JPH04319664A - Preparation of metal component impregnated porous substance - Google Patents

Preparation of metal component impregnated porous substance

Info

Publication number
JPH04319664A
JPH04319664A JP3087002A JP8700291A JPH04319664A JP H04319664 A JPH04319664 A JP H04319664A JP 3087002 A JP3087002 A JP 3087002A JP 8700291 A JP8700291 A JP 8700291A JP H04319664 A JPH04319664 A JP H04319664A
Authority
JP
Japan
Prior art keywords
metal component
impregnated
silver nitrate
silica gel
porous substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3087002A
Other languages
Japanese (ja)
Other versions
JP2636090B2 (en
Inventor
Shigeyuki Mizuno
水野 重之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP3087002A priority Critical patent/JP2636090B2/en
Publication of JPH04319664A publication Critical patent/JPH04319664A/en
Application granted granted Critical
Publication of JP2636090B2 publication Critical patent/JP2636090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a metal component impregnated porous substance accurately and uniformly impregnated with an objective amount of a metal component by a method wherein a porous substance is brought into contact with a solution wherein the metal component is dissolved in a solvent whose volume is same as that of the moisture adsorbed on the porous substance while ultrasonic vibration is applied to the porous substance. CONSTITUTION:A predetermined amount of a porous substance is collected in a container and, while ultrasonic vibration is applied to the porous substance, a solution prepared by dissolving a metal component in a solvent whose volume is same as that of the moisture adsorbed on the porous substance is dripped on the porous substance little by little. After the metal component solution is dripped, ultrasonic vibration is continued for a predetermined time. Next, the porous substance wetted with the metal component solution is dried under vacuum at high temp. to volatilize the solvent and allowed to cool in a desiccator to obtain a metal component impregnated substance. For example, when a silica gel is used, vacuum drying is performed at 100 deg.C for 3hr. By this method, all of the metal component is infiltrated in the substance and the metal component impregnated porous substance accurately and uniformly impregnated with an objective amount of the metal component is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属成分含浸多孔質物
質の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous material impregnated with a metal component.

【0002】0002

【従来の技術】金属成分含浸多孔質物質は、液体クロマ
トグラフィー用充填剤や各種化学反応用触媒として用い
られている。例えば硝酸銀含浸シリカゲルは、石油留分
のパラフィン分とオレフィン分とを分離するための液体
クロマトグラフィー用充填剤として用いられている。こ
の硝酸銀含浸シリカゲルを液体クロマトグラフィー用充
填剤に用いる場合、硝酸銀含浸量によって石油留分中の
各成分の分離度合が変動するため、硝酸銀含浸シリカゲ
ルの製造において所定量の硝酸銀をシリカゲルに精度良
く均一に含浸させる必要がある。
2. Description of the Related Art Porous materials impregnated with metal components are used as packing materials for liquid chromatography and catalysts for various chemical reactions. For example, silver nitrate-impregnated silica gel is used as a packing material for liquid chromatography to separate paraffin and olefin components of petroleum fractions. When this silver nitrate-impregnated silica gel is used as a packing material for liquid chromatography, the degree of separation of each component in the petroleum fraction varies depending on the amount of silver nitrate impregnated, so in the production of silver nitrate-impregnated silica gel, a predetermined amount of silver nitrate is uniformly applied to the silica gel with high precision. It needs to be impregnated with.

【0003】しかしながら、メタノール、アセトニトリ
ルなどの硝酸銀可溶溶媒に必要量の硝酸銀を溶解して得
られた硝酸銀溶液にシリカゲルを添加、混合した後、溶
媒を留去することにより硝酸銀含浸シリカゲルを得る従
来方法では以下のような欠点があった。 (i)用いられたシリカゲルに対して多量の溶媒を使用
するため、全量の硝酸銀をシリカゲルに含浸できないだ
けでなく、シリカゲルへの硝酸銀の含浸量にばらつきが
生じやすい。 (ii)多量の溶媒を用い、かつこの溶媒を留去する必
要があるため、コストがかさむ。 (iii) 溶媒留去後、容器壁等に付着した未含浸硝
酸銀を回収する必要がある。 (iV)得られた硝酸銀含浸シリカゲルを液体クロマト
グラフィー用カラムに充填する際に、クロロホルムを使
用すると、このクロロホルムが安定剤としてエタノール
を含むため、エタノールによって硝酸銀含浸シリカゲル
から硝酸銀が溶出してしまう。
However, conventionally, silica gel is obtained by adding silica gel to a silver nitrate solution obtained by dissolving a required amount of silver nitrate in a silver nitrate-soluble solvent such as methanol or acetonitrile, mixing the mixture, and then distilling off the solvent to obtain silver nitrate-impregnated silica gel. The method had the following drawbacks. (i) Since a large amount of solvent is used for the silica gel used, not only the entire amount of silver nitrate cannot be impregnated into the silica gel, but also the amount of silver nitrate impregnated into the silica gel tends to vary. (ii) Since a large amount of solvent is used and it is necessary to distill off this solvent, the cost is high. (iii) After the solvent is distilled off, it is necessary to recover unimpregnated silver nitrate that has adhered to the container wall, etc. (iV) If chloroform is used when filling the obtained silver nitrate-impregnated silica gel into a liquid chromatography column, the chloroform contains ethanol as a stabilizer, so the silver nitrate will be eluted from the silver nitrate-impregnated silica gel by the ethanol.

