JPH0432056B2 - - Google Patents
Info
- Publication number
- JPH0432056B2 JPH0432056B2 JP58105460A JP10546083A JPH0432056B2 JP H0432056 B2 JPH0432056 B2 JP H0432056B2 JP 58105460 A JP58105460 A JP 58105460A JP 10546083 A JP10546083 A JP 10546083A JP H0432056 B2 JPH0432056 B2 JP H0432056B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- rhodium
- mmol
- methyl
- acome
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 claims description 125
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 48
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 46
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 33
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- 239000010948 rhodium Substances 0.000 claims description 23
- 229910052703 rhodium Inorganic materials 0.000 claims description 22
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 19
- 239000003054 catalyst Substances 0.000 claims description 17
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical group CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 16
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 15
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 239000002841 Lewis acid Substances 0.000 claims description 12
- 150000007517 lewis acids Chemical class 0.000 claims description 12
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 10
- 238000005810 carbonylation reaction Methods 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 6
- 230000006315 carbonylation Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 claims description 2
- 150000002497 iodine compounds Chemical class 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 36
- 239000011651 chromium Substances 0.000 description 25
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 10
- -1 methyl acetate Chemical class 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 150000002903 organophosphorus compounds Chemical class 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- 150000003283 rhodium Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- LWBPNIJBHRISSS-UHFFFAOYSA-L beryllium dichloride Chemical compound Cl[Be]Cl LWBPNIJBHRISSS-UHFFFAOYSA-L 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- MGFYSGNNHQQTJW-UHFFFAOYSA-N iodonium Chemical compound [IH2+] MGFYSGNNHQQTJW-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 2
- KXAHUXSHRWNTOD-UHFFFAOYSA-K rhodium(3+);triiodide Chemical compound [Rh+3].[I-].[I-].[I-] KXAHUXSHRWNTOD-UHFFFAOYSA-K 0.000 description 2
- RLZMYANQLOCZOB-UHFFFAOYSA-M tributyl(methyl)phosphanium;iodide Chemical compound [I-].CCCC[P+](C)(CCCC)CCCC RLZMYANQLOCZOB-UHFFFAOYSA-M 0.000 description 2
- TYLYVJBCMQFRCB-UHFFFAOYSA-K trichlororhodium;trihydrate Chemical compound O.O.O.[Cl-].[Cl-].[Cl-].[Rh+3] TYLYVJBCMQFRCB-UHFFFAOYSA-K 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- MBVAQOHBPXKYMF-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;rhodium Chemical compound [Rh].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MBVAQOHBPXKYMF-LNTINUHCSA-N 0.000 description 1
- HLNJFEXZDGURGZ-UHFFFAOYSA-M 1-methylpyridin-1-ium;iodide Chemical compound [I-].C[N+]1=CC=CC=C1 HLNJFEXZDGURGZ-UHFFFAOYSA-M 0.000 description 1
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 101150050559 SOAT1 gene Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- LEKJTGQWLAUGQA-UHFFFAOYSA-N acetyl iodide Chemical compound CC(I)=O LEKJTGQWLAUGQA-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000012345 acetylating agent Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910001627 beryllium chloride Inorganic materials 0.000 description 1
- SZFONDSPNNKEQT-UHFFFAOYSA-N carbon monoxide chromium 1,4-xylene Chemical compound [Cr].[C-]#[O+].[C-]#[O+].[C-]#[O+].Cc1ccc(C)cc1 SZFONDSPNNKEQT-UHFFFAOYSA-N 0.000 description 1
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- VZJJZMXEQNFTLL-UHFFFAOYSA-N chloro hypochlorite;zirconium;octahydrate Chemical compound O.O.O.O.O.O.O.O.[Zr].ClOCl VZJJZMXEQNFTLL-UHFFFAOYSA-N 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- ITSNSVPRONFUKB-UHFFFAOYSA-N chromium triphenylphosphane Chemical compound [Cr].C1(=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1 ITSNSVPRONFUKB-UHFFFAOYSA-N 0.000 description 1
- 239000011636 chromium(III) chloride Substances 0.000 description 1
- 235000007831 chromium(III) chloride Nutrition 0.000 description 1
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical compound C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 229910001505 inorganic iodide Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002527 isonitriles Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- QZJVWTNHFOMVHX-UHFFFAOYSA-N methanol;methyl acetate Chemical compound OC.COC(C)=O QZJVWTNHFOMVHX-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical compound [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 description 1
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- AGJTZENGERFITA-UHFFFAOYSA-N pyridine rhodium Chemical compound [Rh].C1=CC=NC=C1.C1=CC=NC=C1.C1=CC=NC=C1 AGJTZENGERFITA-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- MMRXYMKDBFSWJR-UHFFFAOYSA-K rhodium(3+);tribromide Chemical compound [Br-].[Br-].[Br-].[Rh+3] MMRXYMKDBFSWJR-UHFFFAOYSA-K 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- QBERHIJABFXGRZ-UHFFFAOYSA-M rhodium;triphenylphosphane;chloride Chemical compound [Cl-].[Rh].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 QBERHIJABFXGRZ-UHFFFAOYSA-M 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- PUGUQINMNYINPK-UHFFFAOYSA-N tert-butyl 4-(2-chloroacetyl)piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCN(C(=O)CCl)CC1 PUGUQINMNYINPK-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】
この発明は、反応系中でヨウ化メチルとなり得
る化合物、例えば酢酸メチルを原料として、液相
条件下、ロジウムを主触媒とする触媒反応により
一酸化炭素と反応させて無水酢酸の如きカルボニ
ル化生成物を得る方法に関するものである。Detailed Description of the Invention This invention uses a compound that can be converted to methyl iodide in a reaction system, such as methyl acetate, as a raw material, and reacts it with carbon monoxide under liquid phase conditions through a catalytic reaction using rhodium as the main catalyst. The present invention relates to a method for obtaining carbonylated products such as acetic anhydride.
無水酢酸は酢酸セルロース製造用原料などアセ
チル化剤として広く用いられ工業的に非常に重要
な化合物である。 Acetic anhydride is widely used as an acetylating agent, such as as a raw material for the production of cellulose acetate, and is an extremely important compound industrially.
