JPH0432019B2 - - Google Patents

Info

Publication number
JPH0432019B2
JPH0432019B2 JP11755387A JP11755387A JPH0432019B2 JP H0432019 B2 JPH0432019 B2 JP H0432019B2 JP 11755387 A JP11755387 A JP 11755387A JP 11755387 A JP11755387 A JP 11755387A JP H0432019 B2 JPH0432019 B2 JP H0432019B2
Authority
JP
Japan
Prior art keywords
glass
transition temperature
heat
ultraviolet
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11755387A
Other languages
Japanese (ja)
Other versions
JPS63282139A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11755387A priority Critical patent/JPS63282139A/en
Publication of JPS63282139A publication Critical patent/JPS63282139A/en
Publication of JPH0432019B2 publication Critical patent/JPH0432019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は、356nmの紫外線を透過し、可視光
および赤外線を吸収し、かつすぐれた耐熱性を有
する紫外線透過熱線吸収ガラスに関する。 (従来の技術) 従来、紫外線硬化型樹脂などを硬化するには、
水銀灯により紫外線を照射して行なつているが、
光源から放射されるエネルギーの約55%が赤外
線、可視光となり、約30%が熱等になるので、こ
れらのエネルギーが直接被照射体や装置に吸収さ
れて、2次的に被照射体の温度を上昇させる。 近年、電子部品や電子材料に関連した紫外線の
応用が顕著であるが、ポリエステルなどの合成樹
脂フイルムおよび成形品、またはICなどの回路
部品は熱に弱いものが多く、これらを低温で照射
することができる紫外線照射装置が要望されてい
る。 このために実用的には、水銀灯の外被管を石英
製の内管とからなる2重の管体で形成し、内管と
外管との間隙空間に純水を導入して熱線(赤外
線)を吸収することが行なわれている。しかし、
この水冷方式は装置が大形かつ複雑になるので、
最近は水銀灯と被照射体との中間に、樹脂硬化に
効果的な356nmの紫外線をよく透過し熱線を吸
収する耐熱性ガラスフイルタを介在させて、赤外
線および輻射熱を遮断するという軽便な方法が採
用されている。 (発明が解決しようとする問題点) しかるに、356nmの紫外線を透過し、可視光
および赤外線を吸収する通常の珪酸塩ガラスで形
成されたガラスフイルタは、転移温度が約500℃
と低く、耐熱性がやや劣るために、高圧水銀灯も
用いて装置を小形化した場合、熱によつて破損す
る欠点がある。 本発明は上記事情を考慮してなされたもので、
356nmの紫外線を透過し、可視光および赤外線
を吸収し、かつ耐熱性にすぐれた紫外線透過熱線
吸収ガラスを提供することを目的とする。 〔発明の構成〕 (問題を解決するための手段および作用) 本発明は上記の目的を達成するために、従来の
フイルタガラスの光学的特性を損うことなく、そ
の転移温度を580℃以上になして、耐熱性を向上
させたものである。すなわち、重量百分率で
Sio248〜55%,Al2O34〜12%,B2O34〜13%,
Na2O2〜6%,K2O0〜5%,Li2O0〜1%,
Na2O+K2O+Li2O3〜7%,BaO25〜33%,
CaO0〜8%,MgO0〜8%,ZnO0〜8%,
PbO0〜5%,BaO+CaO+MgO+ZnO+PbO25
〜35%,NiO0.5%,CoO0.2〜2%,As2O30〜1
%,Sb2O30〜1%,As2O3+Sb2O30.3〜1.5%を
含有し、転移温度が580℃以上である紫外線透過
熱線吸収ガラスである。 次に本発明のガラスの成分を上記範囲に限定し
た理由について説明する。 SiO2はガラスを形成する主成分であるが、55
%を超えるとガラスの溶融性が悪化し、48%より
少ないと転移温度が低下する。Al2O3は12%を超
えると溶融性がわるくなつて、ガラス中に脈理や
未溶融物が発生し易くなり、4%より少ないと転
移温度および化学的耐久性が低下する。 B2O3は13%を超えると転移温度が低下して化
学的耐久性も悪化し、4%より少ないと溶融性が
わるくなる。 Na2O,K2O,Li2Oは溶融性を改善するのに有
効であるが、それぞれの上限値を超えると化学的
耐久性が低下し、合量が3%より少ないとガラス
の粘性が増大し溶融性が悪化する。BaOは33%
を超えると溶融性がわるくなり、25%より少ない
と転移温度が低下する。BaOにCaO,MgO,
ZnO,PbOの1種または2種以上を添加した合量
が、35%を超えると化学的耐久性が低下し、25%
より少ないと溶融性がわるくなる。 NiOおよびCoOは可視光および赤外線を吸収す
るために併用されるが、いずれもその上限値を超
えると356nmの透過率が低下し、下限値より少
ないと可視光および赤外線の透過率が増大し熱線
吸収の効果がない。 As2O3とSb2O3の合量が1.5%を超えると清澄作
用は促進されずに泡が発生し、0.3%より少ない
と清澄効果は期待できない。 また、このガラスは所要の耐熱性を得るために
転移温度を280℃以上に限定した。 (実施例) 本発明の実施例を次表に示す。表中、ガラス組
[Object of the Invention] (Industrial Application Field) The present invention relates to an ultraviolet-transmissive heat-absorbing glass that transmits ultraviolet rays of 356 nm, absorbs visible light and infrared rays, and has excellent heat resistance. (Conventional technology) Conventionally, in order to cure ultraviolet curable resin, etc.
This is done by irradiating ultraviolet light with a mercury lamp, but
Approximately 55% of the energy emitted from the light source becomes infrared rays and visible light, and approximately 30% becomes heat, etc., so this energy is directly absorbed by the irradiated object or device, and secondarily causes damage to the irradiated object. Increase temperature. In recent years, the application of ultraviolet rays in connection with electronic components and materials has been remarkable, but many synthetic resin films and molded products such as polyester, and circuit components such as ICs are sensitive to heat, so it is difficult to irradiate them at low temperatures. There is a need for an ultraviolet irradiation device that can do this. For this purpose, in practical terms, the envelope tube of the mercury lamp is formed of a double tube body consisting of an inner tube made of quartz, and pure water is introduced into the gap between the inner tube and the outer tube, and heat rays (infrared rays) are introduced. ) is being absorbed. but,
