JPH04320952A - Method for measuring molecular weight of polymer - Google Patents

Method for measuring molecular weight of polymer

Info

Publication number
JPH04320952A
JPH04320952A JP3090454A JP9045491A JPH04320952A JP H04320952 A JPH04320952 A JP H04320952A JP 3090454 A JP3090454 A JP 3090454A JP 9045491 A JP9045491 A JP 9045491A JP H04320952 A JPH04320952 A JP H04320952A
Authority
JP
Japan
Prior art keywords
molecular weight
polymer
temperature difference
temperature
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3090454A
Other languages
Japanese (ja)
Other versions
JP2910870B2 (en
Inventor
Norio Kawanami
川並 則夫
Kiyotaka Kondo
近藤 清隆
Yoshihiro Ikeda
義弘 池田
Toru Nakagawa
中川 透
Kensuke Ito
健介 伊藤
Yukihiro Saeki
佐伯 幸弘
Saburo Ishii
三郎 石井
Kenji Aoyama
青山 建二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Kanegafuchi Chemical Industry Co Ltd
Snow Brand Milk Products Co Ltd
Original Assignee
Jeol Ltd
Kanegafuchi Chemical Industry Co Ltd
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Kanegafuchi Chemical Industry Co Ltd, Snow Brand Milk Products Co Ltd filed Critical Jeol Ltd
Priority to JP9045491A priority Critical patent/JP2910870B2/en
Priority to DE69216276T priority patent/DE69216276T2/en
Priority to CA002066855A priority patent/CA2066855A1/en
Priority to EP92106854A priority patent/EP0510595B1/en
Publication of JPH04320952A publication Critical patent/JPH04320952A/en
Priority to US08/155,657 priority patent/US5341672A/en
Application granted granted Critical
Publication of JP2910870B2 publication Critical patent/JP2910870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable productivity to be improved by heating a polymer measuring temperature difference of the polymer between two locations, and then calculating a molecular weight of the polymer corresponding to the temperature difference according to the temperature difference which is obtained previously and the molecular weight of the polymer. CONSTITUTION:Olefin and vinyl polymers are heated by a heating element such as a stainless sheathed heater. It can be preferably applied to the polymer of a ring opening polymerization such as polyoxyalkylene. Then, a temperature difference of the polymer between two locations which are thermally affected is measured by a temperature-sensing element such as a sensor. Then, a relationship between the temperature difference which is obtained previously and the molecular weight of the polymer allows the molecular weight of the polymer corresponding to the temperature difference to be estimated, thus enabling productivity to be improved since the molecular weight can be estimated on-line when the molecular weight data is needed in real time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、重合物の分子量の測定
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the molecular weight of polymers.

【0002】0002

【従来の技術】一般に、重合物の分子量を測定する場合
、粘度平均分子量(Mη)が使用される。この粘度平均
分子量の測定は、市販のウベローデ(Ubelohde
)型細管粘度計を用いて重合物を希釈した溶液の粘度を
測定し、その結果から重合物の種類に応じた一定の計算
式を用いて分子量を算出することにより行われている。
BACKGROUND OF THE INVENTION Generally, when measuring the molecular weight of a polymer, the viscosity average molecular weight (Mη) is used. The viscosity average molecular weight can be measured using a commercially available Ubelohde
) The viscosity of a diluted solution of the polymer is measured using a capillary viscometer, and the molecular weight is calculated from the results using a certain calculation formula depending on the type of polymer.

【0003】このような粘度測定を利用する分子量測定
を実施するには、試料の前処理、例えば試料の希釈およ
び精製が必要であり、その結果測定に1〜2時間要する
。また、測定時の温度コントロールは例えば30±0.
25℃程度の厳しいコントロールが要求され、更には測
定法に習熟していないと誤差の大きい測定結果となると
いう問題点がある。従って、重合工程などにおいては、
反応器から試料をサンプリングして前処理した後に粘度
測定を行い、その結果により所定の分子量に到達したか
否かを判断する必要がある。そして、所定の分子量に到
達していない場合には、再度、重合反応を進行させる必
要がある。
[0003] In order to carry out molecular weight measurement using such viscosity measurement, pretreatment of the sample, such as dilution and purification of the sample, is required, and as a result, the measurement requires 1 to 2 hours. Also, the temperature control during measurement is, for example, 30±0.
Strict control of the temperature at about 25° C. is required, and furthermore, there is a problem that measurement results may have large errors if one is not familiar with the measurement method. Therefore, in the polymerization process, etc.
After sampling and pretreating a sample from the reactor, it is necessary to measure the viscosity and determine whether or not a predetermined molecular weight has been reached based on the results. If the predetermined molecular weight has not been reached, it is necessary to proceed with the polymerization reaction again.

【0004】このように従来の粘度測定による分子量測
定方法を用いる場合、時間を要する手作業の分析が必要
であり、測定者および習熟度の違いによる誤差も生じ、
結果的に反応時間にバラツキが出ることになる。
[0004] When using the conventional molecular weight measurement method using viscosity measurement as described above, time-consuming manual analysis is required, and errors occur due to differences in the measurement personnel and their skill level.
As a result, the reaction time will vary.