無水酢酸は、従来工業的には酢酸の熱分解によ
つて得られるケテンを酢酸と反応させることによ
り製造されている。一方、いわゆるC1化学の一
環として一酸化炭素と酢酸エチルを原料として無
水酢酸を製造しようとする研究が積極的になされ
ている。特にロジウムを主触媒とする方法は、他
の遷移金属触媒にくらべて比較的隠和な条件下で
反応が進行するが、無水酢酸の工業的製法として
は、なお十分満足できるものではない。 Acetic anhydride has conventionally been produced industrially by reacting ketene obtained by thermal decomposition of acetic acid with acetic acid. On the other hand, as part of so-called C 1 chemistry, research is actively being conducted to produce acetic anhydride from carbon monoxide and ethyl acetate as raw materials. In particular, the method using rhodium as the main catalyst allows the reaction to proceed under relatively quiet conditions compared to other transition metal catalysts, but it is still not fully satisfactory as an industrial method for producing acetic anhydride.
すなわち、ロジウムと沃化メチルなどのハロゲ
ン化合物反応促進剤を用いる酢酸メチルと一酸化
炭素の反応の反応速度は、反応液中ロジウム濃度
と沃化メチルなどのハロゲン化合物反応促進剤の
濃度に比例することがこの分野の専門家の間では
知られているが、ロジウムは非常に高価な金属で
あるため、また、沃化メチルはその蒸気圧が低く
扱いにくいために、これらのものを多量に投入す
ることは特に工業的にこの反応を行う場合には好
ましいものではない。従つて、ロジウムや沃化メ
チルの量を増やさずに反応速度を増す助触媒を用
いる改良が行なわれている。たとえば特開昭51−
115403合公報では、ロジウム触媒、ハロゲン化物
の他に、ある種の金属もしくは金属化合物を用い
る方法が公開されている。 In other words, the reaction rate of the reaction between methyl acetate and carbon monoxide using rhodium and a halogen compound reaction promoter such as methyl iodide is proportional to the rhodium concentration in the reaction solution and the concentration of the halogen compound reaction promoter such as methyl iodide. This is well known among experts in this field, but because rhodium is a very expensive metal and methyl iodide has a low vapor pressure and is difficult to handle, it is difficult to use large amounts of these materials. This is not preferable, especially when carrying out this reaction industrially. Therefore, improvements have been made using cocatalysts that increase the reaction rate without increasing the amount of rhodium or methyl iodide. For example, JP-A-51-
Patent Publication No. 115403 discloses a method using a certain metal or metal compound in addition to a rhodium catalyst and a halide.
この技術では金属助触媒として、周期律表第
B、B、B族金属および第8族非貴金属を用
いている。さらに、このような金属助触媒として
は、周期律表A、A、AおよびB族金属
(特開昭55−51036号)、ジルコニウム(特開昭56
−99437号)、ハフニウム(特開昭56−99438号)、
チタン、アルミニウム、バナジウムおよびトリウ
ム(特開昭56−142234号)などの化合物が知られ
ている。 This technique uses metals from groups B, B, and B of the periodic table and non-noble metals from group 8 as metal cocatalysts. Furthermore, such metal promoters include metals from groups A, A, A, and B of the periodic table (Japanese Patent Application Laid-Open No. 55-51036), zirconium (Japanese Patent Application Laid-open No. 56-51036),
-99437), hafnium (JP-A-56-99438),
Compounds such as titanium, aluminum, vanadium, and thorium (Japanese Patent Application Laid-Open No. 142234/1982) are known.
本発明は、上に例示したよに先行技術をふまえ
て、酢酸メチルなど反応系中でヨウ化メチルにな
るうるカウボン酸メチルのカルボニル化反応を促
進するはらたきをもつロジウム触媒と共に用いら
れる助触媒を検討した結果生まれたものである。 Based on the prior art as exemplified above, the present invention provides a cocatalyst to be used with a rhodium catalyst that has the ability to promote the carbonylation reaction of methyl cowboxate, which can become methyl iodide in the reaction system, such as methyl acetate. This was created as a result of considering the following.
即ち本発明は一酸化炭素によるヨウ化メチルの
カルボニル化反応速度を増大させる反応方法を提
供することを目的とするものであり、実質的に無
水の条件下でおこなわれるカルボニル化反応、例
えば酢酸メチルから無水酢酸の製造、酢酸メチル
とメタノールとの混合物からの無水酢酸と酢酸の
製造に適用して有用である。 That is, an object of the present invention is to provide a reaction method for increasing the carbonylation reaction rate of methyl iodide with carbon monoxide. It is useful for the production of acetic anhydride from methyl acetate and for the production of acetic anhydride and acetic acid from a mixture of methyl acetate and methanol.
本発明の特徴そする助触媒は(1)周期律表第B
族金属即ちクロム、モリブデン又はタングステン
の零価カルボニル錯化合物と、(2)金属原子を含む
ルイス酸との組合せより成る。 The characteristics of the present invention and the cocatalyst are (1) B of the periodic table;
It consists of a combination of a zero-valent carbonyl complex compound of a group metal, ie, chromium, molybdenum, or tungsten, and (2) a Lewis acid containing a metal atom.
この2種の化合物を併用して添加することによ
り、このオジウムを主触媒とするカルボン酸メチ
ルと一酸化炭素の反応の反応速度が大きく増大す
ることが判明した。 It has been found that by adding these two types of compounds in combination, the reaction rate of the reaction between methyl carboxylate and carbon monoxide using ozium as a main catalyst is greatly increased.
先行時術において、金属助触媒として先に示し
た種々の金属類のうち2種以上を併用することも
できるとの記載があるものもあるが積極的に併用
することによつて本発明に示すような効果、即ち
反応速度が増大し、酢酸メチル等のカルボン酸メ
チルの転化率が向上するような効果のあることは
開示されておらず、また実施例においてもそのよ
うな効果のみられるものは示されていない。 Although some prior art state that two or more of the various metals listed above can be used in combination as metal cocatalysts, it is possible to actively use them in combination as shown in the present invention. There is no disclosure of such an effect, that is, an effect of increasing the reaction rate and improving the conversion rate of methyl carboxylates such as methyl acetate, and there are no examples showing such effects. Not shown.
