JPH04320375A - Optically driven semiconductor device - Google Patents

Optically driven semiconductor device

Info

Publication number
JPH04320375A
JPH04320375A JP8711791A JP8711791A JPH04320375A JP H04320375 A JPH04320375 A JP H04320375A JP 8711791 A JP8711791 A JP 8711791A JP 8711791 A JP8711791 A JP 8711791A JP H04320375 A JPH04320375 A JP H04320375A
Authority
JP
Japan
Prior art keywords
optical
light
light source
driven semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8711791A
Other languages
Japanese (ja)
Inventor
Katsuhiro Endo
遠藤 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8711791A priority Critical patent/JPH04320375A/en
Publication of JPH04320375A publication Critical patent/JPH04320375A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the quantity of light from lowering by forming an optical transmission path between a light source and a semiconductor element of a single optical fiber having no joint. CONSTITUTION:Two laser diode modules 11, 12 are respectively coupled with long optical fibers 71, 72 of several tens of meters through incident connectors 21, 22 and both optical fibers 71, 72 are extending upto outlet connectors 44 coupled with the light receiving part of an optical thyristor 6. The optical fibers 71, 72 are step index type fibers having good transmission characteristics composed of silicon or multi-component glass which satisfy the conditions of considerably high optical power and heat resistance. Furthermore, a rod lens is inserted between a light source 10 and the connector 21 in order to converge the laser beam thus increasing the quantity of light incident to the optical fiber 71.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光サイリスタのような
光駆動型半導体素子の駆動のための光源を複数個備えて
、光源の冗長方式を採用した光駆動型半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-driven semiconductor device that is equipped with a plurality of light sources for driving light-driven semiconductor elements such as optical thyristors and employs a light source redundancy system.

【0002】0002

【従来の技術】高電圧の一次側回路と制御回路の絶縁を
容易にするために光サイリスタを用いた光駆動型半導体
装置では、通常光サイリスタをオンさせるための信号を
、発光ダイオードあるいはレーザダイオードなどの光源
の光を光ファイバによって導く。そして、高電圧で作動
させるために光サイリスタを複数個直列接続して使うの
が一般的である。このように複数個直列接続された光サ
イリスタを同時にオン状態にするには、光サイリスタの
点弧ばらつきを凌駕させるだけの相当に大きな光パワー
を必要とし、絶対条件ともなる。
[Prior Art] In an optically driven semiconductor device that uses an optical thyristor to facilitate isolation between a high-voltage primary circuit and a control circuit, the signal for turning on the optical thyristor is usually transmitted through a light emitting diode or a laser diode. The light from such light sources is guided through optical fibers. In order to operate at high voltage, it is common to use multiple optical thyristors connected in series. In order to simultaneously turn on a plurality of optical thyristors connected in series in this manner, a considerably large optical power is required to overcome the firing variations of the optical thyristors, and this is also an absolute condition.

【0003】サイリスタは、電力供給の安定化, 信頼
性の確保のため、長期間にわたる寿命が要求される。し
かるに点弧用の光源には長期間にわたって寿命を持つも
のが少ないため、光源を複数個にして常に予備の光源を
待機させておく光源の冗長方式が採用される。図2は例
えば特開昭61−203678号公報で公知の光源を2
個とした場合の冗長方式システムの構成を示す。この場
合、2個のレーザダイオードモジュール11, 12に
は、各々入射側コネクタ21, 22を介して例えばコ
ア径100 μmの光ファイバ31, 32が結合され
、それぞれ図3(a) に示す断面を持つ2本のファイ
バ31, 32は、出射側コネクタ41の直前で融着技
術によって1本化されて図3(b)に示すような断面3
3をもつ2芯−1芯ファイバが形成される。出射側コネ
クタ41は2芯−1芯コネクタ42を介して入射側コネ
クタ43と結合し、図3(c) に断面を示す、例えば
コア径200 μmの長尺ファイバ5に光を導く。長尺
ファイバ5に導かれた光は出射側コネクタ44から光サ
イリスタ6へと導かれる。
[0003] Thyristors are required to have a long service life in order to stabilize power supply and ensure reliability. However, since there are few light sources for ignition that have a long lifespan, a light source redundancy system is adopted in which a plurality of light sources are used and a spare light source is always on standby. FIG. 2 shows, for example, two light sources known in Japanese Unexamined Patent Publication No. 61-203678.
The configuration of the redundant system is shown below. In this case, optical fibers 31 and 32 having a core diameter of 100 μm, for example, are connected to the two laser diode modules 11 and 12 via incident-side connectors 21 and 22, respectively, and each has a cross section shown in FIG. 3(a). The two fibers 31 and 32 are combined into one fiber by a fusion technique just before the output side connector 41, resulting in a cross section 3 as shown in FIG. 3(b).
A 2-to-1 fiber with 3 is formed. The output side connector 41 is coupled to the input side connector 43 via a 2-core-1-core connector 42, and guides light to a long fiber 5 having a core diameter of 200 μm, for example, whose cross section is shown in FIG. 3(c). The light guided to the long fiber 5 is guided from the output side connector 44 to the optical thyristor 6.