【0004】0004

【発明の目的】従って本発明の目的は、上記従来技術の
硝酸銀含浸多孔質物質の製造方法における、上述の欠点
(i),(ii),(iii)および(iV)を解消し
、目標量の硝酸銀などの金属成分をシリカゲルなどの多
孔質物質に精度良く均一に含浸させることができる、金
属成分含浸多孔質物質の製造方法を提供することにある
OBJECTS OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks (i), (ii), (iii) and (iV) in the above-mentioned prior art method for producing a porous material impregnated with silver nitrate, and to An object of the present invention is to provide a method for producing a porous material impregnated with a metal component, which can uniformly impregnate a porous material such as silica gel with a metal component such as silver nitrate.

【0005】[0005]

【発明の構成】上記目的を達成する本発明の金属成分含
浸多孔質物質の製造方法は、多孔質物質を、該多孔質物
質の吸着水分量と実質的に同容量の溶媒に金属成分を溶
解した溶液と、超音波振動を与えつつ接触させて、金属
成分を多孔質物質に含浸させることを特徴とする。
[Structure of the Invention] A method for producing a porous material impregnated with a metal component according to the present invention that achieves the above object includes dissolving a metal component in a solvent having a volume substantially equal to the amount of water absorbed by the porous material. The porous material is impregnated with the metal component by contacting the porous material with the solution while applying ultrasonic vibration.

【0006】以下、本発明を詳説する。本発明において
用いられる多孔質物質としては、シリカゲル、アルミナ
ゲル、カーボンなどの多孔質物質が挙げられる。この多
孔質物質の形状は球形、破砕形などの任意の形状であっ
てよい。また多孔質物質が球形の場合に、その粒子径は
3〜200μmであるのが好ましい。多孔質物質が破砕
形の場合、その主寸法(最長寸法)は3〜200μmで
あるのが好ましい。これら多孔質物質の好ましい細孔径
は3〜300オングストロームである。
The present invention will be explained in detail below. Porous substances used in the present invention include porous substances such as silica gel, alumina gel, and carbon. The shape of this porous material may be any shape such as a spherical shape or a crushed shape. Further, when the porous material is spherical, the particle size is preferably 3 to 200 μm. When the porous material is in crushed form, its main dimension (longest dimension) is preferably 3 to 200 μm. The preferred pore diameter of these porous materials is 3 to 300 angstroms.

【0007】本発明において金属成分が含浸される多孔
質物質としては、高温下に真空乾燥した後、デシケータ
内で放冷したものを用いるのが好ましい。この真空乾燥
は、シリカゲルの場合、100℃で3時間行なうのが好
ましい。本発明においては、上記多孔質物質の吸着水分
量を予め測定しておく必要がある。これは、例えば以下
の方法で行なわれる。 (i) 多孔質物質を高温下に真空乾燥した後、デシケ
ータ内で放冷する。この真空乾燥および放冷の条件は、
金属成分が含浸される多孔質物質の上記真空乾燥および
放冷条件と同一とするのが好ましい。 (ii)次に所定量の多孔質物質をビーカー等の容器に
採り、その重量(Wdry)を秤量する。 (iii) 次に容器内の多孔質物質に超音波等で振動
を与えながら水を、多孔質物質の全体が濡れるまで滴下
する。 この濡れの判定は目視によって行なわれる。 (iV)次に全体が濡れた多孔質物質の重量(Wwet
)を測定し、WwetとWdryとの差より吸着水分量
を求める。
[0007] In the present invention, it is preferable to use a porous material impregnated with a metal component that has been vacuum dried at high temperature and then left to cool in a desiccator. In the case of silica gel, this vacuum drying is preferably carried out at 100° C. for 3 hours. In the present invention, it is necessary to measure the amount of water absorbed by the porous material in advance. This is done, for example, in the following manner. (i) After vacuum drying the porous material at high temperature, it is left to cool in a desiccator. The conditions for this vacuum drying and cooling are as follows:
It is preferable to use the same vacuum drying and cooling conditions as described above for the porous material impregnated with the metal component. (ii) Next, a predetermined amount of the porous material is placed in a container such as a beaker, and its weight (Wdry) is measured. (iii) Next, water is dripped onto the porous material in the container while applying vibration using ultrasonic waves or the like until the entire porous material is wetted. This wetness determination is performed visually. (iV) Next, the weight of the porous material that is completely wet (Wwet
), and the amount of adsorbed water is determined from the difference between Wwet and Wdry.

