signal strength for imaging. Set the amplification factor.

【0030】また、信号取出し手段8を受信回路6−2
側に切換えて、他方の受信回路6−2についても、上記
と同様の操作により内部反射成分に対して最適な増幅率
を設定する。
Further, the signal extraction means 8 is connected to the receiving circuit 6-2.
For the other receiving circuit 6-2, the optimum amplification factor for the internal reflection component is set by the same operation as above.

【0031】叱る後に測定対象物SをX,Y走査して、
2次元または3次元の画像データをサンプリングして画
像表示部35に入力する。画像表示部35では、以上の
ようにして得られた画像化に最適な画像データから測定
対象物Sの内部構造画像を正確に再現する。
After scolding, the measurement object S is scanned in X and Y,
Two-dimensional or three-dimensional image data is sampled and input to the image display section 35. The image display section 35 accurately reproduces an image of the internal structure of the measurement object S from the image data most suitable for imaging obtained as described above.

【0032】この様に本実施例によれば、測定対象物S
からの反射波を電気信号に変換する電気−音響変換部の
出力側に受信回路6−1,6−2を並列に設け、各受信
回路6−1,6−2の増幅率を、各々で抽出する反射成
分の信号強度が画像化に最適になるようにそれぞれ設定
できる構成にしたので、測定対象物Sの深さ方向に連な
る情報を並列接続された複数の受信回路で一回の動作で
取出す場合であっても、それぞれ抽出される反射成分の
ピーク検波値を画像化に最適なものとすることができ、
画像劣化の無い最適な画像を得ることのできる。この結
果、誤評価の原因となる画像劣化を防止することができ
、信頼性を向上を図ることができる。
As described above, according to this embodiment, the object to be measured S
Receiving circuits 6-1 and 6-2 are provided in parallel on the output side of the electro-acoustic converter that converts reflected waves from the Since the configuration is such that the signal strength of the reflected components to be extracted can be set to be optimal for imaging, multiple receiving circuits connected in parallel can collect information in the depth direction of the measurement object S in a single operation. Even when extracting, the peak detection value of each extracted reflection component can be optimized for imaging.
Optimal images without image deterioration can be obtained. As a result, image deterioration that causes erroneous evaluation can be prevented, and reliability can be improved.

【0033】なお、上記一実施例では増幅率を調整する
場合について説明したが、増幅した信号の減衰率を調整
するようにしても同様の効果を得ることができる。この
変形例を図4を参照して説明する。例えば、受信回路6
−1,6−2の可変増幅器を増幅率が一定の増幅器41
a,41bに代え、この増幅器41a,41bの出力端
子に減衰率可変のアッテネータ42a,42bを接続し
て、アッテネータ42a,42bの減衰率をゲイン制御
手段7で制御するように構成する。その他の部分の構成
は上記一実施例と同じである。この様な変形例によれば
、各受信回路6−1,6−2のゲインをそれぞれ画像化
に最適なゲインに調整することができる。
[0033] In the above embodiment, a case has been described in which the amplification factor is adjusted, but the same effect can be obtained by adjusting the attenuation factor of the amplified signal. This modification will be explained with reference to FIG. 4. For example, the receiving circuit 6
-1,6-2 variable amplifier with constant amplification factor 41
Attenuators 42a and 42b with variable attenuation rates are connected to the output terminals of the amplifiers 41a and 41b in place of the amplifiers 41a and 41b, and the gain control means 7 controls the attenuation rates of the attenuators 42a and 42b. The configuration of other parts is the same as that of the above embodiment. According to such a modification, the gains of each of the receiving circuits 6-1 and 6-2 can be adjusted to optimal gains for imaging.

【0034】また、上記一実施例では、受信回路6−1
.6−2を2段に設けた例を示したが、これは測定対象
物の深さ方向の複数の情報を一回の動作で取り出すこと
のできる最低の段数であり、必要に応じて受信回路数を
増やすすことができるのは勿論である。
Furthermore, in the above embodiment, the receiving circuit 6-1
.. Although we have shown an example in which 6-2 is installed in two stages, this is the minimum number of stages that can extract multiple pieces of information in the depth direction of the object to be measured in one operation. Of course, the number can be increased.

【0035】[0035]

【発明の効果】以上詳記したように本発明によれば、測
定対象物の反射波から得られる一連の反射信号から測定
対象物の深さ方向に連なる複数の情報を一回の動作で取
出すことができ、この様な場合に各受信回路のゲインを
それぞれ画像化に最適な値に設定することができ、画像
劣化の無い最適な画像を得ることのできる超音波顕微鏡
を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, a plurality of pieces of information connected in the depth direction of the measurement object can be extracted from a series of reflected signals obtained from the reflected waves of the measurement object in a single operation. In such a case, the gain of each receiving circuit can be set to the optimum value for imaging, and an ultrasonic microscope that can obtain an optimum image without image deterioration can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係る超音波顕微鏡の原理を
説明するための機能ブロック図。
FIG. 1 is a functional block diagram for explaining the principle of an ultrasound microscope according to an embodiment of the present invention.

【図2】一実施例に係る超音波顕微鏡の詳しい機能ブロ
ック図。
FIG. 2 is a detailed functional block diagram of an ultrasound microscope according to one embodiment.