【0004】このような冗長方式システムにおいて、最
初光源11がシステムを動作させているとする。この光
源11の光出力が低下してきたら、複数個直列接続され
た光サイリスタの点弧ばらつきを凌駕させるだけの光パ
ワーが不足し、各光サイリスタを同時にオン状態にでき
ず、点弧し難い光サイリスタの電圧が跳ね上がる。その
電圧の跳ね上がりを検出して待機している光源12へ切
替え、システムダウンを防止するのが光源冗長の目的で
ある。
In such a redundant system, it is assumed that the light source 11 is initially operating the system. When the optical output of this light source 11 decreases, there is insufficient optical power to overcome the firing variations of the plurality of optical thyristors connected in series, making it impossible to turn on each optical thyristor at the same time, making it difficult to ignite the light. The voltage of the thyristor jumps. The purpose of light source redundancy is to detect this voltage jump and switch to a standby light source 12 to prevent system failure.

【0005】[0005]

【発明が解決しようとする課題】しかし冗長方式システ
ムでは、光源11, 12と光サイリスタ6との間に数
回の結合点を有するため、各々の結合点で損失が発生し
、受光素子が受ける光量は、最終的に初期光量の30%
にも低下してしまう。その中で特に大きな損失の発生す
る点は、2本の光源側ファイバ31, 32が出射側コ
ネクタ41の直前で融着される点と2芯−1芯コネクタ
42と長尺ファイバ入射側コネクタ43との間の結合点
であり、その結合損失は2.5dB(有効分56%) 
にもなっており、総合的には5dB (30%) にも
なってしまう。この光量低下は複数個直列接続された光
サイリスタの点弧ばらつきを凌駕できずに、ターンオン
時の電圧跳ね上がりを招き、しいては受光素子の電圧破
壊に到らしめてしまい、最終的には装置がシステムダウ
ンする危険性を含む欠点を有している。
However, in the redundant system, since there are several coupling points between the light sources 11 and 12 and the optical thyristor 6, a loss occurs at each coupling point, and the light receiving element receives a loss. The final light intensity is 30% of the initial light intensity.
It also decreases. Among these, the points where particularly large losses occur are the point where the two light source side fibers 31 and 32 are fused just before the output side connector 41, the 2-core to 1-core connector 42, and the long fiber input side connector 43. It is the coupling point between the
This results in a total of 5 dB (30%). This reduction in light intensity cannot overcome the firing variations of multiple optical thyristors connected in series, leading to a voltage jump at turn-on, which in turn leads to voltage breakdown of the light receiving element, and ultimately leads to equipment failure. It has drawbacks including the risk of system failure.

【0006】本発明の目的は、上記の欠点を除き、冗長
光伝送システムを採用した場合の光源から受光素子に至
る間の光量低下を防止した光駆動型半導体装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optically driven semiconductor device which eliminates the above-mentioned drawbacks and prevents a decrease in the amount of light from a light source to a light receiving element when a redundant optical transmission system is employed. .

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、1個の光駆動型半導体素子を駆動する
ために複数個の光源を備える冗長方式を採用した光駆動
型半導体装置において、光源と半導体素子との間の光伝
送径路が中間で結合されない1本の光ファイバよりなる
ものとする。また、光駆動型半導体素子の受光部に対向
して各光ファイバに共通に結合されるコネクタを備えた
ことが有効である。そして、光源としてレーザダイオー
ド、光駆動型半導体素子として光サイリスタを用いるこ
とができる。また、光源としてのレーザダイオードと光
ファイバに結合されるコネクタとの間にロッドレンズが
介在することも有効である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a light-driven semiconductor device that employs a redundant system including a plurality of light sources to drive one light-driven semiconductor element. In the apparatus, it is assumed that the optical transmission path between the light source and the semiconductor element is composed of a single optical fiber that is not coupled in the middle. Furthermore, it is effective to provide a connector that faces the light receiving section of the optically driven semiconductor element and is commonly coupled to each optical fiber. A laser diode can be used as the light source, and an optical thyristor can be used as the optically driven semiconductor element. It is also effective to interpose a rod lens between a laser diode as a light source and a connector coupled to an optical fiber.

