JPH04320218A - Liquid crystal optical element - Google Patents

Liquid crystal optical element

Info

Publication number
JPH04320218A
JPH04320218A JP11388591A JP11388591A JPH04320218A JP H04320218 A JPH04320218 A JP H04320218A JP 11388591 A JP11388591 A JP 11388591A JP 11388591 A JP11388591 A JP 11388591A JP H04320218 A JPH04320218 A JP H04320218A
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
optical element
tilt angle
crystal optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11388591A
Other languages
Japanese (ja)
Inventor
Koyo Yuasa
公洋 湯浅
Kenji Hashimoto
橋本 憲次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP11388591A priority Critical patent/JPH04320218A/en
Publication of JPH04320218A publication Critical patent/JPH04320218A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the liquid crystal optical element which responds with electric fields at a high speed, allows easy gradation display and has a memory characteristic. CONSTITUTION:This liquid crystal optical element is constituted by crimping a smectic A liquid crystal compsn. 1 which contains a ferroelectric high-polymer liquid crystal and a ferroelectric high-polymer liquid crystal or low-molecular ferroelectric liquid crystal having the spontaneous polarization of the code varying from the spontaneous polarization of this ferroelectric high-polymer liquid crystal and exhibits such electric field induced tilt as to change the tilt angle by the magnitude of the impressed electric field and to maintain this tilt angle even if the electric field is removed between electrodes 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液晶表示素子や液晶記
憶素子等に好適に使用される液晶光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal optical element suitably used in liquid crystal display elements, liquid crystal memory elements, and the like.

【0002】0002

【従来の技術】電界誘起チルトを示すスメクチックA液
晶を用いた液晶光学素子として、例えば、特開昭64−
3632号公報にはスメクチックA相の状態にある強誘
電性液晶を含む液晶組成物のチルト角を電界又は磁界の
外場により変化させる光変調方法及び素子が記載されて
いる。これは通常の電傾効果(エレクトロクリニック効
果)を用いたものであり、高速応答性に優れたものであ
るが、メモリー性がないので印加されている外場を取除
くとチルト角は直ちに消失してしまうこと、低分子液晶
を用いており、また通常のラビング法などで配向させて
いるので生産性が低いことなどの問題がある。
BACKGROUND OF THE INVENTION As a liquid crystal optical element using a smectic A liquid crystal exhibiting electric field-induced tilt, for example,
Japanese Patent No. 3632 describes an optical modulation method and device for changing the tilt angle of a liquid crystal composition containing a ferroelectric liquid crystal in a smectic A phase state by an external electric or magnetic field. This uses the usual electroclinic effect and has excellent high-speed response, but it has no memory, so the tilt angle disappears immediately when the applied external field is removed. There are problems such as low productivity because low-molecular liquid crystals are used, and orientation is performed by a normal rubbing method.

【0003】0003

【発明が解決しようとする課題】本発明は、電界に対す
る応答が高速で階調表示が容易であり、かつメモリー性
を有する液晶光学素子を提供しようとするものである。 また、製膜性、配向性の優れた上記特性を有する液晶光
学素子を提供しようとするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a liquid crystal optical element that responds quickly to an electric field, can easily display gradations, and has memory properties. Another object of the present invention is to provide a liquid crystal optical element having the above-mentioned properties with excellent film formability and orientation.

【0004】0004

【課題を解決するための手段】本発明者らは前記課題を
解決するために鋭意研究を重ねた結果、電界誘起された
チルト角が電界を取除いても保たれる電界誘起チルトを
示すスメクチックA液晶組成物を用いた液晶光学素子に
よりその目的が達成されることを見出し、この知見に基
づいて本発明を完成するに至った。
[Means for Solving the Problems] As a result of extensive research in order to solve the above problems, the present inventors have developed a smectic film that exhibits an electric field-induced tilt in which the electric field-induced tilt angle is maintained even when the electric field is removed. It has been discovered that the object can be achieved by a liquid crystal optical element using the liquid crystal composition A, and the present invention has been completed based on this knowledge.

【0005】すなわち本発明は、チルト角が印加電界の
大きさによって変化し、そのチルト角が電界を取除いて
も保たれるような電界誘起チルトを示すスメクチックA
液晶組成物を電極間に挟持してなることを特徴とする液
晶光学素子を提供するものである。
That is, the present invention provides a smectic A that exhibits an electric field-induced tilt in which the tilt angle changes depending on the magnitude of the applied electric field and is maintained even when the electric field is removed.
The present invention provides a liquid crystal optical element characterized in that a liquid crystal composition is sandwiched between electrodes.

【0006】本発明に用いられる液晶組成物はチルト角
が印加電界の大きさによって変化し、そのチルト角が電
界を取除いても保たれるような電界誘起チルトを示すス
メクチックA液晶組成物である。この液晶組成物は、そ
のチルト角が印加電界の大きさによって変化するもので
あるので、電界に対する応答が高速で階調表示が容易で
ある。更に、電界誘起されたチルト角が電界を取除いて
も保たれるものであるので、メモリー性を有する。
The liquid crystal composition used in the present invention is a smectic A liquid crystal composition exhibiting an electric field-induced tilt in which the tilt angle changes depending on the magnitude of the applied electric field and is maintained even when the electric field is removed. be. Since the tilt angle of this liquid crystal composition changes depending on the magnitude of the applied electric field, the response to the electric field is fast and gradation display is easy. Furthermore, since the tilt angle induced by the electric field is maintained even when the electric field is removed, it has memory properties.