【図3】一実施例に係る超音波顕微鏡の動作説明図。FIG. 3 is an explanatory diagram of the operation of the ultrasound microscope according to one embodiment.

【図4】一実施例の変形例に係る超音波顕微鏡の要部を
示す図。
FIG. 4 is a diagram showing main parts of an ultrasound microscope according to a modification of the embodiment.

【符号の説明】[Explanation of symbols]

1…送信信号発生手段、2…サーキュレータ、3…電気
−音響変換素子、4…音響レンズ、6…受信回路、7…
ゲイン制御手段、8…信号取出し手段、9…画像表示手
段。
DESCRIPTION OF SYMBOLS 1... Transmission signal generation means, 2... Circulator, 3... Electric-acoustic conversion element, 4... Acoustic lens, 6... Receiving circuit, 7...
Gain control means, 8... Signal extraction means, 9... Image display means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  高周波電気信号を電気−音響変換素子
で超音波に変換し、該超音波を音響レンズによって収束
球面波として測定対象物に入射し、該測定対象物からの
反射波を前記音響レンズで受信して前記電気−音響変換
素子で電気的な反射信号に変換し、この反射信号から前
記測定対象物の複数の反射波成分を取出して前記測定対
象物の内部構造を画像化する超音波顕微鏡において、前
記音響−電気変換素子の出力端子に対して並列に接続さ
れ、該電気−音響変換素子より各々入力する前記反射信
号から互いに異なる反射波成分を取出すと共に、これら
各反射波成分に対するゲインが各々個別に設定される複
数の受信回路と、前記各受信回路のゲインを各受信回路
で取出すべき反射波成分の信号強度に応じて制御するゲ
イン制御手段と、を具備したことを特徴とする超音波顕
微鏡。
1. A high-frequency electric signal is converted into an ultrasonic wave by an electro-acoustic conversion element, the ultrasonic wave is made incident on an object to be measured as a convergent spherical wave by an acoustic lens, and the reflected wave from the object is converted into an ultrasonic wave. The ultrasonic wave is received by a lens and converted into an electrical reflected signal by the electro-acoustic conversion element, and from this reflected signal, a plurality of reflected wave components of the object to be measured are extracted to image the internal structure of the object to be measured. In the sonic microscope, different reflected wave components are extracted from the reflected signals that are connected in parallel to the output terminals of the acoustic-to-electrical transducer and each input from the electro-acoustic transducer, and It is characterized by comprising a plurality of receiving circuits each having a gain set individually, and gain control means for controlling the gain of each of the receiving circuits according to the signal strength of the reflected wave component to be extracted by each receiving circuit. ultrasound microscope.
JP3088704A 1991-04-19 1991-04-19 Ultrasonic microscope Withdrawn JPH04320959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3088704A JPH04320959A (en) 1991-04-19 1991-04-19 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088704A JPH04320959A (en) 1991-04-19 1991-04-19 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPH04320959A true JPH04320959A (en) 1992-11-11

Family

ID=13950271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088704A Withdrawn JPH04320959A (en) 1991-04-19 1991-04-19 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPH04320959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036026C (en) * 1993-09-18 1997-10-01 株式会社金星社 Method for forming an orientation film of photopolymer in a liquid crystal display
JP2012247416A (en) * 2011-05-26 2012-12-13 General Electric Co <Ge> Ultrasonic scanning using local gain interval

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036026C (en) * 1993-09-18 1997-10-01 株式会社金星社 Method for forming an orientation film of photopolymer in a liquid crystal display
JP2012247416A (en) * 2011-05-26 2012-12-13 General Electric Co <Ge> Ultrasonic scanning using local gain interval

Similar Documents

Publication Publication Date Title
US4005382A (en) Signal processor for ultrasonic imaging
KR100847797B1 (en) Ultrasound equipment and method for forming transmission and reception beam using delay values of transmission and reception signals stored in memory
US7752913B2 (en) Method and device for detecting discontinuities in a material region
US4198702A (en) Time varying gain amplifier for side scan sonar applications
WO2001020303A8 (en) Miniaturized contactless sonic ir device for remote non-destructive inspection
JPH08317926A (en) Ultrasonic tomography device
US6716173B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
US4949313A (en) Ultrasonic diagnostic apparatus and pulse compression apparatus for use therein
JPS63143039A (en) Ultrasonic diagnostic apparatus
JPH04320959A (en) Ultrasonic microscope
JPH0720556U (en) Transceiver for ultrasonic imaging system
US6047601A (en) Self-tuning crystal notch filter
EP0012165A1 (en) Method and system for ultrasonic examination
EP0032732A1 (en) Ultrasonic imaging equipment
WO1992004628A1 (en) Ultrasonic microscope
JPH069564B2 (en) Ultrasonic diagnostic equipment
JP2889661B2 (en) Ultrasonic object recognition device
KR960016298B1 (en) Ultrasonic diagnosis apparatus
JPH02228952A (en) Ultrasonic diagnostic apparatus
JPH03231645A (en) Ultrasonic diagnostic apparatus
JPH0236100B2 (en)
JPH0390137A (en) Reception aperture control circuit
JP2739972B2 (en) Ultrasonic flaw detector
JPH0282185A (en) Interface detecting, scanning, and measuring method
JPS61162747A (en) Ultrasonic inspector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711