即ち本発明はロジウム触媒とヨウ素化合物の存
在下、液相条件下でヨウ化メチルを反応系で生ず
る。カルボン酸メチル又はジメチルエーテルを一
酸化炭素でカルボニル化してカルボン酸無水物を
製造する方法において、(1)周期律表第B族金属
の零価のカルボニル錯化合物と、(2)Be、Mg、
Al、Ti、V、Cr、Mn及びZrよりなる群から選
ばれる金属原子を含むルイス酸との組み合わせよ
りなる助触媒を用いることを特徴とするカルボニ
ル化方法であり、これら金属助触媒の併用添加に
よつて活性を著しく向上させ得ることは先行技術
からは予想し得ぬものである。 That is, in the present invention, methyl iodide is produced in a reaction system under liquid phase conditions in the presence of a rhodium catalyst and an iodine compound. In a method for producing a carboxylic acid anhydride by carbonylating methyl carboxylate or dimethyl ether with carbon monoxide, (1) a zero-valent carbonyl complex compound of a Group B metal of the periodic table; (2) Be, Mg,
This is a carbonylation method characterized by using a promoter in combination with a Lewis acid containing a metal atom selected from the group consisting of Al, Ti, V, Cr, Mn and Zr, and the combined addition of these metal promoters. It was unexpected from the prior art that the activity could be significantly improved by
本発明における第B族金属零価カルボニル錯
化合物と金属原子を含むルイス酸との併用による
ロジウムを主触媒とするカルボン酸メチルと一酸
化炭素の反応の反応速度の向上効果を以下に説明
する。具体的な内容は実施例に後述するが、たと
えば第B族金属零価カルボニル錯化合物として
クロムヘクサカルボニル(Cr(CO)6)、金属原子
を含むルイス酸としてビスアセチルアセトナート
オキシチタン(TiO(acac)2)を併用した場合の
反応速度はCr(CO)6だけを添加した場合の約1.6
倍に向上し、またTiO(acac)2だけを添加した場
合の約2.7倍に向上した。驚くべきことにこのよ
うな反応速度の向上効果はCr(CO)6をたとえば塩
化クロムCrCl3のようなイオン性のクオム化合物
におきかえると全くみとめられない。即ちCrCl3
とTiO(acac)2を添加併用しても反応速度の向上
は全くみとめられない。さらに意外なことにCr
(CO)6とCrCl3を組み合わせるとその場合の反応
速度はCr(CO)6だけを添加したときの約1.5倍、
CrCl3だけを添加したときの約2.4倍に向上する。
このことはクロム化合物であつても、零価金属カ
ルボニルとしてのCr(CO)6と金属原子を含むルイ
ス酸としてのCrCl3の併用により反応速度が大き
く向上することを明らかに示している。以上の例
から第B族金属零価カルボニル錯化合物と金属
原子を含むルイス酸との併用によるところの反応
速度向上効果は明らかである。 The effect of improving the reaction rate of the reaction between methyl carboxylate and carbon monoxide using rhodium as the main catalyst by using the group B metal zero-valent carbonyl complex compound and a Lewis acid containing a metal atom in combination in the present invention will be explained below. The specific contents will be described later in Examples, but for example, chromium hexacarbonyl (Cr(CO) 6 ) is used as a zero-valent carbonyl complex compound of Group B metal, and titanium bisacetylacetonate oxytitanium (TiO ( The reaction rate when acac) 2 ) is used in combination is about 1.6 compared to when only Cr(CO) 6 is added.
The improvement was approximately 2.7 times that of when only TiO(acac) 2 was added. Surprisingly, such an effect of improving the reaction rate is not observed at all when Cr(CO) 6 is replaced with an ionic quom compound such as chromium chloride CrCl 3 . i.e. CrCl3
Even when TiO(acac) 2 and TiO(acac) 2 are added together, no improvement in the reaction rate is observed. Even more surprisingly, Cr
When (CO) 6 and CrCl 3 are combined, the reaction rate is approximately 1.5 times that when only Cr(CO) 6 is added,
The improvement is approximately 2.4 times that when only CrCl 3 is added.
This clearly shows that even with chromium compounds, the reaction rate is greatly improved by the combination of Cr(CO) 6 as a zero-valent metal carbonyl and CrCl 3 as a Lewis acid containing a metal atom. From the above examples, it is clear that the reaction rate is improved by the combined use of a Group B metal zero-valent carbonyl complex compound and a Lewis acid containing a metal atom.
以下に本発明の詳細について説明する。 The details of the present invention will be explained below.
本発明において用いられるロジウム触媒として
は、塩化ロジウム、臭化ロジウム、沃化ロジウ
ム、硝酸ロジウム等の無機ロジウム塩、酢酸ヨウ
化等のカルボン酸塩、ロジウムアセチルアセトナ
ート、ロジウムアミン錯塩よおびトリクロロトリ
スピリジンロジウム、ヒドリドカルボニルトリス
(トリフエニルホスフイン)ロジウム、クロロト
リス(トリフエニルホスフイン)ロジウム、クロ
ロカルボニルビス(トリフエニルホスフイン)ロ
ジウム等の有機ロジウム錯体が使用される。ロジ
ウム触媒の使用量は必ずしも厳密な制限はないが
反応液中の濃度として0.1〜50mmol/、好まし
くは10〜30mmol/の範囲で用いられる。 Rhodium catalysts used in the present invention include inorganic rhodium salts such as rhodium chloride, rhodium bromide, rhodium iodide, and rhodium nitrate, carboxylates such as acetic acid iodide, rhodium acetylacetonate, rhodium amine complex salts, and trichlorotris. Organic rhodium complexes such as pyridine rhodium, hydridocarbonyltris(triphenylphosphine)rhodium, chlorotris(triphenylphosphine)rhodium, chlorocarbonylbis(triphenylphosphine)rhodium are used. The amount of rhodium catalyst used is not necessarily strictly limited, but the concentration in the reaction solution is 0.1 to 50 mmol/, preferably 10 to 30 mmol/.