【0005】[0005]

【発明が解決しようとする課題】従って、効率的な重合
操作を行うために、誤差なく短時間に重合物の分子量を
測定する方法を提供することが必要である。
SUMMARY OF THE INVENTION Therefore, in order to carry out efficient polymerization operations, it is necessary to provide a method for measuring the molecular weight of a polymer in a short time without error.

【0006】[0006]

【課題を解決するための手段】上述の課題は、加熱要素
により重合物に熱を加え、該加熱要素による加熱により
異なる熱的影響を受ける少なくとも2箇所の重合物の温
度差を温度検知要素により測定し、予め求めておいた温
度差と重合物の分子量との関係から該温度差に対応する
重合物の分子量を算出することを特徴とする重合物の分
子量測定方法により解決されることが見出された。
[Means for Solving the Problems] The above-mentioned problem is to apply heat to a polymer by a heating element, and detect the temperature difference of the polymer at at least two locations that are subjected to different thermal effects due to the heating by the heating element by a temperature sensing element. The problem can be solved by a method for measuring the molecular weight of a polymer, which is characterized by calculating the molecular weight of the polymer corresponding to the temperature difference from the relationship between the temperature difference determined in advance and the molecular weight of the polymer. Served.

【0007】本発明は、以下に説明する考えに基づくも
のである。一般に、物質に加えた熱の消散は物質の流動
特性、特に粘度に大きな影響を受ける。即ち、粘度の高
い物質は伝熱速度が小さく、逆に、粘度の低い物質は伝
熱速度が大きい。従って、重合物の伝熱特性を測定する
ことにより、その重合物の粘度を測定でき、従来と同様
に予め求めておいた粘度−分子量の関係を用いて測定さ
れた粘度からその重合物の分子量を推定できることにな
る。
The present invention is based on the idea explained below. Generally, the dissipation of heat applied to a substance is greatly influenced by the flow properties of the substance, especially the viscosity. That is, a substance with high viscosity has a low heat transfer rate, and conversely, a substance with low viscosity has a high heat transfer rate. Therefore, by measuring the heat transfer properties of the polymer, the viscosity of the polymer can be measured, and the molecular weight of the polymer can be determined from the viscosity measured using the viscosity-molecular weight relationship determined in advance as in the past. can be estimated.

【0008】従来から、重合物以外の物質について、そ
の伝熱特性から粘度を推定することは知られており、こ
れに関しては例えば、特開昭60−152943号公報
等を参照できる。しかしながら、物質の伝熱特性から、
その物質の粘度を測定する方法が重合物を含む系に適用
された例は無く、また、得られる粘度から重合物の分子
量を推定することも知られていないのが現状である。
It has been known for a long time to estimate the viscosity of substances other than polymers from their heat transfer characteristics, and in this regard, see, for example, Japanese Patent Laid-Open No. 152943/1983. However, due to the heat transfer properties of materials,
Currently, there is no example of a method for measuring the viscosity of a substance being applied to a system containing a polymer, and it is also not known to estimate the molecular weight of a polymer from the obtained viscosity.

【0009】実際には、伝熱特性は、加えた熱量と系か
らの熱の消散のバランスにより形成される温度差として
測定するのが好都合である。また、粘度は、伝熱特性(
または温度差)と重合物の分子量との間に理論的に介在
する媒介変数に過ぎず、実際には、温度差と分子量との
関係を直接的に求めることができる。
In practice, heat transfer properties are conveniently measured as the temperature difference formed by the balance between the amount of heat added and the dissipation of heat from the system. In addition, the viscosity is the heat transfer property (
It is merely a parameter that theoretically exists between the temperature difference (or temperature difference) and the molecular weight of the polymer, and in reality, the relationship between the temperature difference and the molecular weight can be directly determined.

【0010】本発明の方法は、簡便な方法でありながら
、粘度法の測定と同程度の精度で分子量を測定できると
いう優れた効果を有し、しかも測定時の温度コントロー
ルは粘度法にて必要なコントロール精度(±0.25℃
)は必要とせず±2〜3℃で十分であり、高い精度が必
要な高分子の分子量測定にも十分使用できる。
Although the method of the present invention is a simple method, it has the excellent effect of being able to measure molecular weight with an accuracy comparable to that of the viscosity method, and temperature control during measurement is not required in the viscosity method. control accuracy (±0.25℃
) is not necessary, and a temperature of ±2 to 3°C is sufficient, and it can be used sufficiently for measuring the molecular weight of polymers, which requires high accuracy.