This water cooling method requires large and complicated equipment, so
Recently, a convenient method has been adopted that blocks infrared rays and radiant heat by interposing a heat-resistant glass filter between the mercury lamp and the irradiated object, which transmits 356 nm ultraviolet rays, which are effective for resin curing, and absorbs heat rays. has been done. (Problem to be Solved by the Invention) However, a glass filter made of ordinary silicate glass that transmits 356 nm ultraviolet rays and absorbs visible light and infrared rays has a transition temperature of about 500°C.
Since the heat resistance is low and the heat resistance is slightly inferior, if the device is miniaturized by using a high-pressure mercury lamp, there is a drawback that it will be damaged by the heat. The present invention was made in consideration of the above circumstances, and
The purpose of the present invention is to provide an ultraviolet-transmitting and heat-absorbing glass that transmits 356 nm ultraviolet rays, absorbs visible light and infrared rays, and has excellent heat resistance. [Structure of the Invention] (Means and Effects for Solving the Problem) In order to achieve the above object, the present invention increases the transition temperature of conventional filter glass to 580°C or higher without impairing its optical properties. Therefore, the heat resistance is improved. i.e. in weight percentage
Sio2 48~55%, Al2O3 4 ~12%, B2O3 4 ~13%,
Na 2 O2 ~ 6%, K 2 O 0 ~ 5%, Li 2 O 0 ~ 1%,
Na 2 O + K 2 O + Li 2 O3 ~ 7%, BaO25 ~ 33%,
CaO0~8%, MgO0~8%, ZnO0~8%,
PbO0~5%, BaO+CaO+MgO+ZnO+PbO25
~35%, NiO0.5%, CoO0.2~2%, As 2 O 3 0~1
%, Sb 2 O 3 0-1%, As 2 O 3 +Sb 2 O 3 0.3-1.5%, and has a transition temperature of 580° C. or higher. Next, the reason why the components of the glass of the present invention are limited to the above range will be explained. SiO 2 is the main component forming glass, but 55
If it exceeds 48%, the meltability of the glass will deteriorate, and if it is less than 48%, the transition temperature will decrease. When Al 2 O 3 exceeds 12%, the meltability becomes poor and striae and unfused substances are likely to occur in the glass, and when it is less than 4%, the transition temperature and chemical durability decrease. When B 2 O 3 exceeds 13%, the transition temperature decreases and chemical durability deteriorates, and when it is less than 4%, meltability deteriorates. Na 2 O, K 2 O, and Li 2 O are effective in improving meltability, but if the upper limit of each is exceeded, chemical durability decreases, and if the total amount is less than 3%, the viscosity of the glass increases. increases and the meltability deteriorates. BaO is 33%
If it exceeds 25%, the meltability will deteriorate, and if it is less than 25%, the transition temperature will decrease. BaO, CaO, MgO,
If the total amount of one or more of ZnO and PbO added exceeds 35%, chemical durability will decrease, and 25%
If the amount is less, the meltability will deteriorate. NiO and CoO are used together to absorb visible light and infrared rays, but when the upper limit of both is exceeded, the transmittance of 356 nm decreases, and when it is less than the lower limit, the transmittance of visible light and infrared rays increases, and heat rays No absorption effect. When the total amount of As 2 O 3 and Sb 2 O 3 exceeds 1.5%, the clarification effect is not promoted and bubbles are generated, and when it is less than 0.3%, no clarification effect can be expected. Additionally, the transition temperature of this glass was limited to 280°C or higher in order to obtain the required heat resistance. (Example) Examples of the present invention are shown in the following table. Inside the table, glass set