本発明においはハロゲン化物反応促進剤として
代表的に沃化メチルが用いられる。の使用量は必
ずしも厳密な制限はないが反応液中の濃度として
0.5〜10mol/、好ましくは1〜5mol/の範
囲で用いるのが好適である。さらに本発明では反
応液中にあつてヨウドニウムイオンI-を発生しう
る有機もしくは無機のヨウ化物が用いられるがロ
ジウム触媒としてヨウ化ロジウムを用いる場合
や、反応液中でヨウ化メチルと反応してヨウドニ
ウムイオンI-を発生しうる可能性のある有機リン
化合物や有機窒素化合物を配位子として有するロ
ジウム錯体、たとえばビドリドカルボニルトリス
(トリフエニルホスフイン)ロジウムやトリクロ
ロトリスピリジンロジウム等を用いる場合は有機
もしくは無機のヨードニウム塩を添加することは
必ずしも必要ではない。このようヨウ化物として
は反応液に可溶な金属ヨウ化物、メチルトリn−
ブチルホスフオニウムヨウジド(n−
Bu3MePI)、N−メチルピリジニウムヨウジド、
ヨウ化アンモニウムなどの有機もしくは無機のヨ
ードニウム塩を用いることができる。これら沃化
物の使用量は使用するロジウム原子に対するヨウ
素の原子比で1〜100、好ましくは1〜20程度の
割合になるような量で用いられる。 In the present invention, methyl iodide is typically used as the halide reaction promoter. There is not necessarily a strict limit on the amount used, but the concentration in the reaction solution
It is suitable to use it in a range of 0.5 to 10 mol/, preferably 1 to 5 mol/. Furthermore, in the present invention, an organic or inorganic iodide that can generate iodonium ion I - is used in the reaction solution, but in some cases rhodium iodide is used as a rhodium catalyst, or if it reacts with methyl iodide in the reaction solution. Rhodium complexes containing organophosphorus compounds or organic nitrogen compounds as ligands that may generate iodonium ion I - , such as bidridocarbonyltris(triphenylphosphine)rhodium or trichlorotrispyridinerhodium, are used. In some cases, it is not necessary to add organic or inorganic iodonium salts. Such iodides include metal iodides that are soluble in the reaction solution, methyl trin-
Butylphosphonium iodide (n-
Bu 3 MePI), N-methylpyridinium iodide,
Organic or inorganic iodonium salts such as ammonium iodide can be used. The amount of these iodides used is such that the atomic ratio of iodine to rhodium atoms used is about 1 to 100, preferably about 1 to 20.
さらに本発明ではこれら公知の触媒系に金属助
触媒として第B族金属即ちクロム、モリブデン
又はタングステンの零価のカルボニル錯化合物お
よび金属原子を含むルイス酸が添加併用される。
うすなわち第B族金属の零価カリボニル錯化合
物としては式
M(CO)6-oLo
(n=0、1、2もしくは3)
〔式中、Mはクロム、タングステンもしくはモリ
ブデンのいずれかを表わし、Lはトリフエニルホ
スフインやトリブチルホスフイン等の3価の有機
リン化合物、ピリジンやトリエチルアミン等の3
価の有機窒素化合物、もしくはテトラヒドロフラ
ン、アセトニトリル、イソニトリル等の配位性有
機化合物を表わす。〕で表わされる金属カルボニ
ル錯体、トリカルボニル(p−キシレン)クロ
ム、トリカルボニル(p−クロロトルエン)クロ
ム等のη6−アレン錯体もしくは〔(c2H5)4N〕+〔Cr
(CO)5I〕-のような錯化合物の形で使用すること
ができる。金属原子を含むルイス酸としては、ベ
リリウム、マグネシウム、アルミニウム、チタ
ン、バナジウム、クロム、マンガンとよびジルコ
ニウムよりなる群より選ばれる金属のハロゲン化
物、オキシハロゲン化物、アセチルアセトナー
ト、オキシアセチルアセトナート、アルコキシ
ド、カルボン酸塩、硝酸酸塩、硫酸塩の形で用い
ることができる。ルイス酸であつてもBF3の如
く、金属原子をもたないものは不適当である。金
属を含むルイス酸であつても塩化亜鉛の如く反応
系中で溶解度の小さい化合物に変化してしまう化
合物は好ましくないのは当然である。 Furthermore, in the present invention, a zero-valent carbonyl complex compound of a Group B metal, ie, chromium, molybdenum or tungsten, and a Lewis acid containing a metal atom are used in combination as a metal promoter to these known catalyst systems.
In other words, a zero-valent caribonyl complex compound of Group B metal has the formula M(CO) 6-o Lo (n=0, 1, 2 or 3) [wherein M represents either chromium, tungsten or molybdenum]. In the expression, L is a trivalent organic phosphorus compound such as triphenylphosphine or tributylphosphine, or a trivalent organic phosphorus compound such as pyridine or triethylamine.
It represents a valent organic nitrogen compound or a coordinating organic compound such as tetrahydrofuran, acetonitrile, isonitrile, etc. ]; η 6 -arene complexes such as tricarbonyl (p-xylene) chromium and tricarbonyl (p-chlorotoluene) chromium; or [(c 2 H 5 ) 4 N] + [Cr
It can be used in the form of complex compounds such as (CO) 5 I] - . Lewis acids containing metal atoms include halides, oxyhalides, acetylacetonates, oxyacetylacetonates, and alkoxides of metals selected from the group consisting of beryllium, magnesium, aluminum, titanium, vanadium, chromium, manganese, and zirconium. , carboxylate, nitrate, and sulfate. Even Lewis acids without metal atoms, such as BF 3 , are unsuitable. Even if the Lewis acid contains a metal, it is natural that compounds such as zinc chloride that change into compounds with low solubility in the reaction system are not preferred.
クロム、モリブデンもしくはタングステンの零
価のカルボニル錯化合物および金属原子を含むル
イス酸の使用量は、主触媒であるロジウムに対す
る金属原子の比で0.1〜100、好ましくは1〜10の
範囲で用いられる。 The amount of the zero-valent carbonyl complex compound of chromium, molybdenum or tungsten and the Lewis acid containing a metal atom is in the range of 0.1 to 100, preferably 1 to 10, in terms of the ratio of metal atoms to rhodium, which is the main catalyst.
さらに、本発明によるところの触媒系における
零価金属カルボニル錯化合物と金属原子を含むル
イス酸の併用によるロジウムを主触媒とする酢酸
メチルと一酸化炭素とから無水酢酸を生成する反
応は反応速度の構造効果は、たとえば酢酸などの
カルボン酸を溶媒として添加することによつて最
大限に発揮させることができる。このようなカル
ボン酸としては、その融点が50℃以下ののカルボ
ン酸を用いることができ、その使用量は厳密な制
限はないが装入原料中の重量パーセントで5〜10
重量パーセント程度になるようにするのが好まし
い。ただしメタノールと酢酸メチル混合物と一酸
化炭素を反応させ、反応系内で酢酸が生成する場
合は溶媒としてカルボン酸を添加する必要はな
い。 Furthermore, the reaction of producing acetic anhydride from methyl acetate and carbon monoxide with rhodium as the main catalyst using a zero-valent metal carbonyl complex compound and a Lewis acid containing a metal atom in combination in the catalyst system according to the present invention has a high reaction rate. The structural effect can be maximized by adding a carboxylic acid such as acetic acid as a solvent. As such a carboxylic acid, a carboxylic acid having a melting point of 50°C or less can be used, and the amount used is not strictly limited, but it is 5 to 10% by weight in the charged raw material.