【0011】本発明によって、測定できる重合物は、オ
レフィン系(例えばポリエチレン)、ビニル系(例えば
ポリ塩化ビニル)、ジエン系(例えばポリブタジエン)
、開環重合系(例えばポリプロピレングリコール)、重
縮合・重付加系(例えばオリゴエステルアクリレート)
、石油樹脂系(例えばC5系石油樹脂)、含フッ素系(
例えばフルオロオレフィンテロマー)、シリコーン系(
例えば環状ジメチルポリシロキサン)およびポリサルフ
ァイド系などの重合物であり特に限定されないが、合成
有機高分子、特にポリオキシアルキレン等の開環重合系
の重合に対して好ましく適用できる。また分子量として
は、約2×104くらいまでの低量体(オリゴマー)の
粘度の測定に好適である。
Polymers that can be measured according to the present invention include olefin-based (eg, polyethylene), vinyl-based (eg, polyvinyl chloride), and diene-based (eg, polybutadiene).
, ring-opening polymerization systems (e.g. polypropylene glycol), polycondensation/polyaddition systems (e.g. oligoester acrylate)
, petroleum resin type (e.g. C5 petroleum resin), fluorine-containing type (
For example, fluoroolefin telomer), silicone type (
Examples include polymers such as cyclic dimethylpolysiloxane) and polysulfide, which are not particularly limited, but can be preferably applied to synthetic organic polymers, particularly ring-opening polymers such as polyoxyalkylene. In addition, it is suitable for measuring the viscosity of low molecular weight substances (oligomers) having a molecular weight of up to about 2×10 4 .

【0012】余りにも粘度が高い重合物に関しては、た
とえ測定部分の分子量が正確であっても、系全体の均質
性の観点から重合物を代表する分子量が測定されている
といえない場合がある。従って、本発明の方法を適用す
ることにより測定される重合物の粘度は1000poi
se以下が好ましい。
[0012] Regarding polymers with extremely high viscosity, even if the molecular weight of the measurement part is accurate, it may not be possible to say that the molecular weight representative of the polymer has been measured from the viewpoint of homogeneity of the entire system. . Therefore, the viscosity of the polymer measured by applying the method of the present invention is 1000 poi
se or less is preferable.

【0013】本発明において加熱要素とは、重合物に熱
を均等に加えることができる適当な要素であれば特に限
定されるものではなく、例えば一般的に使われているス
テンレス製のシーズヒーターなどを例示できる。特に好
ましい態様では、特開昭62−56849号公報にて例
示されているセンサーを加熱要素として使用する。また
、加熱要素により重合物に熱を加えるとは、加熱要素を
使用して一定量の熱を一定時間に、即ち、均一に重合物
に加えることを意味し、一時的または断続的な加熱であ
っても、連続的な加熱であってもかまわない。
[0013] In the present invention, the heating element is not particularly limited as long as it is an appropriate element that can uniformly apply heat to the polymer, such as a commonly used sheathed heater made of stainless steel. can be exemplified. In a particularly preferred embodiment, the sensor exemplified in JP-A-62-56849 is used as the heating element. In addition, applying heat to a polymer with a heating element means applying a certain amount of heat to a polymer over a certain period of time, that is, uniformly, using a heating element, and heating can be done temporarily or intermittently. There is no problem even if the heating is continuous.

【0014】本発明において温度検知要素とは、重合物
の温度を測定する適当な要素であれば特に限定されるも
のではなく、例えば測温抵抗体などを例示できる。異な
る熱的影響をうける、少なくとも2箇所の重合物の温度
を測定するのは、本発明は伝熱特性を温度差として測定
するものである以上、熱的影響が同じで重合物の温度が
等しいなら、温度差として伝熱特性を測定できないから
である。また、少なくとも2箇所というのは、温度差と
して少なくとも1つのデーターを測定することを意味す
る。従って、例えば3箇所またはそれ以上の箇所の温度
を測定してそれぞれの温度差を求め、例えば、その平均
的な値を使用することも可能である。熱的影響を受ける
とは、加熱要素により、重合物を加熱する場合、測定箇
所の重合物の温度が加熱により影響される状態を意味す
る。従って、加熱量が小さい場合は、加熱要素から遠い
位置では重合物は加熱の影響を受けないので、係る箇所
における重合物の温度を測定しても正確な分子量が得ら
れない。
[0014] In the present invention, the temperature sensing element is not particularly limited as long as it is a suitable element for measuring the temperature of a polymer, and examples thereof include a resistance temperature sensor. The reason for measuring the temperature of at least two polymers that are subject to different thermal influences is that the present invention measures heat transfer characteristics as a temperature difference, so it is important to measure the temperature of the polymer at at least two locations that are subject to different thermal influences. If so, the heat transfer characteristics cannot be measured as a temperature difference. Moreover, at least two locations means that at least one data is measured as a temperature difference. Therefore, it is also possible, for example, to measure the temperature at three or more locations, determine the temperature difference between them, and use, for example, the average value. Being thermally affected means that when the polymer is heated by a heating element, the temperature of the polymer at the measurement location is affected by the heating. Therefore, if the amount of heating is small, the polymer will not be affected by the heating at a position far from the heating element, so measuring the temperature of the polymer at such a location will not yield an accurate molecular weight.