【0008】[0008]

【作用】各光源と光駆動型半導体素子の間の伝送径路に
は1本の光ファイバのみが存在し、中間に結合点がない
ため、ファイバ端末部以外における結合損失がなくなり
、大きな光パワーが確保できる。
[Operation] Only one optical fiber exists in the transmission path between each light source and the optically driven semiconductor element, and there is no coupling point in the middle, so there is no coupling loss except at the fiber end, and large optical power is generated. Can be secured.

【0009】[0009]

【実施例】以下、図2と共通の部分に同一の符号を付し
た図を引用して本発明の実施例について述べる。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to figures in which parts common to those in FIG. 2 are given the same reference numerals.

【0010】図1は本発明の一実施例における冗長型光
伝送システム全体を示し、2個のレーザダイオード (
LD) モジュール11, 12にはそれぞれ入射側コ
ネクタ21, 22を介して数十m程度の長尺光ファイ
バ71, 72が結合され、両光ファイバ71, 72
はそのまま光サイリスタ6の受光部と結合された出射側
コネクタ44まで延びている。光ファイバ71, 72
は、相当大きな光パワーが要求されることと、耐熱性が
問題になることから、伝送特性の良いステップインデッ
クス型で石英あるいは多成分ガラスからできたファイバ
が使用される。図4(a), (b)は光ファイバ71
, 72の配置を示し、入射側コネクタ21, 22近
傍では離れていた図(a) に示すファイバ71, 7
2が、出射側コネクタ44の近傍では図(b) に示す
ように密接している。
FIG. 1 shows the entire redundant optical transmission system in one embodiment of the present invention, in which two laser diodes (
LD) Long optical fibers 71 and 72 of several tens of meters are connected to the modules 11 and 12 via input side connectors 21 and 22, respectively, and both optical fibers 71 and 72 are connected to each other.
extends as it is to the output side connector 44 coupled to the light receiving section of the optical thyristor 6. Optical fibers 71, 72
Since a considerably large optical power is required and heat resistance is an issue, step-index type fibers with good transmission characteristics and made of quartz or multi-component glass are used. FIGS. 4(a) and 4(b) show the optical fiber 71
, 72, and the fibers 71, 7 shown in Figure (a) are separated near the input side connectors 21, 22.
2 are in close contact with each other in the vicinity of the output side connector 44 as shown in Figure (b).

【0011】光ファイバ71, 72の直径は、取扱い
やすいこと、あるいはシステムを構成するため最小曲げ
半径が小さいことを考慮して選定される。この実施例で
はLDの発光面長が400 μmであるのに対し、光フ
ァイバ71, 72のコア径は現在得られる最大寸法の
200 μmである。 しかし、図2に示した従来例における100 μmのコ
ア径の光ファイバ31, 32に比較すれば、格段に光
を入射させやすくなる。さらに図5にLDモジュール1
1のLD素子10, コネクタ21, 光ファイバ71
に例を取って示すように光源10とコネクタ21の間に
はロッドレンズ8が挿入され、レーザ光をしぼることに
より光ファイバ71への入射光量を増大させる。図6(
a) 〜(f) には各種形状のロッドレンズ81, 
82, 83, 84, 85, 86を示し、図から
明らかなように81は棒状、82は片面レンズ付き、8
3は両面レンズ付き、84は円錐形、85は片面レンズ
付き円錐形、86は両面レンズ付き円錐形で、ロッドレ
ンズの形状も選定し、光源のLDの発光面長との協調を
とることで、使用する光ファイバ71, 72の直径を
変えることができる。
The diameters of the optical fibers 71 and 72 are selected taking into consideration ease of handling or a small minimum bending radius for constructing a system. In this embodiment, the light emitting surface length of the LD is 400 μm, while the core diameter of the optical fibers 71 and 72 is 200 μm, which is the maximum dimension currently available. However, compared to the optical fibers 31 and 32 having a core diameter of 100 μm in the conventional example shown in FIG. 2, it is much easier to allow light to enter the fibers. Furthermore, Figure 5 shows LD module 1.
1 LD element 10, connector 21, optical fiber 71
As shown in FIG. 1, a rod lens 8 is inserted between the light source 10 and the connector 21, and increases the amount of light incident on the optical fiber 71 by constricting the laser light. Figure 6 (
a) to (f) are rod lenses 81 of various shapes,
82, 83, 84, 85, and 86 are shown, and as is clear from the figure, 81 is rod-shaped, 82 has a single-sided lens, and 8
3 has a double-sided lens, 84 has a conical shape, 85 has a conical shape with a single-sided lens, and 86 has a conical shape with a double-sided lens.The shape of the rod lens is also selected to coordinate with the length of the light emitting surface of the LD of the light source. , the diameters of the optical fibers 71 and 72 used can be changed.