【0008】本発明によれば、上で求められた多孔質物
質の吸着水分量と実質的に同容量の溶媒に金属成分を溶
解した溶液を予め調製しておく。この金属成分溶液の調
製に際して、金属成分としては、周期律表I,III,
VI,VIII族の金属(例えば銀、銅、ガリウム、モ
リブデン、白金、ロジウム、パラジウム、鉄、ニッケル
、コバルトなど)の塩(例えば硝酸塩、塩酸塩、酢酸塩
など)が用いられる。特に好ましい金属成分は硝酸銀で
ある。また溶媒としては、上記金属成分を溶解し得る溶
媒が用いられ、その例として水、メタノール、エタノー
ル、アセトニトリル及びこれらの混合液が挙げられる。 上記金属成分は、多孔質物質の吸着水分量と実質的に同
容量の上記溶媒に溶解されるが、「実質的に同容量」と
は、多孔質物質の吸着水分量と溶媒量とを厳密な意味で
一致させる必要はなく、前者/後者の比率が例えば0.
95〜1.05の範囲であっても良いことを意味する。 しかしながら溶媒量を可能な限り多孔質物質の吸着水分
量に近ずけるのが好ましいことは言うまでもない。溶媒
に溶解される金属成分の量は、多孔質物質に含浸させた
い金属成分の目標量に応じて適宜決定される。
According to the present invention, a solution is prepared in advance in which a metal component is dissolved in a solvent of substantially the same volume as the amount of water absorbed by the porous material determined above. When preparing this metal component solution, the metal components include those listed in the periodic table I, III,
Salts (eg, nitrates, hydrochlorides, acetates, etc.) of group VI, VIII metals (eg, silver, copper, gallium, molybdenum, platinum, rhodium, palladium, iron, nickel, cobalt, etc.) are used. A particularly preferred metal component is silver nitrate. Further, as the solvent, a solvent capable of dissolving the above-mentioned metal component is used, and examples thereof include water, methanol, ethanol, acetonitrile, and a mixture thereof. The above-mentioned metal component is dissolved in the above-mentioned solvent in a volume that is substantially the same as the amount of water absorbed by the porous material, but "substantially the same volume" refers to the amount of water absorbed by the porous material and the amount of solvent. There is no need for them to match in any meaningful sense; for example, if the former/latter ratio is 0.
This means that it may be in the range of 95 to 1.05. However, it goes without saying that it is preferable to make the amount of solvent as close as possible to the amount of water absorbed by the porous material. The amount of the metal component dissolved in the solvent is appropriately determined depending on the target amount of the metal component desired to be impregnated into the porous material.

【0009】本発明によれば、このようにして調製され
た金属成分溶液と、上記多孔質物質とを接触させて、金
属成分を多孔質物質に含浸させるが、これは、例えば以
下のようにして行なわれる。 (i) 所定量の多孔質物質をビーカーなどの容器に採
取する。 (ii)次に容器内の多孔質物質に超音波振動を与えな
がら、多孔質物質の吸着水分量と実質的に同容量の溶媒
に金属成分を溶解した溶液を少量ずつ滴下する。印加さ
れる超音波振動の周波数は10〜100KHZ 好まし
くは30〜100KHZ 、高周波出力は30〜100
0Wとするのが好ましい。 (iii) 金属成分溶液滴下後、超音波振動の付与を
所定時間(例えば10分間)継続する。 (iV)次に金属成分溶液で湿潤された多孔質物質を高
温下に真空乾燥して、溶媒を揮散させた後、デシケータ
内で放冷して、金属成分含浸多孔質物質を得る。真空乾
燥は、例えばシリカゲルの場合、100℃で3時間行な
うのが好ましい。
According to the present invention, the metal component solution prepared in this way is brought into contact with the porous material to impregnate the porous material with the metal component, for example, as follows. It is done. (i) Collect a predetermined amount of porous material into a container such as a beaker. (ii) Next, while applying ultrasonic vibration to the porous material in the container, a solution of a metal component dissolved in a solvent of substantially the same volume as the amount of water absorbed by the porous material is dropped little by little. The frequency of the applied ultrasonic vibration is 10 to 100 KHZ, preferably 30 to 100 KHZ, and the high frequency output is 30 to 100 KHZ.
It is preferable to set it to 0W. (iii) After dropping the metal component solution, the application of ultrasonic vibration is continued for a predetermined period of time (for example, 10 minutes). (iv) Next, the porous material moistened with the metal component solution is vacuum-dried at high temperature to volatilize the solvent, and then allowed to cool in a desiccator to obtain a metal component-impregnated porous material. For example, in the case of silica gel, vacuum drying is preferably carried out at 100° C. for 3 hours.