【0007】一般に電界誘起チルトを示すスメクチック
A液晶としてはスメクチックA相を示すすべての強誘電
性液晶を挙げることができるが、通常、その電界誘起チ
ルトは電界を除くと直ちに消失してしまう。この電傾(
エレクトロクリニック)効果には液晶のソフトモードと
呼ばれるチルト角のゆらぎが関係している。このゆらぎ
の緩和周波数は通常の液晶ではkHzオーダー以上の高
いところにあるため、液晶に印加されている外場(電場
)が取除かれると電界誘起されていたチルト角が直ちに
緩和されて、液晶のチルト角の平均はゼロになる。した
がって、通常の電界誘起チルトを示すスメクチックA液
晶を用いた液晶光学素子は電界の大きさでチルト角が制
御できるという階調性を持っているが上記のようにメモ
リー性を持っておらず、このことが電界誘起チルトを示
すスメクチックA液晶を用いた液晶光学素子の実用的障
害であった。しかし、本発明に用いられる液晶組成物は
、そのチルト角が印加電界の大きさによって変化し、電
界誘起されたチルト角が電界を取除いても保たれる電界
誘起チルトを示すスメクチックA液晶組成物であり、本
発明の液晶光学素子では階調性と同時にメモリー性が実
現される。
In general, all ferroelectric liquid crystals exhibiting a smectic A phase can be mentioned as smectic A liquid crystals exhibiting electric field-induced tilt, but normally, the electric field-induced tilt disappears immediately when the electric field is removed. This electric gradient (
(Electroclinic) effect is related to fluctuations in the tilt angle of the liquid crystal called soft mode. The relaxation frequency of this fluctuation is on the order of kHz or higher for ordinary liquid crystals, so when the external field (electric field) applied to the liquid crystal is removed, the tilt angle induced by the electric field is immediately relaxed, and the liquid crystal The average tilt angle of is zero. Therefore, a liquid crystal optical element using a smectic A liquid crystal that exhibits a normal electric field-induced tilt has a gradation property in which the tilt angle can be controlled by the magnitude of the electric field, but as mentioned above, it does not have a memory property. This has been a practical impediment to liquid crystal optical elements using smectic A liquid crystals that exhibit electric field-induced tilt. However, the liquid crystal composition used in the present invention is a smectic A liquid crystal composition that exhibits an electric field-induced tilt in which the tilt angle changes depending on the magnitude of the applied electric field and the electric field-induced tilt angle is maintained even when the electric field is removed. The liquid crystal optical element of the present invention achieves gradation performance and memory performance at the same time.

【0008】電界を取除いた後のチルト角は、電界印加
時のチルト角の50%以上に保たれることが好ましく、
特に70%以上に保たれることが好ましい。50%未満
では電界を取除く前後のコントラスト差が大きくなり過
ぎる。また、チルト角の保持時間は、10ms以上が好
ましく、特に良好な動画表示に用いるには30ms以上
が好ましい。10ms未満では、実用上十分なメモリー
性が得られない。
[0008] The tilt angle after the electric field is removed is preferably maintained at 50% or more of the tilt angle when the electric field is applied;
In particular, it is preferably kept at 70% or more. If it is less than 50%, the contrast difference before and after removing the electric field becomes too large. Further, the holding time of the tilt angle is preferably 10 ms or more, and particularly preferably 30 ms or more for use in displaying a good moving image. If the time is less than 10 ms, practically sufficient memory performance cannot be obtained.

【0009】このような液晶組成物としては、具体的に
は、チルト角がある程度減少することを考慮し、上記ソ
フトモードの緩和周波数を20Hz以下に低く押えたも
のが好ましい。緩和周波数を20Hz以下とすると、電
界を除いても実用上必要な時間チルト角を保持すること
ができる。特に15Hz以下とすることが好ましい。
Specifically, such a liquid crystal composition is preferably one in which the relaxation frequency of the soft mode is kept low to 20 Hz or less, taking into account that the tilt angle is reduced to some extent. When the relaxation frequency is set to 20 Hz or less, the tilt angle can be maintained for a practically necessary time even when the electric field is removed. In particular, it is preferable to set the frequency to 15 Hz or less.

【0010】具体的な液晶組成物の組成としては、使用
温度で上記の特性を有するようなものであれば特に制限
はないが、製膜性、配向性等の点から高分子液晶を含有
することが好ましい。特に、強誘電性高分子液晶を少な
くとも1種と、該強誘電性高分子液晶の自発分極と異な
る符号の自発分極を有する強誘電性高分子液晶又は低分
子の強誘電性液晶を少なくとも1種含有することが好ま
しい。この場合、高分子強誘電性液晶の分子量としては
数平均分子量1000以上が好ましい。
[0010] There are no particular restrictions on the composition of the liquid crystal composition as long as it has the above-mentioned characteristics at the operating temperature, but from the viewpoint of film formability, orientation, etc. It is preferable. In particular, at least one type of ferroelectric polymer liquid crystal and at least one type of ferroelectric polymer liquid crystal or low molecular weight ferroelectric liquid crystal having a spontaneous polarization of a sign different from the spontaneous polarization of the ferroelectric polymer liquid crystal. It is preferable to contain. In this case, the molecular weight of the polymeric ferroelectric liquid crystal is preferably a number average molecular weight of 1000 or more.

【0011】自発分極の符号が正負の液晶を混合する際
の好適な混合比率としては、自発分極の符号が正の液晶
の自発分極値をPs(+)、重量分率をM(+)とし、
自発分極の符号が負の液晶の自発分極値をPs(−)、
重量分率をM(−)とすると、   0.05≦{Ps(+)・M(+)}/{Ps(−
)・M(−)}≦20の範囲となるように混合すること
が好ましい。この比率が0.05未満であると、応答時
間が長くなることがあり、20を超えると、メモリー性
が発現しないことがある。一般に自発分極を完全に打消
す必要はない。
[0011] A suitable mixing ratio when mixing liquid crystals with positive and negative signs of spontaneous polarization is as follows: the spontaneous polarization value of liquid crystals with positive signs of spontaneous polarization is Ps(+), and the weight fraction is M(+). ,
The spontaneous polarization value of the liquid crystal whose spontaneous polarization sign is negative is Ps(-),
If the weight fraction is M(-), then 0.05≦{Ps(+)・M(+)}/{Ps(-
)・M(-)}≦20. If this ratio is less than 0.05, the response time may become long, and if it exceeds 20, memory properties may not be developed. Generally, it is not necessary to completely cancel spontaneous polarization.