【0015】温度測定にもある程度の誤差が生じ得るこ
とを考慮すると、加熱要素に近く、かつ、適当な距離で
離れている2箇所で温度測定するのが好ましい。特に1
箇所は、加熱要素直近の重合物の温度を測定するのが好
ましい。従って、最も好ましい態様では、加熱要素と1
つの温度検知要素が一体になっている要素を使用する。 このような要素は、例えば、ステンレスチューブ内に内
蔵した抵抗体に、微小な電流を流して発熱させ、発熱し
た抵抗体自身の温度を計ることができる構造をした温度
計である。温度差を測定する少なくとも2箇所は、2箇
所の温度が異なるように選択すれば十分であるが、好ま
しくは温度差が大きくなるように選択する。これらの2
箇所の距離は、測定する重合物に依存し、更には被測定
流体が静止しているか、または流動しているかによって
異なるが、一般的には、静止系では20〜30mm程度
の、流動系では10〜20mm程度、例えば10mm程
度で十分である。
[0015] Considering that temperature measurements may also have some degree of error, it is preferable to measure the temperature at two locations close to the heating element and separated by a suitable distance. Especially 1
It is preferable to measure the temperature of the polymer product immediately adjacent to the heating element. Therefore, in the most preferred embodiment, the heating element and the
Use an element that has two integrated temperature sensing elements. Such an element is, for example, a thermometer having a structure in which a minute current is passed through a resistor built in a stainless steel tube to generate heat, and the temperature of the generated resistor itself can be measured. It is sufficient to select at least two locations at which the temperature difference is to be measured so that the two locations have different temperatures, but preferably they are selected so that the temperature difference is large. These two
The distance between the points depends on the polymer to be measured and also on whether the fluid to be measured is stationary or flowing, but in general, it is about 20 to 30 mm in a static system, and about 20 to 30 mm in a fluid system. About 10 to 20 mm, for example about 10 mm, is sufficient.

【0016】本発明の方法においては、温度差を測定す
る以外に特別な操作を必要とせず、予め求めておいた温
度差と重合物の分子量との関係から、適当な方法で直ち
に分子量を推定できる。
The method of the present invention does not require any special operation other than measuring the temperature difference, and the molecular weight can be immediately estimated by an appropriate method from the relationship between the temperature difference and the molecular weight of the polymer obtained in advance. can.

【0017】従って、温度をリアルタイムで測定できる
ので、重合物が、分子量的にも、また、流動的にも、静
的な状態である場合だけでなく、動的な状態であっても
本発明の方法を適用できる。例えば、系が撹拌されてい
ても、あるいは、静止状態であっても、また、分子量が
変化しない状態であっても、あるいは、分子量が変化し
つつある状態であっても適用できる。
Therefore, since the temperature can be measured in real time, the present invention can be applied not only when the polymer is in a static state in terms of molecular weight and fluidity, but also when it is in a dynamic state. method can be applied. For example, it can be applied even if the system is stirred or in a stationary state, or even if the molecular weight does not change, or even if the molecular weight is changing.

【0018】本発明の方法では、原理的には、従来方法
と同様に予め重合物の粘度と分子量との関係を求めてお
く必要がある。この関係は、反応系の温度をパラメータ
ーとして、分子量と粘度との関係を予め求めておくこと
により、実際に得られる測定値を補正することができる
。先に説明したように、実際には、温度差と分子量との
関係を直接的に求めることができるので、反応系の温度
により両者の関係がどのような影響を受けるかを予め求
めておくことが必要である。従って、測定すべき分子量
増大化系の実際の温度付近の温度において、温度差と分
子量との関係を予め求めておくことが必要である。
In the method of the present invention, in principle, it is necessary to determine the relationship between the viscosity and molecular weight of the polymer in advance, as in the conventional method. By determining the relationship between molecular weight and viscosity in advance using the temperature of the reaction system as a parameter, the actually obtained measured value can be corrected. As explained earlier, in reality, it is possible to directly determine the relationship between temperature difference and molecular weight, so it is necessary to determine in advance how the relationship between the two is affected by the temperature of the reaction system. is necessary. Therefore, it is necessary to determine in advance the relationship between the temperature difference and the molecular weight at a temperature close to the actual temperature of the molecular weight increasing system to be measured.

【0019】この場合、厳密には、測定温度が2箇所で
異なるため系の温度が2種類存在することになるが、2
箇所の温度差は、粘度に測定誤差以上の影響を与えるほ
どは大きくはないので、系の温度としては、例えば、2
箇所の温度の加算平均温度を用いても、あるいはいずれ
か一方の温度を用いてもよい。
[0019] In this case, strictly speaking, there are two types of system temperatures because the measured temperatures are different at the two locations.
The temperature difference between the points is not large enough to affect the viscosity more than the measurement error, so the temperature of the system is, for example, 2.
The average temperature of the temperatures at the location may be used, or either one of the temperatures may be used.