【0010】本発明によれば、予め多孔質物質の吸着水
分量を求め、この吸着水分量と実質的に同容量の溶媒に
金属成分を溶解した溶液と、多孔質物質とを接触させる
ので、金属成分は実質的にその全量が多孔質物質に含浸
される。従って目標量の金属成分が精度良く均一に含浸
された金属成分含浸多孔質物質を得ることができる。そ
してこのようにして得られた金属成分含浸多孔質物質を
、液体クロマトグラフィー用充填剤として用いた場合、
精度良く物質の分離を行なうことが可能となり、また各
種化学反応用触媒として用いた場合、当該化学反応を首
尾良く行なうことが可能となる。金属成分含浸多孔質物
質のうち、特に硝酸銀含浸シリカゲルは、石油留分のパ
ラフィンとオレフィンの分離のための、また塩化パラジ
ウム含浸シリカゲルは、石油留分の硫黄化合物の分離の
ための液体クロマトグラフィー用充填剤として好適であ
る。
According to the present invention, the amount of water absorbed by the porous material is determined in advance, and the porous material is brought into contact with a solution in which a metal component is dissolved in a solvent of substantially the same volume as the amount of adsorbed water. Substantially all of the metal component is impregnated into the porous material. Therefore, it is possible to obtain a metal component-impregnated porous material that is uniformly impregnated with a target amount of metal components with high accuracy. When the porous material impregnated with a metal component thus obtained is used as a packing material for liquid chromatography,
It becomes possible to separate substances with high precision, and when used as a catalyst for various chemical reactions, it becomes possible to carry out the chemical reactions successfully. Among porous materials impregnated with metal components, silica gel impregnated with silver nitrate is particularly suitable for the separation of paraffins and olefins in petroleum fractions, and silica gel impregnated with palladium chloride is used for liquid chromatography for the separation of sulfur compounds in petroleum fractions. Suitable as a filler.

【0011】[0011]

【実施例】以下実施例により本発明を更に説明する。 実施例1 (1)多孔質物質 シリカゲル(商品名YMC・GEL  SIL−120
−S5、ワイエムシィ(株)製)を使用した。このシリ
カゲルは、使用に先立ち、100℃で3時間真空乾燥し
た後、デシケータ内で放冷した。
EXAMPLES The present invention will be further explained by the following examples. Example 1 (1) Porous material silica gel (trade name YMC・GEL SIL-120
-S5, manufactured by YMC Co., Ltd.) was used. Prior to use, this silica gel was vacuum dried at 100° C. for 3 hours and then allowed to cool in a desiccator.

【0012】(2)多孔質物質の吸着水分量の測定上記
(1)のシリカゲル(真空乾燥、放冷後のもの)をビー
カーに採り、その重量(Wdry)を秤量した。Wdr
yは1gであった。次にビーカー内のシリカゲルに超音
波振動(周波数42KHz、高周波出力70W)を与え
ながら水を、シリカゲル全体が濡れるまで滴下した。濡
れの判定は目視によって行なった。次に水で湿潤したシ
リカゲルの重量(Wwet)を秤量した。Wwetは1
.95gであり、WwetとWdryとの差により、シ
リカゲル1g当りの吸着水分量が0.95gであること
が明らかとなった。この吸着水分量0.95gは体積0
.95mlに相当する。
(2) Measurement of adsorbed moisture content of porous material The silica gel (after vacuum drying and cooling) described in (1) above was placed in a beaker, and its weight (Wdry) was measured. Wdr
y was 1 g. Next, water was dripped onto the silica gel in the beaker while applying ultrasonic vibration (frequency: 42 KHz, high frequency output: 70 W) until the entire silica gel was wetted. Wetness was determined visually. The weight of the water-wet silica gel (Wwet) was then weighed. Wwet is 1
.. Based on the difference between Wwet and Wdry, it was revealed that the amount of water absorbed per 1 g of silica gel was 0.95 g. This adsorbed water amount of 0.95g has a volume of 0.
.. Equivalent to 95ml.