【0012】好適な強誘電性高分子液晶の具体例として
は、次の一般式で表される繰り返し単位[I]及び[I
I]
Specific examples of suitable ferroelectric polymer liquid crystals include repeating units [I] and [I
I]

【化1】 (但し、式中、aは2又は3、pは0又は1、kは2〜
20の整数、mは0から3の整数、nは2〜7の整数、
tは0〜3の整数、uは2〜7の整数である。)からな
り、繰り返し単位[I」と[II]のモル比([I]/
[II])が(1/99)〜(99/1)である共重合
体から選ばれる。
[Formula 1] (However, in the formula, a is 2 or 3, p is 0 or 1, and k is 2 to
20 integer, m is an integer from 0 to 3, n is an integer from 2 to 7,
t is an integer of 0 to 3, and u is an integer of 2 to 7. ), and the molar ratio of repeating units [I] and [II] ([I]/
[II]) is selected from copolymers having a ratio of (1/99) to (99/1).

【0013】更に具体的には次に示す共重合体が挙げら
れる。
More specifically, the following copolymers may be mentioned.

【化2】[Case 2]

【0014】また、好適な低分子の強誘電性液晶として
は、例えば上記共重合体と混合する場合には自発分極の
符号が負(−)のものを用いることが好ましい。この場
合、低分子の強誘電性液晶は1成分のものであっても多
成分の混合物でもよい。例えば以下に示すものが挙げら
れる。
[0014] Further, as a suitable low-molecular ferroelectric liquid crystal, for example, when mixed with the above-mentioned copolymer, it is preferable to use one whose spontaneous polarization sign is negative (-). In this case, the low-molecular ferroelectric liquid crystal may be one component or a multi-component mixture. Examples include those shown below.

【化3】 その他市販の低分子強誘電性液晶組成物、例えばチッソ
(株)製CS−1015、CS−1026なども好適に
使用できる。この場合にはやはり自発分極の符号を高分
子強誘電性液晶と異なった組み合せにすることが好まし
い。更に、本発明に使用する液晶組成物には、スメクチ
ックA相が消失しない範囲で非強誘電性の液晶物質や2
色性色素などの非液晶物質を添加してもよい。
embedded image Other commercially available low molecular weight ferroelectric liquid crystal compositions, such as CS-1015 and CS-1026 manufactured by Chisso Corporation, can also be suitably used. In this case, it is preferable that the sign of the spontaneous polarization is different from that of the polymeric ferroelectric liquid crystal. Furthermore, the liquid crystal composition used in the present invention may contain a non-ferroelectric liquid crystal material or a dielectric material as long as the smectic A phase does not disappear.
Non-liquid crystal substances such as chromatic dyes may also be added.

【0015】図1は、本発明の液晶光学素子の一例を示
す断面図である。本発明の液晶光学素子は、上記の液晶
組成物1を電極2間に挟持してなる。電極2としては、
ITO電極等の通常液晶光学素子に用いられるものを好
適に用いることができる。電極2は基板3に支持されて
いることが好ましい。基板3としては、特に制限はない
が、液晶組成物1として高分子液晶が含有する組成物を
用いる場合には可撓性を有する基板を用いることが好ま
しい。更に必要に応じて基板3の外側に偏光板を設ける
ことができる。
FIG. 1 is a sectional view showing an example of a liquid crystal optical element of the present invention. The liquid crystal optical element of the present invention is formed by sandwiching the above liquid crystal composition 1 between electrodes 2. As electrode 2,
Those commonly used in liquid crystal optical elements, such as ITO electrodes, can be suitably used. Preferably, the electrode 2 is supported by a substrate 3. The substrate 3 is not particularly limited, but when a composition containing polymeric liquid crystal is used as the liquid crystal composition 1, it is preferable to use a flexible substrate. Furthermore, a polarizing plate can be provided on the outside of the substrate 3 if necessary.

【0016】本発明の液晶光学素子は、公知の液晶光学
素子の製造方法を用い、液晶組成物を電極間に挟持し配
向処理を行って好適に製造することができる。例えば、
液晶組成物として高分子液晶を含有するものを用いる場
合、液晶組成物が製膜性、力学的配向処理に対する配向
性に優れているので、長尺の電極付可撓性基板を用い、
基板の電極面上への液晶組成物の塗布、対向基板とのラ
ミネート、曲げ配向処理などの一連の連続的高速プロセ
スにより好適に生産性よく製造することができる。
The liquid crystal optical element of the present invention can be suitably manufactured by using a known method for manufacturing a liquid crystal optical element, by sandwiching a liquid crystal composition between electrodes and performing an alignment treatment. for example,
When using a liquid crystal composition containing a polymeric liquid crystal, a long flexible substrate with electrodes is used because the liquid crystal composition has excellent film forming properties and alignment properties for mechanical alignment treatment.
It can be suitably manufactured with high productivity by a series of continuous high-speed processes such as applying a liquid crystal composition onto the electrode surface of a substrate, laminating it with a counter substrate, and bending and aligning the substrate.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、本発明はこれに限定されるものではない。 実施例1 (1)強誘電性高分子液晶の製造 下記の繰り返し単位及び特性を有する強誘電性高分子液
晶Aを以下の方法で製造した。
EXAMPLES The present invention will be explained in detail below based on Examples, but the present invention is not limited thereto. Example 1 (1) Production of ferroelectric polymer liquid crystal Ferroelectric polymer liquid crystal A having the following repeating units and characteristics was produced by the following method.

【化4】 相転移挙動 [Iso:等方相、SmC*:カイラルスメクチックC
相、Sm1:同定していないスメクチック相]自発分極 Ps(+)=+80nC/cm2  (25℃)(1−
1)モノマーaの製造 下記の構造を有するモノマーaを下記の反応に従って製
造した。
[Chemical 4] Phase transition behavior [Iso: isotropic phase, SmC*: chiral smectic C
phase, Sm1: unidentified smectic phase] Spontaneous polarization Ps (+) = +80 nC/cm2 (25°C) (1-
1) Production of monomer a Monomer a having the following structure was produced according to the following reaction.