【0020】本発明の方法は、重合物の分子量を推定す
る必要がある場合であれば、いずれの場合であっても適
用できるが、特に有用であるのは、重合過程における次
の操作を分子量によって判断する必要がある場合である
。特にリアルタイムで分子量データーが必要な場合など
は、オンラインで分子量を推定できるので、タイムラグ
無しに次の操作に移ることができ、生産性の向上につな
がる。
The method of the present invention can be applied to any case in which it is necessary to estimate the molecular weight of a polymer, but it is particularly useful for estimating the molecular weight of the following operation in the polymerization process. In this case, it is necessary to make a judgment based on the following. Especially when molecular weight data is required in real time, molecular weight can be estimated online, allowing you to move on to the next operation without any time lag, leading to improved productivity.

【0021】具体的は、所定の系の温度におけるセンサ
ー間の温度差と分子量との関係を予め検量線として求め
ておき、実際の分子量増大化反応において温度差のみを
測定することにより、分子量を算出する。場合により、
検量線をチェックするために、分子量増大化反応の一点
において、反応系からサンプリングして従来法による分
子量測定を行って、系の状態が検量線を求めた時と同じ
であることを確認するのが適当な場合がある。例えば、
原料のロットの違いや、原料中に含まれる不純物量の差
異により、チェックした点が必ずしも検量線上に乗らな
い場合がある。この場合であっても、所望とする設計分
子量の規格によっては予め求めておいた検量線を使用し
てもよいこともある。また、より精密な分子量のコント
ロールが必要である場合は、同じ種類の分子量増大化反
応系であれば、予め求めておいた検量線を温度差方向に
平行移動して、チェックした点が乗るようにして新たな
検量線として用いて、測定される温度差から分子量を推
定しても実用的には問題ない結果が得られることが確認
されている。
Specifically, the relationship between the temperature difference between the sensors and the molecular weight at a given system temperature is determined in advance as a calibration curve, and by measuring only the temperature difference in the actual molecular weight increasing reaction, the molecular weight can be determined. calculate. Depending on the case,
To check the calibration curve, sample the reaction system at one point in the molecular weight increase reaction and measure the molecular weight using the conventional method to confirm that the system condition is the same as when the calibration curve was calculated. may be appropriate. for example,
Due to differences in raw material lots and differences in the amount of impurities contained in the raw materials, the checked points may not necessarily fall on the calibration curve. Even in this case, a predetermined calibration curve may be used depending on the desired specification of the designed molecular weight. In addition, if more precise control of molecular weight is required, if the reaction system is the same type for increasing molecular weight, move the previously determined calibration curve in parallel to the temperature difference direction so that the checked points are on it. It has been confirmed that even if the molecular weight is estimated from the measured temperature difference by using it as a new calibration curve, results with no practical problems can be obtained.

【0022】特に、分子量がわかっている低重合度の重
合体を、更に高分子量化する場合や、重合中に1回以上
粘度計等による分子量の測定をする場合には、検量線の
形状を保ったまま上述のように検量線を移動して修正す
ると、きわめて精度の高い分子量測定を行うことができ
る。
In particular, when increasing the molecular weight of a polymer with a low degree of polymerization whose molecular weight is known, or when measuring the molecular weight using a viscometer or the like more than once during polymerization, the shape of the calibration curve should be adjusted. If the calibration curve is moved and corrected as described above while maintaining the same, extremely accurate molecular weight measurement can be performed.

【0023】更に、本発明は、重合物を加熱する要素、
加熱要素の加熱により異なる熱的影響を受ける少なくと
も2箇所の重合物の温度差を測定する温度検知要素を有
して成る分子量測定装置を提供する。特に好ましい態様
では、本発明の装置は、予め測定した重合物の分子量と
温度差との関係が入力されており、実際に測定される温
度差から直ちに分子量を算出できるデーター処理装置を
有して成る。
Furthermore, the present invention provides an element for heating the polymer,
Provided is a molecular weight measuring device comprising a temperature sensing element that measures the temperature difference of a polymer at at least two locations that are subjected to different thermal effects due to heating by a heating element. In a particularly preferred embodiment, the apparatus of the present invention has a data processing device into which the relationship between the molecular weight of the polymer measured in advance and the temperature difference is input, and which can immediately calculate the molecular weight from the actually measured temperature difference. Become.

【0024】次に、本発明を実施例に基づいて具体的に
説明する。 実施例1 「図1」に示した撹拌反応槽(ジャケット付)に基づい
て説明する。PPG(ポリプロピレングリコール)の末
端OH基の90%以上が、アルコキシ化されたアルコラ
ート化合物20kgを原料受槽1および原料計量槽2を
経由して撹拌反応槽3に仕込んだ。仕込み終了後、気相
部をN2にて置換した後に、同時に温調ユニット6によ
り所定の温度(130℃)まで昇温した。昇温終了後、
動粘度モニタリングシステム(日本電子(株式会社)製
)7を起動し、加熱部分と非加熱部分との温度差(反応
系の2点の温度差)の測定を開始した。
Next, the present invention will be specifically explained based on examples. Example 1 A description will be given based on the stirring reaction tank (with jacket) shown in "Figure 1". 20 kg of an alcoholate compound in which 90% or more of the terminal OH groups of PPG (polypropylene glycol) were alkoxylated was charged into a stirring reaction tank 3 via a raw material receiving tank 1 and a raw material measuring tank 2. After the preparation was completed, the gas phase was replaced with N2, and at the same time, the temperature was raised to a predetermined temperature (130° C.) by the temperature control unit 6. After heating up,
The kinematic viscosity monitoring system (manufactured by JEOL Ltd.) 7 was activated and measurement of the temperature difference between the heated part and the non-heated part (temperature difference between two points in the reaction system) was started.