【表】【table】

【表】 成は重量百分率で示し、耐熱性はガラスの温度を
常温から2分間で400℃まで急上昇させたときの
破損率で示す。No.4ガラスはBaOの含量が、25
%未満で転移温度が580℃に達しなかつたもの、
No.5ガラスは珪酸塩ガラスの比較例である。 本発明ガラスの分光透過率特性を図に示す。図
中、Aは実施例No.2ガラス、Bは比較例No.5ガラ
スの特性曲線である。 表および分光透過率特性図から、本発明のガラ
スは356nm紫外線および赤外線の透過率におい
て、従来の珪酸塩ガラスとほぼ同程度の値を有し
ながら、耐熱性が格段にすぐれていることが認め
られる。 〔発明の効果〕 以上のように本発明は、356nmの紫外線を透
過し可視光および赤外線を吸収する硼珪酸バリウ
ムガラスで580℃以上の転移温度を有するもので
あり、紫外線透過熱線吸収ガラスとして従来の珪
酸塩ガラスに比較して耐熱性にすぐれているの
で、樹脂硬化用紫外線照射装置のガラスフイルタ
等に適用して、装置を小形化することができる利
点がある。
[Table] The composition is shown in weight percentage, and the heat resistance is shown in the breakage rate when the glass temperature is rapidly raised from room temperature to 400°C in 2 minutes. No. 4 glass has a BaO content of 25
% and the transition temperature did not reach 580℃,
No. 5 glass is a comparative example of silicate glass. The spectral transmittance characteristics of the glass of the present invention are shown in the figure. In the figure, A is the characteristic curve of Example No. 2 glass, and B is the characteristic curve of Comparative Example No. 5 glass. From the table and the spectral transmittance characteristic diagram, it is recognized that the glass of the present invention has a transmittance of 356 nm ultraviolet rays and infrared rays that is almost the same as that of conventional silicate glass, but has significantly superior heat resistance. It will be done. [Effects of the Invention] As described above, the present invention is a barium borosilicate glass that transmits 356 nm ultraviolet rays and absorbs visible light and infrared rays, and has a transition temperature of 580°C or higher. Since it has superior heat resistance compared to silicate glass, it has the advantage that it can be applied to glass filters, etc. of ultraviolet ray irradiation equipment for resin curing, and the equipment can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明ガラスおよび従来ガラスの分光透
過率特性を示す曲線図である。 A……本発明ガラス(実施例No.2)、B……従
来ガラス(比較例No.5)。
The drawing is a curve diagram showing the spectral transmittance characteristics of the glass of the present invention and the conventional glass. A: Invention glass (Example No. 2), B: Conventional glass (Comparative Example No. 5).