【化5】 アルゴンガスを流しながら、無水のTHF200ml中
に1.1モルのNaH(純度60%)を徐々に加え攪拌
した。次に、無水のTHF200ml中に溶解した1,
5−ヘキサジエン−3−オール1モルを攪拌下で滴下し
た。反応液を約2時間攪拌し、水素ガスの発生が停止し
たことを確認後、無水のTHF200ml中に溶解した
1,10−ジブロモデカン2モルを一度に加え、8時間
還流攪拌した。次いで、得られた反応液を瀘過後50℃
、3torr以下で1時間濃縮し、ヘキサンで3倍に希
釈してから、液体クロマトグラフィーで精製し、化合物
■を得た。収率約50%であった。
embedded image While flowing argon gas, 1.1 mol of NaH (purity 60%) was gradually added to 200 ml of anhydrous THF and stirred. Next, 1, dissolved in 200 ml of anhydrous THF,
1 mol of 5-hexadien-3-ol was added dropwise with stirring. The reaction solution was stirred for about 2 hours, and after confirming that the generation of hydrogen gas had stopped, 2 mol of 1,10-dibromodecane dissolved in 200 ml of anhydrous THF was added at once, and the mixture was stirred under reflux for 8 hours. Next, the obtained reaction solution was filtered and heated to 50°C.
, concentrated for 1 hour at 3 torr or less, diluted 3 times with hexane, and purified by liquid chromatography to obtain compound (1). The yield was about 50%.

【0018】[0018]

【化6】 化合物■80g、メチル  4−ヒドロキシベンゾエー
ト45.8g、炭酸カリウム(無水)124g及びメチ
ルエチルケトン(MEK)400mlを容量1リットル
の4口フラスコに仕込み、アルゴンガスを流しながら8
0℃で14時間攪拌した。室温まで冷えた反応混合物を
瀘過して炭酸カリウム等の塩を除き、得られた瀘液をロ
ータリーエバポレーターにかけ、電動アスピレーターで
減圧にしながらバス温50℃でMEKを留去した。次に
、得られた残渣物に約300mlの塩化メチレンを加え
て攪拌した後、再度瀘過して不溶な塩を除いた。得られ
た瀘液をロータリーエバポレーターにかけ、減圧下、バ
ス温50℃で塩化メチレンを留去し化合物■の粗生成物
91gを得た。
[Chemical formula 6] 80 g of compound ■, 45.8 g of methyl 4-hydroxybenzoate, 124 g of potassium carbonate (anhydrous), and 400 ml of methyl ethyl ketone (MEK) were placed in a 1 liter 4-necked flask, and heated under argon gas.
The mixture was stirred at 0°C for 14 hours. The reaction mixture cooled to room temperature was filtered to remove salts such as potassium carbonate, and the resulting filtrate was applied to a rotary evaporator, and MEK was distilled off at a bath temperature of 50° C. while reducing the pressure with an electric aspirator. Next, about 300 ml of methylene chloride was added to the obtained residue, which was stirred, and then filtered again to remove insoluble salts. The obtained filtrate was applied to a rotary evaporator, and methylene chloride was distilled off under reduced pressure at a bath temperature of 50°C to obtain 91 g of a crude product of compound (1).

【0019】この粗生成物45gを30mlの塩化メチ
レンで希釈して均一溶液とし、活性アルミナが充填され
たプレカラム(容量270ml)とシリカゲルが充填さ
れたメインカラム(容量1リットル)を用いた液体クロ
マトグラフィーで分取を行った。目的物を含む溶出液を
ロータリーエバポレーターにかけ、減圧下、50℃で溶
剤を留去した。残りの粗生成物も同様な条件で分取し、
両分取物を合一し化合物■を得た。収量は84.4g(
収率87%)であった。
45 g of this crude product was diluted with 30 ml of methylene chloride to obtain a homogeneous solution, which was then subjected to liquid chromatography using a pre-column (capacity 270 ml) packed with activated alumina and a main column (capacity 1 liter) packed with silica gel. Fractionation was carried out using graphics. The eluate containing the target product was applied to a rotary evaporator, and the solvent was distilled off at 50° C. under reduced pressure. The remaining crude product was also collected under the same conditions.
Both fractions were combined to obtain compound (2). The yield is 84.4g (
The yield was 87%).

【0020】[0020]

【化7】 上記の反応3に従い、化合物■の合成を次のようにして
行った。化合物■42.4g、水酸化カリウム24g、
水20ml及びメタノール60mlを容量1リットルの
4口フラスコに仕込み、アルゴンガスを流しながら、7
0℃で30分間加熱攪拌還流した。次に、冷却して反応
混合物の温度を40℃以下にした後、600mlの水を
反応混合物中に加えた。その後、90℃に昇温して4時
間加熱攪拌を続け、反応混合物が淡青色透明になったこ
とを確認したうえで反応を終了し室温まで冷却した。
##STR00007## According to Reaction 3 above, compound (1) was synthesized as follows. Compound ■42.4g, potassium hydroxide 24g,
Pour 20 ml of water and 60 ml of methanol into a 1 liter 4-necked flask, and while flowing argon gas,
The mixture was heated under stirring and refluxed at 0°C for 30 minutes. Next, after cooling the temperature of the reaction mixture to below 40° C., 600 ml of water was added into the reaction mixture. Thereafter, the temperature was raised to 90° C., and heating and stirring were continued for 4 hours. After confirming that the reaction mixture had become pale blue and transparent, the reaction was completed and the mixture was cooled to room temperature.

【0021】反応混合物を2リットルのビーカーへ移し
、純水を加えて1.5リットルとした。均一に溶解させ
た後、3Nの塩酸水溶液を加えて、系のpHを2にした
。次に、白色固体が析出した懸濁液を瀘過し、回収した
白色固体を吸引瀘過し、純水で数回洗浄した。この固体
を2リットルのビーカーへ移し、1リットルの純水を加
え、懸濁状態で攪拌することにより10分間洗浄した。 再びこの懸濁液を吸引瀘過し、純水で数回洗浄した後、
50℃の真空乾燥機で一晩乾燥し、化合物■を得た。収
量は36.8g(収率90%)であった。
The reaction mixture was transferred to a 2 liter beaker, and purified water was added to bring the volume to 1.5 liters. After uniformly dissolving, a 3N aqueous hydrochloric acid solution was added to adjust the pH of the system to 2. Next, the suspension in which the white solid was precipitated was filtered, and the recovered white solid was suction filtered and washed several times with pure water. This solid was transferred to a 2 liter beaker, 1 liter of pure water was added, and the solid was stirred in a suspended state for 10 minutes. After suction filtering this suspension again and washing it several times with pure water,
The mixture was dried overnight in a vacuum dryer at 50°C to obtain Compound ①. The yield was 36.8 g (yield 90%).