【0025】このモニタリングシステムの一方のセンサ
ーは、ステンレスチューブ内に内蔵した抵抗体に400
mAの電流を流して発熱させ、発熱した抵抗体自身の温
度を測定することができる構造の温度計であり、他方の
センサーは、距離10mmを隔てた通常の測温抵抗体を
使用した。
One sensor of this monitoring system has a resistor built in a stainless steel tube with a 400
This thermometer was designed to generate heat by passing a mA current through it, and measure the temperature of the generated resistor itself.The other sensor used was a normal resistance temperature detector separated by a distance of 10 mm.

【0026】その後、分子量増大化試薬であるポリハロ
ゲン化物を少量づつ原料計量槽2から滴下し、逐次動粘
度モニタリングシステム7にて温度差を測定し、同時に
その時のウベローデ法による分子量(Mη)を測定した
。測定した温度差とMηとの関係を「図2」に示すよう
にプロットして検量線を得た。
Thereafter, a polyhalide, which is a molecular weight increasing reagent, is dropped in small quantities from the raw material measuring tank 2, and the temperature difference is sequentially measured by the kinematic viscosity monitoring system 7, and at the same time, the molecular weight (Mη) by the Ubbelohde method is measured. It was measured. A calibration curve was obtained by plotting the relationship between the measured temperature difference and Mη as shown in “FIG. 2”.

【0027】上記の分子量増大反応と同様の反応を繰り
返した場合、得られた検量線に基づいて測定される温度
差から算出される分子量と、ウベローデ法により測定さ
れる分子量Mηとを比較すると、約±1%以下の誤差範
囲で両者は一致することが判った。
When a reaction similar to the above molecular weight increasing reaction is repeated, the molecular weight calculated from the temperature difference measured based on the obtained calibration curve is compared with the molecular weight Mη measured by the Ubbelohde method. It was found that the two coincided within an error range of approximately ±1% or less.

【0028】これにより、ウベローデ法による測定と同
等の精度をもって温度差から重合物の分子量を正確に測
定できることが判る。上記アルコラート化合物の分子量
増大化反応(出発分子量M0=2400)を、上述のよ
うにして得られた検量線を用いて分子量をモニタリング
しながら分子量増大化試薬を連続的に滴下して行った。 検量線により温度差から分子量を逐次算出していると、
約1時間後に所望の分子量(8100)に到達したので
分子量増大化試薬の滴下を停止した。最終的に得られた
重合物をウベローデ法により測定すると、分子量は81
50であった。
[0028] This shows that the molecular weight of a polymer can be accurately measured from the temperature difference with an accuracy equivalent to that of measurement by the Ubbelohde method. The molecular weight increasing reaction of the alcoholate compound (starting molecular weight M0 = 2400) was carried out by continuously dropping the molecular weight increasing reagent while monitoring the molecular weight using the calibration curve obtained as described above. When the molecular weight is calculated sequentially from the temperature difference using a calibration curve,
After about 1 hour, the desired molecular weight (8100) was reached, so dropping of the molecular weight increasing reagent was stopped. When the finally obtained polymer was measured by the Ubbelohde method, the molecular weight was 81.
It was 50.

【0029】比較例1 上記実施例と同様の分子量増大化反応(出発分子量=2
400、設計分子量=8100)をウベローデ法による
分子量測定に基づいて実施した。従来の粘度法のみによ
る分子量増大化反応の場合では、リアルタイムで分子量
が判らないために分子量増大化試薬を連続的に滴下する
ことができない。分子量が設計分子量より大幅に大きく
なり過ぎることは好ましくなく、従って、該試薬を設計
分子量(Mη=8100)に相当する推定量より若干少
なめに添加する必要がある。その後、更に不足分の分子
量増大化試薬を添加して反応させなければ正確に所望の
分子量の重合体を得ることができない。
Comparative Example 1 Molecular weight increasing reaction similar to the above example (starting molecular weight = 2
400, designed molecular weight = 8100) based on molecular weight measurement by Ubbelohde method. In the case of a molecular weight increasing reaction using only a conventional viscosity method, the molecular weight cannot be determined in real time, and therefore the molecular weight increasing reagent cannot be added dropwise continuously. It is not preferable for the molecular weight to be much larger than the designed molecular weight, and therefore, it is necessary to add the reagent in an amount slightly smaller than the estimated amount corresponding to the designed molecular weight (Mη=8100). Thereafter, unless the insufficient amount of the molecular weight increasing reagent is further added and reacted, a polymer having the desired molecular weight cannot be obtained accurately.