【0013】(3)金属成分溶液の調製金属成分として
、硝酸銀を用い、この硝酸銀の所定量をシリカゲル2g
当りの吸着水分量(1.9g=1.9ml)と同容量の
溶媒(水/エタノールの2/1(V/V)混合液)に溶
解して、下記の5種の硝酸銀溶液を調製した。                          
           硝酸銀濃度         
   硝酸銀溶液(i)      0.105%(W
/V)                〃    (
ii)      0.210%(W/V)     
           〃    (iii)    
 0.316%(W/V)             
   〃    (iv)      0.421%(
W/V)                〃    
(v)       0.737%(W/V)
(3) Preparation of metal component solution Using silver nitrate as the metal component, a predetermined amount of this silver nitrate was added to 2 g of silica gel.
The following five types of silver nitrate solutions were prepared by dissolving them in the same volume of solvent (2/1 (V/V) water/ethanol mixture) as the adsorbed water content (1.9 g = 1.9 ml). .
Silver nitrate concentration
Silver nitrate solution (i) 0.105% (W
/V)〃(
ii) 0.210% (W/V)
(iii)
0.316% (W/V)
〃 (iv) 0.421% (
W/V) 〃
(v) 0.737% (W/V)

【001
4】(4)多孔質物質への金属成分の含浸上記(1)の
シリカゲル(真空乾燥、放冷後のもの)2gをビーカー
に採り、ビーカーを超音波洗浄器に入れて超音波振動(
周波数42KHz、高周波出力70W)を与えながら、
上記(3)で得られた各硝酸銀溶液の1.9mlを駒込
ピペットを用いて滴下し、滴下後、10分間超音波振動
の付与を継続した。その後、硝酸銀溶液で湿潤したシリ
カゲルを100℃で3時間真空乾燥して溶媒を揮散させ
た後、デシケータ内で放冷して硝酸銀含浸シリカゲルを
得た。得られた硝酸銀含浸シリカゲルについて硝酸銀含
浸量を測定した結果を表1に示す。表1より、本実施例
で得られた硝酸銀含浸シリカゲルにおいては、いずれも
含浸させたい硝酸銀の目標量とほぼ同一量の硝酸銀が含
浸されていることが明らかとなった。なお、上記含浸操
作を別途さらに2回実施したが、いずれも良好な結果が
得られ、硝酸銀含浸量にばらつきは見られなかった。
001
4] (4) Impregnation of metal components into porous materials Place 2 g of the silica gel from (1) above (vacuum dried and left to cool) in a beaker, place the beaker in an ultrasonic cleaner, and apply ultrasonic vibration (
While giving a frequency of 42KHz and a high frequency output of 70W,
1.9 ml of each silver nitrate solution obtained in the above (3) was dropped using a Komagome pipette, and after the dropping, ultrasonic vibration was continued for 10 minutes. Thereafter, the silica gel moistened with the silver nitrate solution was vacuum-dried at 100° C. for 3 hours to volatilize the solvent, and then allowed to cool in a desiccator to obtain a silver nitrate-impregnated silica gel. Table 1 shows the results of measuring the amount of silver nitrate impregnated in the obtained silver nitrate-impregnated silica gel. From Table 1, it is clear that the silver nitrate-impregnated silica gel obtained in this example was impregnated with almost the same amount of silver nitrate as the target amount of silver nitrate to be impregnated. Note that the above impregnation operation was carried out two more times, and good results were obtained in both cases, and no variation was observed in the amount of silver nitrate impregnated.

【0015】(5)液体クロマトグラフィー上記(4)
で得られた硝酸銀含浸シリカゲルに四塩化炭素を1g/
10mlとなるように加え、超音波振動を付与してスラ
リーとした。このスラリーをカラムパッカーに入れ、以
下の条件で充填した。   カラムに充填後の硝酸銀含浸シリカゲルについて硝
酸銀含浸量を測定した結果も表1に示す。表1より、カ
ラム充填後の硝酸銀含浸量は、カラム充填前のそれと殆
んど変化なく、カラム充填時に硝酸銀が溶媒(安定剤と
してエタノールを含む四塩化炭素)によりシリカゲルか
ら溶出していないことが明らかとなった。
(5) Liquid chromatography (4) above
Add 1 g of carbon tetrachloride to the silver nitrate-impregnated silica gel obtained in
The slurry was added to a total volume of 10 ml and subjected to ultrasonic vibration to form a slurry. This slurry was put into a column packer and packed under the following conditions. Table 1 also shows the results of measuring the amount of silver nitrate impregnated on the silver nitrate-impregnated silica gel after filling the column. From Table 1, the amount of silver nitrate impregnated after column filling is almost unchanged from that before column filling, indicating that silver nitrate was not eluted from the silica gel by the solvent (carbon tetrachloride containing ethanol as a stabilizer) during column filling. It became clear.