Claims (1)

【特許請求の範囲】[Claims] 1 重量百分率でSiO248〜55%,Al2O34〜12%,
B2O34〜13%,Na2O2〜6%,K2O0〜5%,
Li2O0〜1%,Na2O+K2O+Li2O3〜7%,
BaO25〜33%,CaO0〜8%,MgO0〜8%,
ZnO0〜8%,PbO0〜5%,BaO+CaO+MgO
+ZnO+PbO25〜35%,NiO0.5〜5%,CoO0.2
〜2%,As2O30〜1%,Sb2O30〜1%,As2O3
+Sb2O30.3〜1.5%を含有し、転移温度が580℃以
上である紫外線透過熱線吸収ガラス。
1 SiO 2 48-55%, Al 2 O 3 4-12% by weight percentage,
B2O3 4~13%, Na2O2 ~6%, K2O0 ~ 5%,
Li 2 O 0 ~ 1%, Na 2 O + K 2 O + Li 2 O 3 ~ 7%,
BaO25~33%, CaO0~8%, MgO0~8%,
ZnO0~8%, PbO0~5%, BaO+CaO+MgO
+ZnO+PbO25~35%, NiO0.5~5%, CoO0.2
~2%, As2O3 0 ~ 1%, Sb2O3 0 ~1%, As2O3
+ Ultraviolet transmitting and heat ray absorbing glass containing 0.3 to 1.5% of Sb 2 O 3 and having a transition temperature of 580°C or higher.
JP11755387A 1987-05-14 1987-05-14 Glass for transmitting ultraviolet ray and absorbing heat ray Granted JPS63282139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11755387A JPS63282139A (en) 1987-05-14 1987-05-14 Glass for transmitting ultraviolet ray and absorbing heat ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11755387A JPS63282139A (en) 1987-05-14 1987-05-14 Glass for transmitting ultraviolet ray and absorbing heat ray

Publications (2)

Publication Number Publication Date
JPS63282139A JPS63282139A (en) 1988-11-18
JPH0432019B2 true JPH0432019B2 (en) 1992-05-28

Family

ID=14714661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11755387A Granted JPS63282139A (en) 1987-05-14 1987-05-14 Glass for transmitting ultraviolet ray and absorbing heat ray

Country Status (1)

Country Link
JP (1) JPS63282139A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822762B2 (en) * 1990-01-23 1996-03-06 東芝硝子株式会社 UV transparent glass
GB9525111D0 (en) 1995-12-08 1996-02-07 Pilkington Plc Glass and glass products
CN102515525B (en) * 2011-11-22 2014-03-12 上海罗金玻璃有限公司 Glass with high transmissivity of ultraviolet A and preparation method for same
JP6273259B2 (en) 2013-03-28 2018-01-31 協立化学産業株式会社 UV-curable light-shielding composition
WO2016074750A1 (en) 2014-11-13 2016-05-19 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Also Published As

Publication number Publication date
JPS63282139A (en) 1988-11-18

Similar Documents

Publication Publication Date Title
CA2239342C (en) Lead and arsenic free borosilicate glass and lamp containing same
WO2005063643A1 (en) Near infrared absorbing green glass composition, and laminated glass using the same
KR830005062A (en) X-ray superabsorption lead-free glass composition
JP2006264994A (en) Infrared light absorbing green glass composition
CN1042923C (en) High index brown photochromic glasses
CA2163497A1 (en) Colorless ophthalmic glasses
US4277285A (en) Sealing glass with high coefficient of absorption for infra-red rays
JPH0692677A (en) Glass composition for illumination
US3808154A (en) Glass used for face panels of color television picture tubes
US2691855A (en) High-temperature thermometer tube and glass therefor
JPH0432019B2 (en)
JPS6287433A (en) Ultraviolet-transmission glass
US3671380A (en) Uv transmitting borosilicate glass composition and article
JPH0312337A (en) Panel glass of cathode-ray tube
US2382056A (en) Glass transparent to far ultraviolet
CN110352928B (en) Lead-free ultraviolet lamp tube for indoor insect trapping lamp
CN111348827A (en) LED ultraviolet lamp and preparation method of ultraviolet light transmitting glass tube used by same
JPS63215533A (en) Cathode-ray tube panel glass
JP2619345B2 (en) Germicidal lamp glass
DK0553586T3 (en) Lead free crystal glass composition
JPS62288134A (en) Panel glass for cathode-ray tube
JPS61201640A (en) Ultraviolet-ray transmitting and heat-ray absorbing glass
JPH01103933A (en) Panel glass for cathode-ray tube
JPS58120537A (en) Panel glass for cathode ray tube
JPS58145637A (en) Glass roofing tile for lighting