【0030】最初に、従来の粘度法に従って、設計分子
量(Mη=8100)に相当する推定量より若干少なめ
の分子量増大化試薬を一括で添加した。添加後、1時間
目にサンプリングして分子量を測定した結果、Mη=7
800であった。(この測定に約1.5時間要した。)
この値は、設計分子量8100に対して300少ないた
め、再度、分子量増大化試薬を分子量300アップに相
当する推定量を一括で添加した。再添加後、30分目に
サンプリングして分子量を測定した結果、Mη=815
0となり、反応を終了した。(測定時間は約1.5時間
であった。)
First, according to the conventional viscosity method, a slightly smaller amount of the molecular weight increasing reagent than the estimated amount corresponding to the designed molecular weight (Mη=8100) was added all at once. As a result of sampling and measuring the molecular weight 1 hour after addition, Mη = 7
It was 800. (This measurement took approximately 1.5 hours.)
Since this value was 300 less than the designed molecular weight of 8100, the molecular weight increasing reagent was added at once in an estimated amount equivalent to increasing the molecular weight by 300. After re-adding, the molecular weight was measured 30 minutes after sampling, and the results showed that Mη = 815.
0, and the reaction was completed. (Measurement time was approximately 1.5 hours.)

【0031】以上のように、従来の粘度法によると分子
量の測定後に、その値によって分子量増大化試薬を再添
加して反応を続行するか否かを判断する必要があるため
、所望の分子量の重合体を得るためには、非常に長い時
間を要した。(全所要時間は4.5時間であった。)
As described above, according to the conventional viscosity method, after measuring the molecular weight, it is necessary to judge based on the value whether or not to continue the reaction by adding the molecular weight increasing reagent again. It took a very long time to obtain the polymer. (The total time required was 4.5 hours.)


0032】実施例2 製造条件の異なるPPGの末端OH基の90%以上がア
ルコキシ化されたアルコラート化合物を用いて実施例1
と同様の条件で分子量増大化反応を行った。実施例1と
同様に温度差とウベローデ法による分子量との関係を測
定した。
[
Example 2 Example 1 was carried out using an alcoholate compound in which 90% or more of the terminal OH groups of PPG were alkoxylated under different production conditions.
The molecular weight increasing reaction was carried out under the same conditions as above. As in Example 1, the relationship between the temperature difference and the molecular weight was measured by the Ubbelohde method.

【0033】測定結果を実施例1の結果と共に「図3」
に示す(実施例1の結果を○、実施例2の結果を△で示
している)が、温度差と分子量との関係は、実施例1に
おいて得られた温度差と検量線と関係を示す検量線には
乗らず、若干のずれが生じた。しかしながら、この場合
であっても、実施例1において得られた検量線を温度差
方向に平行移動させると、実施例2において得られた結
果を最もうまく表現する検量線が得られることが判った
[0033] The measurement results are shown in "Figure 3" together with the results of Example 1.
(The results of Example 1 are indicated by ○, and the results of Example 2 are indicated by △.) The relationship between the temperature difference and the molecular weight is the same as that between the temperature difference and the calibration curve obtained in Example 1. It did not fit the calibration curve, and there was a slight deviation. However, even in this case, it was found that by moving the calibration curve obtained in Example 1 parallel to the temperature difference direction, a calibration curve that best expressed the results obtained in Example 2 could be obtained. .

【0034】従って、重合体の種類が同じであれば、新
たに検量線を作成する必要はなく、ある特定の重合体に
ついて予め温度差と分子量との関係を検量線として求め
ておけば、分子量増大化反応においてある一点において
温度差と従来法の分子量との関係を測定すれば、その測
定点を通過するように検量線を温度差方向に平行移動す
るだけで、その分子量増大化反応系の検量線を得ること
ができる。
Therefore, if the types of polymers are the same, there is no need to create a new calibration curve.If the relationship between temperature difference and molecular weight is determined in advance as a calibration curve for a specific polymer, the molecular weight can be determined. If you measure the relationship between the temperature difference and the molecular weight of the conventional method at a certain point in an increase reaction, you can simply move the calibration curve in parallel in the direction of the temperature difference so that it passes through that measurement point. A calibration curve can be obtained.

【0035】[0035]

【発明の効果】本発明の方法は、リアルタイムで実施で
きるので従来の方法を適用する場合に比較して、重合操
作における判断が遥かに容易に行え、生産性の向上につ
ながる。
[Effects of the Invention] Since the method of the present invention can be carried out in real time, decisions in polymerization operations can be made much more easily than when conventional methods are applied, leading to improved productivity.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  「図1」は、本発明の方法を使用して分子
量増大化反応を実施する場合の反応装置の一例を示す模
式図である。
FIG. 1 is a schematic diagram showing an example of a reaction apparatus for carrying out a molecular weight increasing reaction using the method of the present invention.