【0016】次に硝酸銀濃度0.19%の硝酸銀含浸シ
リカゲルカラム(上記硝酸銀溶液(ii)を用いて得ら
れたもの)および市販のNH2 カラム(商品名:Li
chrosorb  NH2 、関東化学(株)製)を
直列に結合したカラムを用いて液体クロマトグラフィー
で石油留分であるLCO(ライトサイクルオイル:オレ
フィン分5%、パラフィン分30%、アロマ分65%)
の成分分離を行なった。その結果を図1に示す。なお、
参考のため、硝酸銀を含浸させていないシリカゲルカラ
ムおよび上記市販のNH2 カラムを直列に結合したカ
ラムを用いて同一のLCOの成分分離を行なった結果を
図2に示す。
Next, a silver nitrate-impregnated silica gel column with a silver nitrate concentration of 0.19% (obtained using the above silver nitrate solution (ii)) and a commercially available NH2 column (trade name: Li
LCO (light cycle oil: olefin content: 5%, paraffin content: 30%, aroma content: 65%) was analyzed by liquid chromatography using a column connected in series with chrosorb NH2 (manufactured by Kanto Kagaku Co., Ltd.).
The components were separated. The results are shown in Figure 1. In addition,
For reference, FIG. 2 shows the results of component separation of the same LCO using a column in which a silica gel column not impregnated with silver nitrate and the above-mentioned commercially available NH2 column were connected in series.

【0017】図1と図2とを対比すると明らかなように
、本実施例で得られた硝酸銀含浸シリカゲルを用いると
オレフィン分のピークとパラフィン分のピークが明確に
現われ、両者を分離できるのに対し、硝酸銀を含浸させ
ないシリカゲルを用いた場合、オレフィン分のピークと
パラフィン分のピークが重なり合って、両者を分離でき
なかった。
As is clear from comparing FIGS. 1 and 2, when the silver nitrate-impregnated silica gel obtained in this example is used, the olefin component peak and the paraffin component peak clearly appear, and the two can be separated. On the other hand, when silica gel not impregnated with silver nitrate was used, the peak for olefin and the peak for paraffin overlapped, making it impossible to separate the two.

【0018】[0018]

【表1】[Table 1]

【0019】比較例1 ビーカー内に、実施例1で用いたと同一のシリカゲル(
真空乾燥、放冷後のもの)を2g入れ、アセトニトリル
10mlを加えてスラリーとした。別にシリカゲルの重
量(2g)に対して、0,6,0.8,1.0,1.5
,2.0,3.0および5.0wt%に相当する量の硝
酸銀をメタノール10mlに溶解して、合計7種の硝酸
銀メタノール溶液を調製した。
Comparative Example 1 In a beaker, the same silica gel (
After vacuum drying and cooling, 2 g of the mixture was added, and 10 ml of acetonitrile was added to form a slurry. Separately, 0,6,0.8,1.0,1.5 for the weight of silica gel (2g)
, 2.0, 3.0, and 5.0 wt% of silver nitrate were dissolved in 10 ml of methanol to prepare a total of seven types of methanol solutions of silver nitrate.

【0020】次に上記スラリーと硝酸銀メタノール溶液
とを混合し、超音波振動(周波数42kHz、高周波出
力70W)を10分間付与した後、30℃で3時間真空
乾燥して、合計7種の本比較例の硝酸銀含浸シリカゲル
を得た。得られた硝酸銀含浸シリカゲルの2種について
硝酸銀含浸量を測定した結果を表2に示す。表2より本
比較例で得られた硝酸銀含浸シリカゲルにおいては、含
浸させたい硝酸銀の目標量よりも著しく少ない量の硝酸
銀しか含浸されていなかった。
Next, the above slurry and silver nitrate methanol solution were mixed, subjected to ultrasonic vibration (frequency 42 kHz, high frequency output 70 W) for 10 minutes, and vacuum dried at 30° C. for 3 hours. An example silver nitrate impregnated silica gel was obtained. Table 2 shows the results of measuring the amount of silver nitrate impregnated for the two types of silver nitrate impregnated silica gels obtained. Table 2 shows that in the silver nitrate-impregnated silica gel obtained in this comparative example, only a significantly smaller amount of silver nitrate was impregnated than the target amount of silver nitrate to be impregnated.