It is preferable to adjust the amount to approximately 100% by weight. However, when acetic acid is produced in the reaction system by reacting a mixture of methanol and methyl acetate with carbon monoxide, it is not necessary to add carboxylic acid as a solvent.
また本発明を実施する場合の反応温度は130℃
〜250℃好ましくは150〜200℃が用いられ、一酸
化炭素の圧力は反応時で5〜100Kg/cm2G、好ま
しくは10〜80Kg/cm2Gが用いられる。 In addition, the reaction temperature when carrying out the present invention is 130°C.
-250°C, preferably 150-200°C, and the carbon monoxide pressure used during the reaction is 5-100 Kg/cm 2 G, preferably 10-80 Kg/cm 2 G.
本発明でカルボニル化されるべき出発物は、上
記の反応系中でヨウ化メチルを生ずるようなカル
ボン酸メチルである。代表的には酢酸メチルのカ
ルボニル化による無水酢酸の製造が挙げられる。
ジメチルエーテルも本発明のカルボニル化法によ
り無水酢酸とすることができる。メタノールのカ
ルボニル化による酢酸の製造にも本発明の方法が
適用できるが、酢酸のみを目的とする場合は、反
応系内に水が存在する状態でおこなえば本発明に
よらないでも十分大きな反応速度で進行する。し
かし、酢酸メチルとメタノールとの混合物を原料
として、カルボニル化をおこない無水差酸と酢酸
とを併産する場合のように事実上無水の状態でカ
ルボニル化反応をおこなう場合、メタノールのカ
ルボニル化にとつても本発明の方法が有用であ
る。 The starting material to be carbonylated in the present invention is a methyl carboxylate that yields methyl iodide in the reaction system described above. A typical example is the production of acetic anhydride by carbonylation of methyl acetate.
Dimethyl ether can also be converted into acetic anhydride by the carbonylation method of the present invention. The method of the present invention can also be applied to the production of acetic acid by carbonylating methanol, but if only acetic acid is desired, the reaction rate can be sufficiently high even without using the present invention as long as it is carried out in the presence of water in the reaction system. Proceed with However, when the carbonylation reaction is carried out in a virtually anhydrous state, such as when carbonylating a mixture of methyl acetate and methanol as a raw material to co-produce dianhydride and acetic acid, it is difficult to carbonylate methanol. In any case, the method of the present invention is useful.
またプロピオン酸メチルのカルボニル化による
プロピオン酸、酢酸混合無水物の製造などカルボ
ン酸メチルのカルボニル化反応にも本発明方法が
適用できる。 The method of the present invention can also be applied to carbonylation reactions of methyl carboxylate, such as the production of propionic acid and acetic acid mixed anhydrides by carbonylation of methyl propionate.
以下、比較例と対比しつつ本発明を実施例によ
り具体的に説明する。 EXAMPLES Hereinafter, the present invention will be specifically explained using Examples while comparing with Comparative Examples.
尚、次の記号が以下のように使用される。 In addition, the following symbols are used as follows.
AcOMe……酢酸メチル
Ac2O……無水酢酸
また、酢酸メチルの転化率は以下の式により算
出した。AcOMe...methyl acetate Ac 2 O...acetic anhydride The conversion rate of methyl acetate was calculated using the following formula.
AcOMe転化率(%)=AcOMe装入量(mmol)−反応
後液中のAcOMe(mmol)/AcOMe装入量(mmol)×100
なお、反応後液中の酢酸メチルの残存量(mmol)
および無水酢酸の生成量(mmol)は、反応後液の
ガスクロ分析によりもとめた。また、反応速度
は、ガス吸収がみとめられた直後より30分間の圧
力降下より算出され、1時間にロジウム1mol当
りに反応した一酸化炭素のmol数で表わされる。 AcOMe conversion rate (%) = Amount of AcOMe charged (mmol) - AcOMe (mmol) in the solution after reaction / Amount of AcOMe charged (mmol) x 100 The remaining amount of methyl acetate in the solution after reaction (mmol)
The amount of acetic anhydride produced (mmol) was determined by gas chromatography analysis of the post-reaction solution. The reaction rate is calculated from the pressure drop for 30 minutes immediately after gas absorption is observed, and is expressed as the number of moles of carbon monoxide reacted per mole of rhodium per hour.
実施例 1
内容量300c.c.のハステロイB製オートクレーブ
に塩化ロジウム・三水和物0.163g、沃化メチル
7.2g、メチルトリ−n−ブチルホスホイウムヨ
ージド(MePn−Bu3・I)1.7g、クロムヘキサ
カルボニル(Cr(CO)6)0.15g、ビスアセチルア
セトナートオキシチタン(TiO(acac)2)0.17g、
酢酸10mlおよび酢酸メチル29.3gを装入し、内部
の空気を一酸化炭素で置換したのち、さらに一酸
化炭素を40Kg/cm2・Gになるまで加圧した。つい
でオートクレーブを175℃になるまで加熱し175℃
で80分間反応させた。反応後終了冷却し、残圧を
放圧したのち、反応液を取り出しガスクロ分析し
て反応成績を調べた。AcOMe転化率は76%、
Ac2O生成量272mmolおよび反応速度は517mol/
molRh.Hであつた。Example 1 0.163 g of rhodium chloride trihydrate and methyl iodide were placed in a Hastelloy B autoclave with a capacity of 300 c.c.
7.2g, methyltri-n-butylphosphoium iodide (MePn- Bu3.I ) 1.7g, chromiumhexacarbonyl (Cr(CO) 6 ) 0.15g, bisacetylacetonatooxytitanium (TiO(acac) 2 ) 0.17g,
After charging 10 ml of acetic acid and 29.3 g of methyl acetate and replacing the air inside with carbon monoxide, carbon monoxide was further pressurized to 40 kg/cm 2 ·G. Then heat the autoclave until it reaches 175℃.
The reaction was carried out for 80 minutes. After the completion of the reaction, the reaction mixture was cooled and the residual pressure was released, and the reaction solution was taken out and subjected to gas chromatography analysis to examine the reaction results. AcOMe conversion rate is 76%,
The amount of Ac 2 O produced was 272 mmol and the reaction rate was 517 mol/
It was molRh.H.