【0022】[0022]

【化8】 上記の反応4に従い、モノマーaの合成を次のようにし
て行った。反応3で得たカルボン酸(化合物■)27.
5g、塩化チオニル21ml及び乾燥トルエン80ml
をリフラックスコンデンサーの付いた容量500mlの
4口フラスコに仕込み、攪拌して均一溶液とした。次に
ピリジンを0.02ml加えた後、反応温度を65℃に
昇温し、4時間加熱攪拌を継続した。なお、フラスコに
は常時アルゴンガスを流した。この後、反応混合物中の
過剰な塩化チオニルと溶媒のトルエンを除去するために
、中間にドライアイストラップを組み込んだアスピレー
ターを用い、65℃に加熱し、1時間かけて大部分の塩
化チオニルとトルエンを留去した。最後に、80℃に昇
温し、30分かけて残っている塩化チオニルを除いた。
embedded image Monomer a was synthesized as follows according to Reaction 4 above. Carboxylic acid obtained in reaction 3 (compound ■) 27.
5g, 21ml thionyl chloride and 80ml dry toluene
The mixture was placed in a 500 ml four-necked flask equipped with a reflux condenser and stirred to form a homogeneous solution. Next, after adding 0.02 ml of pyridine, the reaction temperature was raised to 65° C., and heating and stirring was continued for 4 hours. Note that argon gas was constantly flowed through the flask. After this, in order to remove excess thionyl chloride and toluene as a solvent in the reaction mixture, the reaction mixture was heated to 65°C using an aspirator equipped with a dry ice trap in the middle, and over 1 hour most of the thionyl chloride and toluene were removed. was removed. Finally, the temperature was raised to 80°C and the remaining thionyl chloride was removed over 30 minutes.

【0023】室温まで冷却した反応混合物にトルエン1
60mlとピリジン7.5mlを加えて均一溶液とし、
その中に化合物■(4′−ヒドロキシビフェニル−4−
カルボン酸の光学活性1−メチルヘプチルエステル)2
4.1gを含むトルエン溶液160mlを30分間かけ
て攪拌しながら滴下した。その後、室温で一晩攪拌して
反応を終了した。なお、反応中はアルゴンガスを流すこ
とにより反応容器内に水分が入らないようにした。
To the reaction mixture cooled to room temperature, one portion of toluene was added.
Add 60 ml and 7.5 ml of pyridine to make a homogeneous solution,
Among them is the compound ■ (4'-hydroxybiphenyl-4-
Optically active 1-methylheptyl ester of carboxylic acid)2
160 ml of a toluene solution containing 4.1 g was added dropwise over 30 minutes with stirring. Thereafter, the reaction was completed by stirring at room temperature overnight. During the reaction, argon gas was flowed to prevent moisture from entering the reaction vessel.

【0024】こうして得られた反応混合物を瀘過し、析
出しているピリジン塩を除去した。次に、瀘液をロータ
リーエバポレーターにかけ、減圧下、50℃のバス温で
溶媒を留去してモノマーaを含む濃縮物50.9gを得
た。次にこの濃縮物に塩化メチレン50gを加えて攪拌
し、均一で透明な溶液を得た。
The reaction mixture thus obtained was filtered to remove precipitated pyridine salt. Next, the filtrate was applied to a rotary evaporator, and the solvent was distilled off under reduced pressure at a bath temperature of 50° C. to obtain 50.9 g of a concentrate containing monomer a. Next, 50 g of methylene chloride was added to this concentrate and stirred to obtain a homogeneous and transparent solution.

【0025】この溶液を活性アルミナを充填したプレカ
ラム(容量270ミリリットル)とシリカゲルを充填し
たメインカラム(容量1リットル)を用い、液体クロマ
トグラフィーで分取を行った。目的物を含む溶出液をロ
ータリーエバポレーターにかけ、減圧下、50℃のバス
温で溶剤を留去した。粗生成物の収量44.1g(収率
88%)であった。
This solution was fractionated by liquid chromatography using a precolumn (capacity: 270 ml) packed with activated alumina and a main column (capacity: 1 liter) packed with silica gel. The eluate containing the target product was applied to a rotary evaporator, and the solvent was distilled off under reduced pressure at a bath temperature of 50°C. The yield of crude product was 44.1 g (yield 88%).

【0026】粗生成物を容量1リットルのフラスコに移
し、500mlのエタノールを加えた。次に、リフラッ
クスコンデンサーをフラスコに取り付け、70℃で10
分間攪拌した。白色の固体が完全に溶解して均一溶液に
なっていることを確認してから、フラスコを室温近くま
で自然冷却した。次に、このフラスコに栓をし、湿気が
入らないようにしてから冷蔵庫に入れ4時間以上静置し
た。この後フラスコを取り出し、析出している白い固体
を吸引瀘過によって回収し、回収した固体を冷エタノー
ルで数回洗浄した。
The crude product was transferred to a 1 liter flask and 500 ml of ethanol was added. Next, attach a reflux condenser to the flask and
Stir for a minute. After confirming that the white solid had completely dissolved to form a homogeneous solution, the flask was naturally cooled to near room temperature. Next, this flask was stoppered to prevent moisture from entering, and then placed in a refrigerator and allowed to stand for 4 hours or more. After this, the flask was taken out, the precipitated white solid was collected by suction filtration, and the collected solid was washed several times with cold ethanol.

【0027】最後に、この固体を50℃の真空乾燥機で
一晩乾燥し、モノマーaを得た。収量は36.9g(収
率74%)であった。モノマーaの構造は1H−NMR
により確認した。1H−NMRのチャートを図3に示す
。 (1−2)モノマーbの製造 下記の構造式を有するモノマーbを製造した。
Finally, this solid was dried overnight in a vacuum dryer at 50°C to obtain monomer a. The yield was 36.9 g (yield 74%). The structure of monomer a is 1H-NMR
Confirmed by. A 1H-NMR chart is shown in FIG. (1-2) Production of monomer b Monomer b having the following structural formula was produced.

【化9】 モノマーaの製造の反応4において化合物■24.1g
を以下の構造を有する化合物■18.5gに代えた以外
はモノマーaの製造と同様に行った。
[Chemical formula 9] In reaction 4 for the production of monomer a, 24.1 g of compound
The process was carried out in the same manner as in the production of monomer a, except that 18.5 g of compound (1) having the following structure was used instead.