【0021】次に本比較例で得られた7種の硝酸銀含浸
シリカゲルをカラムに充填し、充填後の硝酸銀含浸量を
調べた。その詳細は以下の通りである。すなわち、本比
較例の硝酸銀含浸シリカゲルにクロロホルムを1g/1
0mlになるように加え、超音波振動を付与してスラリ
ーとした。このスラリーをカラムパッカーに入れ、下記
の条件で充填した。   カラムに充填後の硝酸銀含浸シリカゲルについて硝
酸銀含浸量を求めた結果を表2に示す。表2より、7種
の硝酸銀含浸シリカゲルのいずれにおいても、カラム充
填後の硝酸銀含浸量は、硝酸銀含浸目標量よりも著るし
く低かった。また2種の硝酸銀含浸シリカゲルについて
カラム充填前と後で硝酸銀含浸量を対比すると、カラム
充填後の硝酸銀含浸量はカラム充填前のそれよりも著し
く低下し、硝酸銀が溶媒(安定剤としてエタノールを含
むクロロホルム)によってシリカゲルから溶出している
ことが明らかとなった。
Next, seven types of silver nitrate-impregnated silica gel obtained in this comparative example were packed into a column, and the amount of silver nitrate impregnated after filling was examined. The details are as follows. That is, 1 g/1 chloroform was added to the silver nitrate-impregnated silica gel of this comparative example.
The slurry was added to a volume of 0 ml and subjected to ultrasonic vibration to form a slurry. This slurry was put into a column packer and packed under the following conditions. Table 2 shows the results of determining the amount of silver nitrate impregnated in the silver nitrate-impregnated silica gel after filling the column. From Table 2, in all of the seven types of silver nitrate-impregnated silica gels, the amount of silver nitrate impregnated after column filling was significantly lower than the target amount of silver nitrate impregnation. Furthermore, when comparing the amount of silver nitrate impregnated before and after column filling for two types of silver nitrate-impregnated silica gel, the amount of silver nitrate impregnated after column filling was significantly lower than that before column filling, and silver nitrate was used as a solvent (including ethanol as a stabilizer). chloroform) was eluted from the silica gel.

【0022】[0022]

【表2】[Table 2]

【0023】[0023]

【発明の効果】以上のように本発明によれば、目標量の
金属成分を多孔質物質に精度良く均一に含浸させること
ができる金属成分含浸多孔質物質の製造方法が提供され
た。
As described above, according to the present invention, a method for producing a porous material impregnated with a metal component is provided, which allows the porous material to be uniformly impregnated with a target amount of the metal component with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例1で得られた硝酸銀含浸シリカゲルを充
填剤として用いたLCO(ライトサイクルオイル)の液
体クロマトグラム。
FIG. 1 is a liquid chromatogram of LCO (light cycle oil) using the silver nitrate-impregnated silica gel obtained in Example 1 as a filler.

【図2】硝酸銀を含浸していないシリカゲルを充填剤と
して用いたLCOの液体クロマトグラムである。
FIG. 2 is a liquid chromatogram of LCO using silica gel not impregnated with silver nitrate as packing material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  多孔質物質を、該多孔質物質の吸着水
分量と実質的に同容量の溶媒に金属成分を溶解した溶液
と、超音波振動を与えつつ接触させて、金属成分を多孔
質物質に含浸させることを特徴とする金属成分含浸多孔
質物質の製造方法。
Claim 1: A porous substance is brought into contact with a solution in which a metal component is dissolved in a solvent having a volume substantially equal to the amount of water absorbed by the porous substance while applying ultrasonic vibration, so that the metal component becomes porous. A method for producing a porous material impregnated with a metal component, the method comprising impregnating a porous material with a metal component.
【請求項2】  用いられる多孔質物質がシリカゲルで
あり、金属成分が硝酸銀であって、得られる金属成分含
浸多孔質物質が硝酸銀含浸シリカゲルである、請求項1
に記載の方法。
2. Claim 1, wherein the porous material used is silica gel, the metal component is silver nitrate, and the resulting metal component-impregnated porous material is silver nitrate-impregnated silica gel.
The method described in.
JP3087002A 1991-04-18 1991-04-18 Method for producing silica gel impregnated with silver nitrate Expired - Lifetime JP2636090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087002A JP2636090B2 (en) 1991-04-18 1991-04-18 Method for producing silica gel impregnated with silver nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087002A JP2636090B2 (en) 1991-04-18 1991-04-18 Method for producing silica gel impregnated with silver nitrate

Publications (2)