【図2】  「図2」は、実施例1の結果を示すグラフ
である。
FIG. 2 is a graph showing the results of Example 1.

【図3】  「図3」は、実施例2の結果を示すグラフ
である。
FIG. 3 is a graph showing the results of Example 2.

【符号の説明】[Explanation of symbols]

1…原料受槽、2…原料計量槽、3…撹拌反応槽、4…
撹拌翼、5…排出バルブ、6…温調ユニット、7…動粘
度モニタリングシステム。
1... Raw material receiving tank, 2... Raw material measuring tank, 3... Stirring reaction tank, 4...
Stirring blade, 5...Discharge valve, 6...Temperature control unit, 7...Kinematic viscosity monitoring system.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  加熱要素により重合物に熱を加え、該
加熱要素による加熱により異なる熱的影響を受ける少な
くとも2箇所の重合物の温度差を温度検知要素により測
定し、予め求めておいた温度差と重合物の分子量との関
係から該温度差に対応する重合物の分子量を算出するこ
とを特徴とする重合物の分子量測定方法。
Claim 1: Heat is applied to the polymer by a heating element, and the temperature difference of the polymer at at least two locations that are subjected to different thermal effects due to the heating by the heating element is measured by a temperature detection element, and a predetermined temperature is obtained. A method for measuring the molecular weight of a polymer, comprising calculating the molecular weight of the polymer corresponding to the temperature difference from the relationship between the difference and the molecular weight of the polymer.
【請求項2】  加熱要素が一方の温度検知要素として
も作用する請求項1記載の重合物の分子量測定方法。
2. The method for measuring the molecular weight of a polymer according to claim 1, wherein the heating element also acts as one of the temperature sensing elements.
JP9045491A 1991-04-22 1991-04-22 Method for measuring molecular weight of polymer Expired - Lifetime JP2910870B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9045491A JP2910870B2 (en) 1991-04-22 1991-04-22 Method for measuring molecular weight of polymer
DE69216276T DE69216276T2 (en) 1991-04-22 1992-04-22 Method for measuring the molecular weight of a polymer
CA002066855A CA2066855A1 (en) 1991-04-22 1992-04-22 Method and apparatus for measurement of polymer molecular weight
EP92106854A EP0510595B1 (en) 1991-04-22 1992-04-22 Method measurement of polymer molecular weight
US08/155,657 US5341672A (en) 1991-04-22 1993-11-22 Method for measurement of polymer molecular weight based upon a temperature difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9045491A JP2910870B2 (en) 1991-04-22 1991-04-22 Method for measuring molecular weight of polymer

Publications (2)

Publication Number Publication Date
JPH04320952A true JPH04320952A (en) 1992-11-11
JP2910870B2 JP2910870B2 (en) 1999-06-23

Family

ID=13999069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9045491A Expired - Lifetime JP2910870B2 (en) 1991-04-22 1991-04-22 Method for measuring molecular weight of polymer

Country Status (1)

Country Link
JP (1) JP2910870B2 (en)

Also Published As

Publication number Publication date
JP2910870B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
Derham et al. Pulse-induced critical scattering (PICS) from polymer solutions
Christensen et al. New precision thermometric titration calorimeter
US8191418B2 (en) Method and measuring system for determining and/or monitoring an aggregate state change of a measured medium on a thermal, flow measuring device
CN102597754B (en) hydrogen chlorine level detector
CN101339148A (en) Coagulating point determinator and its determination method
CN103234662A (en) Compensation method for automatic temperature detection and automatic temperature detection system
US20080307879A1 (en) Method for Control of a Thermal/Calorimetric Flow Measuring Device
Kim et al. Automated high-temperature liquid level measurement system using a dynamic tube pressure technique
CN102455204B (en) Liquid level measurement system and method for kettle-type container and kettle-type container
CN109342769B (en) Calibration method, flow velocity measurement method and device
US5341672A (en) Method for measurement of polymer molecular weight based upon a temperature difference
JPH0221741B2 (en)
JP2001515200A (en) Method and apparatus for monitoring the onset of liquid chemical vaporization
JPH04320953A (en) Device for measuring molecular weight of polymer
US4475387A (en) High temperature mass flowmeter
JPH07151572A (en) Measuring device and measuring method
JPH04320952A (en) Method for measuring molecular weight of polymer
US20030192367A1 (en) Rheological measurement process
US4048056A (en) Method for the control of pitch operation
US3263491A (en) Vapor pressure monitoring
Boggs et al. Thermal conductivity measurements of viscous liquids
US2473765A (en) Liquid flow measuring apparatus
CN206019798U (en) A kind of flowmeter in-situ examines and determine data Collection & Processing System
CN111780835A (en) Calibration method for high-efficiency liquid phase transfer liquid flowmeter
CN104132697A (en) High-accuracy micro-quantifying instrument and quantifying method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990309