比較例 1
ビスアセチルアセトナートオキシチタンを除い
た他は実施例1と同様の反応を行なつた。結果は
次のとおりであつた。Comparative Example 1 The same reaction as in Example 1 was carried out except that titanium bisacetylacetonate was omitted. The results were as follows.
AcOMe転化率56%、Ac2O生成量220mmol、反
応速度332mol/molRh・H
比較例 2
クロムヘキサカルボニルを除いた他は、実施例
1と同様の反応を行なつた。結果は次のとおりで
あつた。 AcOMe conversion rate 56%, Ac 2 O production amount 220 mmol, reaction rate 332 mol/molRh·H Comparative Example 2 The same reaction as in Example 1 was carried out except that chromium hexacarbonyl was removed. The results were as follows.
AcOMe転化率30%、Ac2O生成量98mmol、反応
速度190mol/molRh・H
実施例 2
実施例1において用いたビスアセチルアセトナ
ートオキシチタンにかえて、塩化クロムCrCl3を
1.36gを添加した他は実施例1と同様の反応を行
なつた。結果は次のとおりであつた。 AcOMe conversion rate 30%, Ac 2 O production amount 98 mmol, reaction rate 190 mol/molRh・H Example 2 Chromium chloride CrCl 3 was used in place of the bisacetylacetonatooxytitanium used in Example 1.
The same reaction as in Example 1 was carried out except that 1.36 g was added. The results were as follows.
AcOMe転化率71%、Ac2O生成量252mmol、反
応速度483mol/molRh・H
比較例 3
クロムヘキサカルボニルを除いた他は実施例2
と同様の反応を行なつた。結果は次のとおりであ
つた。 AcOMe conversion rate 71%, Ac 2 O production amount 252 mmol, reaction rate 483 mol/molRh・H Comparative example 3 Example 2 except that chromium hexacarbonyl was removed
A similar reaction was carried out. The results were as follows.
AcOMe転化率48%、Ac2O生成量164mmol、反
応速度204mol/molRh・H
比較例 4
比較例3にビスアセチルアセトナートオキシチ
タン0.7gを添加して同様の反応を行なつた。結
果は次のとおりであつた。 AcOMe conversion rate 48%, Ac 2 O production amount 164 mmol, reaction rate 204 mol/molRh·H Comparative Example 4 0.7 g of bisacetylacetonatooxytitanium was added to Comparative Example 3 and the same reaction was carried out. The results were as follows.
AcOMe転化率32%、Ac2O生成量86mmol、反応
速度118mol/molRh・H
実施例 3
ロジウム触媒として塩化ロジウム・三水和物に
かえて、ヒドリドカルボニルトリス(トリフエニ
ルホスフイン)ロジウム0.6gを用いた他は実施
例1と同様の反応を行なつた。結果は次のとおり
であつた。 AcOMe conversion rate 32%, Ac 2 O production amount 86 mmol, reaction rate 118 mol/molRh・H Example 3 Instead of rhodium chloride trihydrate as a rhodium catalyst, 0.6 g of hydridocarbonyl tris(triphenylphosphine) rhodium was used. The reaction was carried out in the same manner as in Example 1, except that the following compounds were used. The results were as follows.
AcOMe転化率76%、Ac2O生成量288mmol、反
応速度461mol/molRh・H
比較例 5
ビスアセチルアセトナートオキシチタンを除い
た他は実施例3と同様の反応を行なつた。結果は
次のとおりであつた。 AcOMe conversion rate 76%, Ac 2 O production amount 288 mmol, reaction rate 461 mol/molRh·H Comparative Example 5 The same reaction as in Example 3 was carried out except that titanium bisacetylacetonate was omitted. The results were as follows.
AcOMe転化率69%、Ac2O生成量252mmol、反
応速度353mol/molRh・H
実施例 4
メチルトリ−n−ブチルホスホニウムヨージト
を除いた他は実施例3と同様の反応を行なつた。
結果は次のとおりであつた。 AcOMe conversion rate 69%, Ac 2 O production amount 252 mmol, reaction rate 353 mol/molRh.H Example 4 The same reaction as in Example 3 was carried out except that methyltri-n-butylphosphonium iodite was removed.
The results were as follows.
AcOMe転化率72%、Ac2O生成量293mmol、反
応速度427mol/molRh・H
実施例 5
クロムヘキサカルボニルに代えてタングステン
ヘキサカルボニル(W(CO)6)0.23gを用いた他
は実施例1と同様の反応を行なつた。結果は次の
とおりであつた。 AcOMe conversion rate 72%, Ac 2 O production amount 293 mmol, reaction rate 427 mol/molRh・H Example 5 Same as Example 1 except that 0.23 g of tungsten hexacarbonyl (W(CO) 6 ) was used in place of chromium hexacarbonyl. A similar reaction was performed. The results were as follows.
AcOMe転化率86%、Ac2O生成量260mmol、反
応速度450mol/molRh・H
比較例 6
ビスアセチルアセトナートオキシチタンを除い
た他は実施例5と同様の反応を行なつた結果は次
のとおりであつた。 AcOMe conversion rate 86%, Ac 2 O production amount 260 mmol, reaction rate 450 mol/molRh・H Comparative Example 6 The same reaction as in Example 5 was carried out except for the use of bisacetylacetonate oxytitanium. The results are as follows. It was hot.
AcOMe転化率39%、Ac2O生成量152mmol、反
応速度171mol/molRh・H
実施例 6
クロムヘキサカルボニルに代えてトリフエニル
ホスフインクロムペンタカルボニル(Cr(CO)5
(PPh3))を用いた他は実施例1と同様の反応を
行なつた結果は次のとおりであつた。 AcOMe conversion rate 39%, Ac 2 O production amount 152 mmol, reaction rate 171 mol/molRh・H Example 6 Triphenylphosphine chromium pentacarbonyl (Cr(CO)) 5 in place of chromium hexacarbonyl
(PPh 3 )) was carried out in the same manner as in Example 1, and the results were as follows.