【0012】図1に示す実施例と図2に示す従来例と比
較すると、図1の場合は結合部分は光源11, 12と
ファイバ71, 72、ファイバ71, 72と光サイ
リスタ6の2個所だけであって、図2の場合の光源11
, 12と光ファイバ31, 32、光ファイバ31,
 32の光ファイバ33への融着、光源側ファイバ33
と長尺ファイバ5、長尺ファイバ5と光サイリスタ6の
4個所に対して半減した。このように光ファイバのコア
径の適正化によるファイバへの入射部分における損失の
減少、結合損失の減少により、システムの伝送損失は1
.5dB となり、初期光量に対して70%と従来の2
倍以上の有効光量が得られる。
Comparing the embodiment shown in FIG. 1 with the conventional example shown in FIG. 2, in the case of FIG. The light source 11 in the case of FIG.
, 12 and optical fibers 31, 32, optical fibers 31,
32 to the optical fiber 33, light source side fiber 33
This was reduced by half compared to the four locations of long fiber 5, long fiber 5, and optical thyristor 6. In this way, by optimizing the core diameter of the optical fiber, the loss at the input part to the fiber is reduced, and the coupling loss is reduced, resulting in a system transmission loss of 1.
.. 5 dB, which is 70% of the initial light intensity and 2 dB compared to the conventional one.
More than double the amount of effective light can be obtained.

【0013】[0013]

【発明の効果】本発明によれば、一つの光駆動型半導体
素子への複数の光源からの光伝送径路としてそれぞれ中
間の結合部のない1本の光ファイバを用いることにより
、結合損失を低減できると共に、ファイバ直径の選定の
幅が広くなって光源よりの光量の有効利用を図ることが
でき、全体の伝送損失が改善される。これにより、例え
ば光サイリスタを複数個直列接続した高電圧制御装置の
長期信頼性の向上に極めて有効である。
[Effects of the Invention] According to the present invention, coupling loss is reduced by using one optical fiber without an intermediate coupling part as the optical transmission path from a plurality of light sources to one optically driven semiconductor element. At the same time, the fiber diameter can be selected from a wider range, making it possible to effectively utilize the amount of light from the light source, and improving the overall transmission loss. This is extremely effective in improving the long-term reliability of, for example, a high voltage control device in which a plurality of optical thyristors are connected in series.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の光駆動型半導体装置の構成
FIG. 1 is a configuration diagram of a light-driven semiconductor device according to an embodiment of the present invention.

【図2】従来の光駆動型半導体装置の構成図[Figure 2] Configuration diagram of a conventional optically driven semiconductor device

【図3】図
2の半導体装置における光伝送系の各部の断面図
[Figure 3] Cross-sectional view of each part of the optical transmission system in the semiconductor device in Figure 2

【図4】図1の半導体装置における光伝送系の各部の断
面図
[Figure 4] Cross-sectional view of each part of the optical transmission system in the semiconductor device in Figure 1

【図5】図1の半導体装置の光源部の断面図[Figure 5] Cross-sectional view of the light source section of the semiconductor device in Figure 1

【図6】ロ
ッドレンズの各種の形状を示す側面図
[Figure 6] Side view showing various shapes of rod lenses

【符号の説明】[Explanation of symbols]