【化10】 モノマーbの収量は22.5g(収率50%)であった
。モノマーbの構造は1H−NMRにより確認した。1
H−NMRのチャートを図4に示す。
embedded image The yield of monomer b was 22.5 g (yield 50%). The structure of monomer b was confirmed by 1H-NMR. 1
A chart of H-NMR is shown in FIG.

【0028】(1−3)共重合 乾燥トルエン14mlに、上記モノマーaを1.82g
(2.66ミリモル)、上記モノマーbを0.18g(
0.30ミリモル)及び1,1,3,3−テトラメチル
ジシロキサン0.26g(1.94ミリモル)をアルゴ
ンガスを流しながら攪拌し、均一に溶解した。次に、塩
化白金酸の6水塩2.0mgを加えた後、80℃で20
時間加熱攪拌した。攪拌中は反応容器中に湿気や酸素が
入らないように極く少量のアルゴンガスを流し続けた。
(1-3) Copolymerization Add 1.82 g of the above monomer a to 14 ml of dry toluene.
(2.66 mmol), 0.18 g of the above monomer b (
0.30 mmol) and 0.26 g (1.94 mmol) of 1,1,3,3-tetramethyldisiloxane were uniformly dissolved by stirring while flowing argon gas. Next, after adding 2.0 mg of chloroplatinic acid hexahydrate,
The mixture was heated and stirred for hours. During stirring, a very small amount of argon gas was kept flowing to prevent moisture and oxygen from entering the reaction vessel.

【0029】重合反応が終了後、反応混合物を瀘過し、
瀘液よりトルエンを留去した。残渣物を3gの塩化メチ
レンで希釈し、シリカゲルを充填剤としたカラムクロマ
トグラフィーにより分離、精製し、目的とする共重合体
を得た。収量は1.74gであった。
After the polymerization reaction is completed, the reaction mixture is filtered,
Toluene was distilled off from the filtrate. The residue was diluted with 3 g of methylene chloride, and separated and purified by column chromatography using silica gel as a packing material to obtain the desired copolymer. Yield was 1.74g.

【0030】(1−4)共重合体の構造確認共重合体の
構造は1H−NMRによりモノマーa単位とb単位のモ
ル比が86:14で、モノマー間がジシロキサンで連結
された共重合体であることがわかった。モル比の計算は
8.15と7.65ppmのピークの積分強度を利用し
て行った。共重合体の1H−NMRスペクトルを図5に
示す。また、GPCで測定した共重合体の重量平均分子
量は4,100であった。
(1-4) Structure confirmation of the copolymer The structure of the copolymer was determined by 1H-NMR to be a copolymer in which the molar ratio of monomer a units and b units was 86:14, and the monomers were linked by disiloxane. It turned out to be a combination. The molar ratio was calculated using the integrated intensities of the peaks at 8.15 and 7.65 ppm. The 1H-NMR spectrum of the copolymer is shown in FIG. Moreover, the weight average molecular weight of the copolymer measured by GPC was 4,100.

【0031】(1−5)液晶としての特性また、この共
重合体の液晶としての特性は以下の通りであった。 相転移挙動 電界変化に対する応答時間 τ10−90(25℃、20V)=5.6ms同レベル
の分子量を有するモノマーaのホモポリマーに比較して
等方相からカイラルスメクチックC相への転移温度を下
げ、かつ応答速度が向上している。
(1-5) Properties as a liquid crystal The properties of this copolymer as a liquid crystal were as follows. Phase transition behavior Response time to electric field change τ10-90 (25°C, 20V) = 5.6ms Lowers the transition temperature from isotropic phase to chiral smectic C phase compared to homopolymer of monomer a having the same level of molecular weight. , and the response speed is improved.

【0032】(2)液晶組成物の製造 上記で得られた強誘電性高分子液晶A及び下記の特性を
有する低分子強誘電性液晶組成物B(チッソ(株)製:
CS−1015)をそれぞれ2gづつジクロルメタン2
0mlに溶解混合し、溶媒を蒸発させて液晶組成物を得
た。 相転移挙動   Iso  ←→  N*  ←→  SmA  ←
→  SmC*  ←→  Cryst(℃)    
      78       69        
  58          −17[N*:カイラル
ネマチック相、SmA:スメクチックA相、Cryst
:結晶相] 自発分極 Ps(−)=−7nC/cm2  (25℃)  {P
s(+)・M(+)}/{Ps(−)・M(−)}=1
1.4
(2) Production of liquid crystal composition Ferroelectric polymer liquid crystal A obtained above and low molecular weight ferroelectric liquid crystal composition B having the following properties (manufactured by Chisso Corporation:
CS-1015) in dichloromethane 2g each
The liquid crystal composition was dissolved and mixed in 0 ml, and the solvent was evaporated to obtain a liquid crystal composition. Phase transition behavior Iso ←→ N* ←→ SmA ←
→ SmC* ←→ Cryst (℃)
78 69
58 -17 [N*: chiral nematic phase, SmA: smectic A phase, Cryst
: Crystal phase] Spontaneous polarization Ps(-)=-7nC/cm2 (25℃) {P
s(+)・M(+)}/{Ps(-)・M(-)}=1
1.4

【0033】(3)液晶組成物の特性 この液晶組成物を電極面を内側にして配置された10m
m×20mm×1mmのITO電極付ガラス基板間に挟
持して配向処理し、セル厚2.5μmの液晶セルとして
偏光顕微鏡で相転移温度を以下のように決定した。 相転移挙動   [SmA*:電界誘起チルトを示すスメクチックA
相、g:ガラス状態]
(3) Characteristics of the liquid crystal composition This liquid crystal composition was placed in a 10 m long tube with the electrode surface facing inside.
The liquid crystal cell was sandwiched between m x 20 mm x 1 mm glass substrates with ITO electrodes and subjected to alignment treatment, and the phase transition temperature was determined as follows using a polarizing microscope as a liquid crystal cell with a cell thickness of 2.5 μm. Phase transition behavior [SmA*: Smectic A showing electric field-induced tilt
Phase, g: glass state]