AcOMe転化率72%、Ac2O生成量266mmol、反
応速度431mol/molRh・H
実施例 7
クロムヘキサカルボニルに代えてビス(トリフ
エニルホスフイン)テトラカルボニルクロム
(Cr(CO)4(PPh3)2)を用いた他は実施例1と同
様の反応を行なつた。結果は次のとおりであつ
た。 AcOMe conversion rate 72%, Ac 2 O production amount 266 mmol, reaction rate 431 mol/molRh・H Example 7 Bis(triphenylphosphine)tetracarbonylchromium (Cr(CO) 4 (PPh 3 ) 2 ) instead of chromium hexacarbonyl ) was used, but the same reaction as in Example 1 was carried out. The results were as follows.
AcOMe転化率73%、Ac2O生成量277mmol、反
応速度421mol/molRh・H
実施例 8
クロムヘキサカルボニルに代えてトリカルボニ
ル(η−メシチレン)クロム〔Cr(CO)31,3,
5−(CH3)3C6H3)〕を用いた他は実施例1と同
様の反応を行なつた。結果は次のとおりであつ
た。 AcOMe conversion rate 73%, Ac 2 O production amount 277 mmol, reaction rate 421 mol/molRh・H Example 8 Tricarbonyl (η-mesitylene) chromium [Cr(CO) 3 1,3,
The same reaction as in Example 1 was carried out except that 5-(CH 3 ) 3 C 6 H 3 )] was used. The results were as follows.
AcOMe転化率72%、Ac2O生成量279mmol、反
応速度398mol/molRh・H
実施例 9
ビスアセチルアセトナートオキシチタンに代え
て塩化ベリイウム0.1gを用いた他は実施例1と
同様の反応を行なつた。結果は次のとおりであつ
た。 AcOMe conversion rate 72%, Ac 2 O production amount 279 mmol, reaction rate 398 mol/molRh・H Example 9 The same reaction as Example 1 was carried out except that 0.1 g of beryllium chloride was used in place of bisacetylacetonatooxytitanium. Summer. The results were as follows.
AcOMe転化率73%、Ac2O生成量282mmol、反
応速度408mol/molRh・H
実施例 10
ビスアセチルアセトナートオキシチタンに代え
てメチルチタネート(Ti(OCH3)4)0.12g用いた
他は実施例1と同様の反応を行なつた。結果は次
のとおりであつた。 AcOMe conversion rate 73%, Ac 2 O production amount 282 mmol, reaction rate 408 mol/molRh・H Example 10 Example except that 0.12 g of methyl titanate (Ti(OCH 3 ) 4 ) was used in place of bisacetylacetonate oxytitanium. The same reaction as in 1 was carried out. The results were as follows.
AcOMe転化率80%、Ac2O生成量310mmol、反
応速度493mol/molRh・H
実施例 11
ビスアセチルアセトナートオキシチタンに代え
てアルミニウムイソプロポキシド(Al(Oi−
Pr)3)0.27gを用いた他は実施例1と同様の反応
を行なつた。結果は次のとおりであつた。 AcOMe conversion rate 80%, Ac 2 O production amount 310 mmol, reaction rate 493 mol/molRh・H Example 11 Aluminum isopropoxide (Al(Oi−
The same reaction as in Example 1 was carried out except that 0.27 g of Pr) 3 ) was used. The results were as follows.
AcOMe転化率74%、Ac2O生成量282mmol、反
応速度384mol/molRh・H
実施例 12
ビスアセチルアセトナートオキシチタンに代え
て臭化アルミニウム(AlBr3)0.35gを用いた他
は実施例1と同様の反応を行なつた。結果は次の
とおりであつた。 AcOMe conversion rate 74%, Ac 2 O production amount 282 mmol, reaction rate 384 mol/molRh・H Example 12 Same as Example 1 except that 0.35 g of aluminum bromide (AlBr 3 ) was used in place of bisacetylacetonatooxytitanium. A similar reaction was carried out. The results were as follows.
AcOMe転化率69%、Ac2O生成量252mmol、反
応速度348mol/molRh・H
実施例 13
ビスアセチルアセトナートオキシチタンに代え
て、ビスアセチルアセトナートオキシバナジウム
(VO(acact)2)0.35g用いた他は、実施例1と同
様の反応を行なつた。結果は次のとおりであつ
た。 AcOMe conversion rate 69%, Ac 2 O production amount 252 mmol, reaction rate 348 mol/molRh・H Example 13 0.35 g of bisacetylacetonatooxyvanadium (VO(acact) 2 ) was used in place of bisacetylacetonatooxytitanium. The other reactions were the same as in Example 1. The results were as follows.
AcOMe転化率64%、Ac2O生成量230mmol、反
応速度351mol/molRh・H
実施例 14
ビスアセチルアセトナートオキシチタンに代え
てオキシ酢酸ジルコニウムZrO(OAc)20.3gを用
いた他は実施例1と同様の反応を行なつた。結果
は次のとおりであつた。 AcOMe conversion rate 64%, Ac 2 O production amount 230 mmol, reaction rate 351 mol/molRh・H Example 14 Example 1 except that 0.3 g of zirconium oxyacetate ZrO (OAc) 2 was used in place of bisacetylacetonate oxytitanium. A similar reaction was carried out. The results were as follows.
AcOMe転化率72%、Ac2O生成量258mmol、反
応速度427mol/molRh・H
実施例 15
メチル−トリ−n−ブチルホスホニウムヨージ
ド(n・Bu3PMeI)を除いた他は実施例3と同
様の反応を行なつた。結果は次のとおりであつ
た。 AcOMe conversion rate 72%, Ac 2 O production amount 258 mmol, reaction rate 427 mol/molRh・H Example 15 Same as Example 3 except for methyl-tri-n-butylphosphonium iodide (n・Bu 3 PMeI). The reaction was carried out. The results were as follows.
AcOMe転化率72%、Ac2O生成量293mmol、反
応速度427mol/molRh・H
実施例 16
酢酸に代えて、メタノール5.84gを装入し、酢
酸メチル−メタノール混合物と一酸化炭素との反
応とし、ビスアセチルアセトナートオキシチタン
の代わりにオキシ塩化ジルコニウム8水和物0.43
gを用いた他は実施例1と同様の条件で反応を行
なつた。結果は次のとおりであつた。 AcOMe conversion rate 72%, Ac 2 O production amount 293 mmol, reaction rate 427 mol/molRh・H Example 16 Instead of acetic acid, 5.84 g of methanol was charged, and the methyl acetate-methanol mixture was reacted with carbon monoxide. Zirconium oxychloride octahydrate 0.43 instead of bisacetylacetonate oxytitanium
The reaction was carried out under the same conditions as in Example 1 except that g was used. The results were as follows.