10    レーザダイオード(LD)素子11   
 LDモジュール 12    LDモジュール 21    コネクタ 22    コネクタ 44    コネクタ 6    光サイリスタ 71    光ファイバ 72    光ファイバ 8    ロッドレンズ
10 Laser diode (LD) element 11
LD module 12 LD module 21 Connector 22 Connector 44 Connector 6 Optical thyristor 71 Optical fiber 72 Optical fiber 8 Rod lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】1個の光駆動型半導体素子を駆動するため
に複数個の光源を備える冗長方式を採用したものにおい
て、光源と半導体素子の間の光伝送径路が中間で結合さ
れない1本の光ファイバよりなることを特徴とする光駆
動型半導体装置。
Claim 1: In a redundant system including a plurality of light sources for driving one optically driven semiconductor element, the optical transmission path between the light source and the semiconductor element is a single optical transmission path that is not coupled in the middle. A light-driven semiconductor device comprising an optical fiber.
【請求項2】光駆動型半導体素子の受光部に対向して各
光ファイバに共通に結合されるコネクタを備えた請求項
1記載の光駆動型半導体装置。
2. The optically driven semiconductor device according to claim 1, further comprising a connector that faces the light receiving section of the optically driven semiconductor element and is commonly coupled to each optical fiber.
【請求項3】光源としてレーザダイオードを用いた請求
項1あるいは2記載の光駆動型半導体装置。
3. The optically driven semiconductor device according to claim 1, wherein a laser diode is used as the light source.
【請求項4】光源としてのレーザダイオードと光ファイ
バに結合されるコネクタとの間にロッドレンズが介在す
る請求項3記載の光駆動型半導体装置。
4. The optically driven semiconductor device according to claim 3, wherein a rod lens is interposed between the laser diode serving as the light source and the connector coupled to the optical fiber.
【請求項5】光駆動型半導体素子として光サイリスタを
用いた請求項1ないし4のいずれかに記載の光駆動型半
導体装置。
5. The optically driven semiconductor device according to claim 1, wherein an optical thyristor is used as the optically driven semiconductor element.
JP8711791A 1991-04-19 1991-04-19 Optically driven semiconductor device Pending JPH04320375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8711791A JPH04320375A (en) 1991-04-19 1991-04-19 Optically driven semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8711791A JPH04320375A (en) 1991-04-19 1991-04-19 Optically driven semiconductor device

Publications (1)

Publication Number Publication Date
JPH04320375A true JPH04320375A (en) 1992-11-11

Family

ID=13906010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8711791A Pending JPH04320375A (en) 1991-04-19 1991-04-19 Optically driven semiconductor device

Country Status (1)

Country Link
JP (1) JPH04320375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742716A (en) * 1996-06-14 1998-04-21 Mitsubishi Denki Kabushiki Kaisha Light trigger thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742716A (en) * 1996-06-14 1998-04-21 Mitsubishi Denki Kabushiki Kaisha Light trigger thyristor

Similar Documents

Publication Publication Date Title
US5455879A (en) Anamorphic microlens for coupling optical fibers to elliptical light beams
US4475789A (en) Optical fiber power tap
CA2209127C (en) A coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length
US6049641A (en) Connection system for optical redundancy
US6167075A (en) High power, reliable optical fiber pumping system with high redundancy for use in lightwave communication systems
WO1986004156A1 (en) Fiber-lens optical coupler
US7277612B2 (en) Optical apparatus including pump guiding fiber and receiving fiber
US20210149113A1 (en) Method for preventing feedback light of a laser
CN102650717A (en) Multi-mode/single-mode optical fiber connector based on double-clad optical fiber
US6956876B1 (en) Method and apparatus for coupling a multimode laser to a multimode fiber
EP0081349A1 (en) Terminations for optical fibers
CN109244816A (en) A kind of optical-fiber bundling device and its power monitoring method with power monitor device
JPH04320375A (en) Optically driven semiconductor device
EP0184432A2 (en) Optical coupler
US5077817A (en) Fiber star amplifier coupler and method of making same
CN102882128A (en) Optical fiber light cone coupling based high-power high-brightness laser source
JP2007025256A (en) Waveguide type optical module and method for monitoring light emitting element of the same
JP4131144B2 (en) Semiconductor laser light source device
JPS5827121A (en) Optical transmission line
JPS59226310A (en) Optical coupling system
JP3106619B2 (en) Redundant optical transmission system for optically driven semiconductor devices
JPS58153431A (en) Optical communication system for car
CN207352211U (en) A kind of multi-optical fiber channel monitoring element
CN218103133U (en) High-reliability optical communication system
JP6652982B2 (en) Optical module