【0034】ここで、配向処理は80℃で剪断を印加し
て行った。電界誘起チルトを示すスメクチックA液晶組
成物なのでジグザグ欠陥等は全く見られなかった。また
、室温25℃での電界変化に対する応答時間τ10−9
0は電極間に±10Vの電圧を印加したとき200μs
であり、そのときのチルト角θは14.5゜であった。 この10Vの印加電圧を取除いてもチルト角θは14.
0とほぼ保たれていた。このチルト角θは印加電圧を取
除いて1時間後も変化なかった。また、印加電圧を±2
0Vとしたときの電界変化に対する応答時間τ10−9
0は205μsでありチルト角θは27゜であった。こ
の20Vの印加電圧を取除いたときもチルト角θは25
.5゜であった。このチルト角θも印加電圧を取除いて
1時間後も変化なかった。以上から本液晶組成物では、
チルト角が印加電界の大きさによって変化し、そのチル
ト角が電界を取除いても保たれることが明らかであった
。  更に、この液晶セルの誘電分散を測定したところ
、液晶組成物のソフトモードの緩和周波数は40℃で3
0Hzであり、25℃では測定装置上の測定限界である
20Hz以下になっており、本液晶組成物の特異性が明
らかになった。
[0034] Here, the orientation treatment was performed by applying shear at 80°C. Since the composition was a smectic A liquid crystal composition exhibiting electric field-induced tilt, no zigzag defects were observed. Also, response time τ10-9 to electric field change at room temperature 25°C
0 is 200μs when a voltage of ±10V is applied between the electrodes.
The tilt angle θ at that time was 14.5°. Even if this 10V applied voltage is removed, the tilt angle θ remains 14.
It was almost kept at 0. This tilt angle θ did not change even one hour after the applied voltage was removed. Also, the applied voltage is ±2
Response time to electric field change when set to 0V τ10-9
0 was 205 μs, and the tilt angle θ was 27°. Even when this 20V applied voltage is removed, the tilt angle θ is 25
.. It was 5°. This tilt angle θ also remained unchanged one hour after the applied voltage was removed. From the above, in this liquid crystal composition,
It was clear that the tilt angle varied with the magnitude of the applied electric field and that the tilt angle was maintained when the electric field was removed. Furthermore, when we measured the dielectric dispersion of this liquid crystal cell, we found that the relaxation frequency of the soft mode of the liquid crystal composition was 3 at 40°C.
0 Hz, and at 25° C., it was below 20 Hz, which is the measurement limit on the measuring device, revealing the uniqueness of this liquid crystal composition.

【0035】(4)液晶光学素子の製造次に、本液晶組
成物を用いて以下のように液晶光学素子を試作した。先
ず、本液晶組成物を25重量%のトルエン溶液として、
ITO電極付ポリエーテルスルホン(PES)基板(住
友ベークライト製FST:幅180mm、厚み100μ
m、長さ20m)のITO電極面上にダイレクトグラビ
アコーターで溶液塗布した。溶媒乾燥後直ちに何も塗布
していない同種の基板をITO電極面が液晶組成物と接
するようにラミネートして未配向素子とした。次いで、
図2に示すように、未配向素子5を3本のロール4群か
らなる配向処理装置を通すことで配向処理し、配向済素
子6を得た。ここで、各ロールとしてはクロムメッキを
施した鉄製で、直径80mm、幅300mmのものを用
いた。また各ロールの表面温度はT1=100℃、T2
=80℃、T3=80℃とし、ライン速度はv=5m/
分とした。配向処理後、長さ300mm分を切出して所
望の液晶光学素子を得た。
(4) Manufacture of liquid crystal optical element Next, a liquid crystal optical element was prototyped as follows using the present liquid crystal composition. First, the present liquid crystal composition was made into a 25% by weight toluene solution,
Polyethersulfone (PES) substrate with ITO electrode (Sumitomo Bakelite FST: width 180mm, thickness 100μ
The solution was applied onto the surface of an ITO electrode with a length of 20 m) using a direct gravure coater. Immediately after drying the solvent, the same type of substrate to which nothing had been applied was laminated so that the ITO electrode surface was in contact with the liquid crystal composition to obtain an unoriented element. Then,
As shown in FIG. 2, the unoriented element 5 was subjected to an alignment treatment by passing through an alignment treatment apparatus consisting of four groups of three rolls to obtain an oriented element 6. Here, each roll was made of chrome-plated iron and had a diameter of 80 mm and a width of 300 mm. Also, the surface temperature of each roll is T1=100℃, T2
=80℃, T3=80℃, line speed is v=5m/
It was a minute. After the alignment treatment, a 300 mm length was cut out to obtain a desired liquid crystal optical element.

【0036】(5)液晶光学素子の特性得られた液晶光
学素子を偏光顕微鏡観察したところ、配向欠陥は全くな
かった。また、この液晶光学素子を直交する偏光板間に
配置し、偏光板に対して回転させたときの透過光強度の
明暗比は200以上であった。また、電極間に±10V
の電圧を印加したところ、チルト角θは15℃であり、
コントラスト比は120であった。また、印加電圧を取
除いたときもチルト角θは14℃と保たれていた。この
チルト角θは印加電圧を取除いた後1時間以上保たれて
おり、実用上十分なメモリー性を有することが明らかで
あった。このように電圧に対する応答が高速でメモリー
性を有し、そのチルト角が電圧によって可変な液晶光学
素子が極めて容易に得られた。
(5) Characteristics of liquid crystal optical element When the obtained liquid crystal optical element was observed under a polarizing microscope, no alignment defects were found. Furthermore, when this liquid crystal optical element was placed between orthogonal polarizing plates and rotated with respect to the polarizing plates, the contrast ratio of the transmitted light intensity was 200 or more. Also, ±10V between the electrodes
When the voltage was applied, the tilt angle θ was 15°C,
The contrast ratio was 120. Furthermore, even when the applied voltage was removed, the tilt angle θ was maintained at 14°C. This tilt angle θ was maintained for more than one hour after the applied voltage was removed, and it was clear that the device had a practically sufficient memory property. In this way, a liquid crystal optical element with a fast response to voltage, memory properties, and whose tilt angle is variable depending on the voltage was extremely easily obtained.