メタノール転化率100%、AcOMe転化率55.2
%、酢酸生成量203mmmol、Ac2O生成量173mmol。 Methanol conversion rate 100%, AcOMe conversion rate 55.2
%, acetic acid production amount 203 mmol, Ac 2 O production amount 173 mmol.
比較例 7
オキシ酢酸ジルコニウム・8水和物を除いな他
は実施例16と同様の反応を行なつたところ
AcOMe転化率は41%であつた。Comparative Example 7 The same reaction as in Example 16 was carried out except that zirconium oxyacetate octahydrate was used.
AcOMe conversion rate was 41%.
実施例 17
酢酸のかわりにプロピオン酸10mlを用いたほか
は実施例10と同様の反応を行なつた。その結果
AcOMe転化率79%、反応速度400mol/molRh・
Hであつた。生成物と溶媒との間でアシル基の交
換が行なわれ、プロピオン酸は事実上全部無水プ
ロピオン酸になつた。この他はAc2O211mmol、
AcOH185mmolが得られた。Example 17 The same reaction as in Example 10 was carried out except that 10 ml of propionic acid was used instead of acetic acid. the result
AcOMe conversion rate 79%, reaction rate 400mol/molRh・
It was H. An exchange of acyl groups took place between the product and the solvent, and the propionic acid became virtually all propionic anhydride. Other than this, Ac 2 O211mmol,
185 mmol of AcOH was obtained.
実施例 18
クロムヘキサカルボニルのかわりにモリブデン
ヘキサカルボニル(Mo(CO)6)0.17gを用いた
他は実施例10と同様の反応を行なつた。その結果
は次の通りである。Example 18 The same reaction as in Example 10 was carried out except that 0.17 g of molybdenum hexacarbonyl (Mo(CO) 6 ) was used instead of chromium hexacarbonyl. The results are as follows.
AcOMe転化率59%、Ac2O生成量225mmol、反
応速度337mol/molRh・H
比較例 8
メチルチタネートを加えなかつた他は実施例18
と同様の反応を行なつた。その結果は次の通りで
ある。 AcOMe conversion rate 59%, Ac 2 O production amount 225 mmol, reaction rate 337 mol/molRh・H Comparative example 8 Example 18 except that methyl titanate was not added
A similar reaction was carried out. The results are as follows.
AcOMe転化率45%、Ac2O生成量148mmol、反
応速度189mol/molRh・H。 AcOMe conversion rate 45%, Ac 2 O production amount 148 mmol, reaction rate 189 mol/mol Rh.H.
Claims (1)
条件下でヨウ化メチルを反応系で生ずるカルボン
酸メチル又はジメチルエーテルを一酸化炭素でカ
ルボニル化してカルボン酸無水物を製造する方法
において、(1)周期律表第B族金属の零価のカル
ボニル錯化合物と、(2)Be、Mg、Al、Ti、V、
Cr、Mn及びZrよりなる群から選ばれる金属原子
を含むルイス酸との組み合わせよりなる助触媒を
用いることを特徴とするカルボニル化方法。 2 カルボン酸メチルが酢酸メチルである特許請
求の範囲第1項記載の方法。 3 酢酸メチルとメタノールの混合物を用いる特
許請求の範囲第2項記載の方法。[Claims] 1. A method for producing a carboxylic acid anhydride by carbonylating methyl carboxylate or dimethyl ether, which produces methyl iodide in a reaction system with carbon monoxide, under liquid phase conditions in the presence of a rhodium catalyst and an iodine compound. In, (1) a zero-valent carbonyl complex compound of Group B metal of the periodic table, and (2) Be, Mg, Al, Ti, V,
1. A carbonylation method characterized by using a cocatalyst consisting of a combination with a Lewis acid containing a metal atom selected from the group consisting of Cr, Mn and Zr. 2. The method according to claim 1, wherein the methyl carboxylate is methyl acetate. 3. The method according to claim 2, using a mixture of methyl acetate and methanol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58105460A JPS59231040A (en) | 1983-06-13 | 1983-06-13 | Carbonylation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58105460A JPS59231040A (en) | 1983-06-13 | 1983-06-13 | Carbonylation process |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59231040A JPS59231040A (en) | 1984-12-25 |
JPH0432056B2 true JPH0432056B2 (en) | 1992-05-28 |
Family
ID=14408187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58105460A Granted JPS59231040A (en) | 1983-06-13 | 1983-06-13 | Carbonylation process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59231040A (en) |
-
1983
- 1983-06-13 JP JP58105460A patent/JPS59231040A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59231040A (en) | 1984-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4115444A (en) | Process for preparing carboxylic acid anhydrides | |
CA1058636A (en) | Process for preparing carboxylic acid anhydrides | |
US4252741A (en) | Carbonylation with Group VIII noble metal catalysts | |
CA1128545A (en) | Production of acetic anhydride | |
JPS6230179B2 (en) | ||
US4002678A (en) | Preparation of carboxylic acid anhydrides | |
US4559183A (en) | Preparation of carboxylic acid anhydrides | |
US4483803A (en) | Preparation of carboxylic acid anhydrides | |
US4335059A (en) | Preparation of carboxylic acid anhydrides | |
US4251458A (en) | Process for preparing carboxylic acid anhydrides | |
JP3766437B2 (en) | Production of carboxylic acids or their esters by carbonylation in the presence of iridium | |
JPS6043767B2 (en) | Catalyst for alcohol carbonylation | |
JPS6245854B2 (en) | ||
JPS6147428A (en) | Manufacture of carboxylic acid, carboxylic anhydride and optionally carboxylic acid ester simultaneously | |
CA1202321A (en) | Process for the production of one or more carboxylic acid anhydrides | |
GB2067557A (en) | Preparation of acetic anhydride | |
JPH0432056B2 (en) | ||
US4335058A (en) | Preparation of carboxylic acid anhydrides | |
US3923883A (en) | Method for the oxycarbonylation of olefins | |
US4436889A (en) | Preparation of carboxylic acids by carbonylation of alcohols | |
EP0098689B1 (en) | Process for the production of monocarboxylic acid anhydrides | |
US4698187A (en) | Preparation of carboxylic acid anhydrides | |
US5189214A (en) | Production of acetic acid | |
JPH066550B2 (en) | Acetyl compound manufacturing method | |
US4537871A (en) | Carbonylation catalyst |