Publication Number Publication Date
JPH04319664A true JPH04319664A (en) 1992-11-10
JP2636090B2 JP2636090B2 (en) 1997-07-30

Family

ID=13902682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087002A Expired - Lifetime JP2636090B2 (en) 1991-04-18 1991-04-18 Method for producing silica gel impregnated with silver nitrate

Country Status (1)

Country Link
JP (1) JP2636090B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085622A (en) * 1994-06-17 1996-01-12 Idemitsu Kosan Co Ltd Column for supercritical liquid chromatography
JP2015206738A (en) * 2014-04-23 2015-11-19 株式会社島津製作所 Filler, and column using the filler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168559A (en) * 1974-12-09 1976-06-14 Teijin Ltd
JPS51151701A (en) * 1975-06-23 1976-12-27 Nippon Mining Co Ltd Method for the separation of organo- sulphur compounds
JPS5461127A (en) * 1977-10-07 1979-05-17 Shell Int Research Separation of aromatic compounds from hydrocarbon mixture
JPS5689058A (en) * 1979-12-21 1981-07-20 Toyo Soda Mfg Co Ltd Method for analyzing hydrocarbon compound
JPS62193645A (en) * 1986-02-19 1987-08-25 Agency Of Ind Science & Technol Adsorbent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168559A (en) * 1974-12-09 1976-06-14 Teijin Ltd
JPS51151701A (en) * 1975-06-23 1976-12-27 Nippon Mining Co Ltd Method for the separation of organo- sulphur compounds
JPS5461127A (en) * 1977-10-07 1979-05-17 Shell Int Research Separation of aromatic compounds from hydrocarbon mixture
JPS5689058A (en) * 1979-12-21 1981-07-20 Toyo Soda Mfg Co Ltd Method for analyzing hydrocarbon compound
JPS62193645A (en) * 1986-02-19 1987-08-25 Agency Of Ind Science & Technol Adsorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085622A (en) * 1994-06-17 1996-01-12 Idemitsu Kosan Co Ltd Column for supercritical liquid chromatography
JP2015206738A (en) * 2014-04-23 2015-11-19 株式会社島津製作所 Filler, and column using the filler

Also Published As

Publication number Publication date
JP2636090B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
Sander et al. Investigations of selectivity in RPLC of polycyclic aromatic hydrocarbons
Wittmer et al. Simultaneous analysis of tartrazine and its intermediates by reversed phase liquid chromatography
Bruner et al. Role of the liquid phase in gas-liquid-solid chromatography and its influence of column performance. Experimental approach
Mac Leod et al. Gas-liquid-solid chromatography. Theoretical aspects and analysis of polar compounds
Poole Influence of solute size and site-specific surface interactions on the prediction of retention in liquid chromatography using the solvation parameter model
Price The use and properties of mixed stationary phases in gas chromatography
Köster et al. Adsorption from binary solvent mixtures onto silica gel by HPLC frontal analysis
JPH04319664A (en) Preparation of metal component impregnated porous substance
Frederick et al. The Use of Lightly Loaded Columns in Gas Chromatography.
Sawyer et al. Evaluation of support materials for use in gas chromatography.
Barron et al. Reproducible preparation of low-capacity anion-exchange resins
Messina et al. Direct resolution of optically active isomers on chiral packings containing ergoline skeletons. 5. Enantioseparation of amino acid derivatives
US3940972A (en) Chromatographic separation of olefins
Boudreau et al. Determination of surface polarity by heterogeneous gas-solid chromatography
Saunders et al. 567. The absorption of quinine by a carboxylic acid ion-exchange resin
Engewald et al. Gas chromatographic investigation of the adsorption of polymethylcyclohexanes on graphitized thermal carbon black
Huen et al. High-performance ion-pair liquid chromatography: Application to dissolution rate and content uniformity testing of pharmaceuticals
Seibert et al. Sorption characteristics of a wide pore, butylsiloxane-bonded silica sorbent for solid-phase extraction
Jansson et al. Coated polymer beads in gas chromatography
Staszczuk The studies of the heterogeneous properties of solid surfaces by means of the derivatograph Q-1500 D
Karger et al. The use of gas chromatography in the study of the adsorption and partition of nonelectrolytes with aqueous tetraalkylammonium bromide solutions
Berezkin et al. The influence of the carrier gas on the retention parameters and the height equivalent to the theoretical plate in gas-solid chromatography
RU2112971C1 (en) Method of determining paraffin hydrocarbons in alpha-olefins
Buszewski Properties and biomedical applications of packings with high-density coverage of C18 chemically bonded phase for high-performance liquid chromatography and solid-phase extraction
Braithwaite et al. Plane chromatography

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term