【0037】[0037]

【発明の効果】本発明の液晶光学素子は、電界に対する
応答が高速で階調表示が容易であり、かつメモリー性を
有するものである。また、製膜性、配向性の優れたもの
である。
Effects of the Invention The liquid crystal optical element of the present invention has a fast response to an electric field, can easily display gradations, and has memory properties. Moreover, it has excellent film formability and orientation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の液晶光学素子の一例を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing an example of a liquid crystal optical element of the present invention.

【図2】実施例で用いた配向処理装置を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing an alignment processing apparatus used in Examples.

【図3】実施例で製造したモノマーの1H−NMRの測
定結果を示すチャートである。
FIG. 3 is a chart showing 1H-NMR measurement results of monomers produced in Examples.

【図4】実施例で製造したモノマーの1H−NMRの測
定結果を示すチャートである。
FIG. 4 is a chart showing 1H-NMR measurement results of monomers produced in Examples.

【図5】実施例で製造した共重合体の1H−NMRの測
定結果を示すチャートである。
FIG. 5 is a chart showing 1H-NMR measurement results of copolymers produced in Examples.

【符号の説明】[Explanation of symbols]

1  液晶組成物 2  電極 3  基板 4  ロール 5  未配向素子 6  配向済素子 1 Liquid crystal composition 2 Electrode 3 Board 4 roll 5 Unoriented element 6 Oriented element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  チルト角が印加電界の大きさによって
変化し、そのチルト角が電界を取除いても保たれるよう
な電界誘起チルトを示すスメクチックA液晶組成物を電
極間に挟持してなることを特徴とする液晶光学素子。
[Claim 1] A smectic A liquid crystal composition that exhibits an electric field-induced tilt in which the tilt angle changes depending on the magnitude of the applied electric field and is maintained even when the electric field is removed is sandwiched between electrodes. A liquid crystal optical element characterized by:
【請求項2】  液晶組成物がソフトモードの緩和周波
数が20Hz以下のものである請求項1記載の液晶光学
素子。
2. The liquid crystal optical element according to claim 1, wherein the liquid crystal composition has a soft mode relaxation frequency of 20 Hz or less.
【請求項3】  液晶組成物が強誘電性高分子液晶を少
なくとも1種と、該強誘電性高分子液晶の自発分極と異
なる符号の自発分極を有する強誘電性高分子液晶又は低
分子の強誘電性液晶を少なくとも1種含有する請求項1
又は2記載の液晶光学素子。
3. A liquid crystal composition comprising at least one ferroelectric polymer liquid crystal and a ferroelectric polymer liquid crystal or a low molecular weight liquid crystal having a spontaneous polarization having a sign different from that of the ferroelectric polymer liquid crystal. Claim 1 containing at least one dielectric liquid crystal.
Or the liquid crystal optical element according to 2.
JP11388591A 1991-04-19 1991-04-19 Liquid crystal optical element Pending JPH04320218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11388591A JPH04320218A (en) 1991-04-19 1991-04-19 Liquid crystal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11388591A JPH04320218A (en) 1991-04-19 1991-04-19 Liquid crystal optical element

Publications (1)

Publication Number Publication Date
JPH04320218A true JPH04320218A (en) 1992-11-11

Family

ID=14623568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11388591A Pending JPH04320218A (en) 1991-04-19 1991-04-19 Liquid crystal optical element

Country Status (1)

Country Link
JP (1) JPH04320218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730822A (en) * 1993-07-09 1995-01-31 Sony Corp Optical device
WO1996010209A1 (en) * 1994-09-28 1996-04-04 Mitsui Toatsu Chemicals, Inc. Polymeric liquid-crystal element and process for producing the same
JP2013155309A (en) * 2012-01-30 2013-08-15 Kyoto Univ Liquid crystal element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730822A (en) * 1993-07-09 1995-01-31 Sony Corp Optical device
WO1996010209A1 (en) * 1994-09-28 1996-04-04 Mitsui Toatsu Chemicals, Inc. Polymeric liquid-crystal element and process for producing the same
US5841503A (en) * 1994-09-28 1998-11-24 Mitsui Chemicals, Inc. High molecular liquid crystal device and method of manufacturing the same
JP2013155309A (en) * 2012-01-30 2013-08-15 Kyoto Univ Liquid crystal element

Similar Documents

Publication Publication Date Title
EP0228703B1 (en) Ferroelectric liquid crystal polymer
US5427828A (en) Cholesteric liquid crystal and polymer dispersed liquid crystal display device utilizing the same
JPH0778218B2 (en) Liquid crystal polymer composition
JP3127006B2 (en) Ferroelectric liquid crystal display
JP2786919B2 (en) Ferroelectric liquid crystal polymers, their preparation and use in electro-optical components
EP0704514A2 (en) Optically anisotropic film
JPH05140233A (en) Liquid crystal polymer
JP2000327924A (en) Liquid crystal polymer composition, phase difference plate and oval polarizing plate
JPH04320218A (en) Liquid crystal optical element
US5110498A (en) Liquid crystal compound
EP0418604B1 (en) Liquid crystal compound
US5730898A (en) Thermotropic side-chain liquid crystal polymer and FLCD employing the same as an orientation layer
JPS6399204A (en) Polymer
JP3246931B2 (en) Novel polymer compound and ferroelectric liquid crystal composition using the same
JPS62277412A (en) Novel polymer
EP0413989B1 (en) Liquid crystal compounds
JP3054212B2 (en) Guest-host type liquid crystal optical element
JPH03141323A (en) Liquid crystal compound
JP3677081B2 (en) Liquid crystal compound having siloxane structure, ferroelectric liquid crystal composition and ferroelectric liquid crystal display device using the same
JPH0820641A (en) High-molecular liquid crystal and liquid crystal element
KR100446603B1 (en) Ferroelectric liquid crystal compound for increasing response rate of liquid crystal display device, liquid crystal composition comprising the same and liquid crystal display device using the same
Cesarino et al. Sign reversal of the dielectric anisotropy in the chiral nematic phase of a copolysiloxane
JP3153324B2 (en) Liquid crystal copolymer, diene compound used for its production, and ferroelectric liquid crystal composition
JP3677102B2 (en) Non-optically active low-molecular liquid crystal compound, liquid crystal composition containing the same, and liquid crystal display device
JP2946792B2 (en) 2,3-dicyanohydroquinone derivative, liquid crystal composition and liquid crystal display device