JPH04319068A - Dispersion soldering method - Google Patents
Dispersion soldering methodInfo
- Publication number
- JPH04319068A JPH04319068A JP11365491A JP11365491A JPH04319068A JP H04319068 A JPH04319068 A JP H04319068A JP 11365491 A JP11365491 A JP 11365491A JP 11365491 A JP11365491 A JP 11365491A JP H04319068 A JPH04319068 A JP H04319068A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- soldering
- dispersion
- polybutene
- soldering method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005476 soldering Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000006185 dispersion Substances 0.000 title claims abstract description 31
- 229910000679 solder Inorganic materials 0.000 claims abstract description 100
- 229920001083 polybutene Polymers 0.000 claims abstract description 30
- 239000012298 atmosphere Substances 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 239000010419 fine particle Substances 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000007598 dipping method Methods 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 230000002950 deficient Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- -1 polybutylene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Molten Solder (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】(産業上の利用分野)本発明はプリント基
板の配線パターンの半田付け、半田コーティング等に適
した半田付け方法に関する。(Industrial Application Field) The present invention relates to a soldering method suitable for soldering wiring patterns on printed circuit boards, solder coating, and the like.
【0002】(従来の技術)従来の自動半田付け技術に
は大別してフロー半田法と、リフロー半田法がある。(Prior Art) Conventional automatic soldering techniques can be roughly divided into flow soldering and reflow soldering.
【0003】フロー半田法とは、先ず接着剤ディスペン
サによりプリント配線基板上面の所定の部品搭載箇所に
接着剤を施し、部品装着装置により部品を装着し、つい
で接着剤を乾燥または硬化して部品の固定を行った後、
プリント配線基板を上下反転させ、加熱により流動化し
たいわゆるフロー半田をプリント基板に接触させること
により、部品の端子と所定の導体との間の半田接続を行
なう方法である。この方法は特別な半田を必要としない
ので経済的である。[0003] In the flow soldering method, first, adhesive is applied to a predetermined component mounting location on the top surface of a printed wiring board using an adhesive dispenser, the component is mounted using a component mounting device, and then the adhesive is dried or hardened to attach the component. After fixing,
This is a method of making solder connections between the terminals of components and predetermined conductors by turning the printed wiring board upside down and bringing so-called flow solder, which has been fluidized by heating, into contact with the printed wiring board. This method is economical since no special solder is required.
【0004】一方、リフロー半田法は半田微粉末と天然
樹脂等との混合ペーストないしクリームを、スクリーン
印刷によりプリント基板の所定の半田付け箇所に印刷し
、部品装着装置により部品を装着し、ついでリフロー炉
(オーブン)中で加熱することにより半田を溶融させて
部品端子と導体の所定箇所との間の接続を行なう方法で
ある。この方法は、半田が微粉末であるので微細回路の
半田付けに適し、また半田付け温度が比較的低くて済む
。On the other hand, in the reflow soldering method, a paste or cream mixture of fine solder powder and natural resin is printed on predetermined soldering points on a printed circuit board by screen printing, components are mounted using a component mounting device, and then reflow soldering is performed. This is a method in which the solder is melted by heating in an oven to establish a connection between the component terminal and a predetermined location of the conductor. This method is suitable for soldering fine circuits because the solder is a fine powder, and the soldering temperature can be relatively low.
【0005】(発明が解決すべき課題)フロー半田法に
は次の欠点がある。
(1)半田そのものを流動化して使用するから、配線パ
ターンが微細回路の場合には隣接細線が半田によりブリ
ッジされて短絡を生じるので、微細回路への適用には限
界がある。
(2)約250〜270℃の高い半田温度が必要で部品
の特性の変動を招いたり、エネルギー面のロスを生じる
。
(3)フロー半田は付着箇所で表面張力によってその表
面が弧状に盛り上がるため半田付着量が多くなり、また
膜厚の制御も困難である。
(4)溶融半田は撹拌機や槽に直接接しているために長
時間では半田汚染につながる。(Problems to be Solved by the Invention) The flow soldering method has the following drawbacks. (1) Since the solder itself is used in a fluidized manner, if the wiring pattern is a fine circuit, adjacent thin wires will be bridged by the solder and a short circuit will occur, so there is a limit to its application to fine circuits. (2) A high soldering temperature of approximately 250 to 270° C. is required, which may cause variations in the characteristics of the components and energy loss. (3) Since the surface of flow solder bulges in an arc shape due to surface tension at the point of adhesion, the amount of solder adhesion is large and it is difficult to control the film thickness. (4) Since the molten solder is in direct contact with the stirrer and tank, prolonged use can lead to solder contamination.
【0006】リフロー半田法には次の欠点がある。
(1)スクリーン印刷による微細回路の印刷が難しく、
印刷の品質管理が面倒である。
(2)リフロー炉中の温度分布を均一にすることが困難
なことから場所による再溶融半田の表面張力の差を生じ
、部品ずれが発生し易い。
(3)フロー半田ほどではないが210〜240℃のよ
うな高温度が必要である。
(4)特別に調製した半田ペーストを使用するから材料
費が高くなる。本発明は、これらの問題点を解決するこ
とを目的とする。The reflow soldering method has the following drawbacks. (1) Printing fine circuits by screen printing is difficult;
Printing quality control is troublesome. (2) Since it is difficult to make the temperature distribution uniform in the reflow oven, there is a difference in the surface tension of the remelted solder depending on the location, which tends to cause parts to shift. (3) Although it is not as high as flow soldering, a high temperature of 210 to 240°C is required. (4) Material costs are high because a specially prepared solder paste is used. The present invention aims to solve these problems.
【0007】[0007]
【課題を解決するための手段】本発明は、上記のいずれ
の方法の改良でもなく、新規なディスパージョン半田付
け原理に基づき上記の欠点のない優れた半田付け法を提
供する。すなわち本発明は、半田を液状ポリブテンに加
え、不活性雰囲気中において、半田の融点以上の温度で
、機械的に撹拌することにより半田を微粒子状に分散さ
せた半田ディスパージョンを形成し、こうして得られた
半田ディスパージョンをプリント基板の所定の箇所に接
触させることを特徴とする半田付け方法である。本発明
とフロー半田法との著しい違いは、本発明では液状ポリ
ブテンを半田の熱媒体として使用し、半田の融点以上の
温度で強く撹拌することにより半田を平均粒子径数ミク
ロンないし数十μの微粒化する点にあり、これにより、
微細回路への適用を可能にし、半田付け温度を低下させ
、半田付着を均一に制御し、半田の空気、槽、撹拌機へ
の直接接触を防止して酸化を防止する。又リフロー半田
との著しい違いは高価な半田ペーストを使用する必要が
なく、面倒な工程管理が必要がなく、仮止材(接着剤又
は粘着剤)を使用するために部品のずれを生じる問題も
ない点にある。SUMMARY OF THE INVENTION The present invention is not an improvement on any of the above-mentioned methods, but provides an improved soldering method based on a novel dispersion soldering principle that does not suffer from the above-mentioned disadvantages. That is, in the present invention, solder is added to liquid polybutene and mechanically stirred in an inert atmosphere at a temperature higher than the melting point of the solder to form a solder dispersion in which the solder is dispersed in fine particles. This is a soldering method characterized by bringing the solder dispersion into contact with a predetermined location on a printed circuit board. The significant difference between the present invention and the flow soldering method is that in the present invention, liquid polybutene is used as a heat medium for solder, and by stirring strongly at a temperature higher than the melting point of the solder, the solder is formed into particles with an average particle size of several microns to several tens of microns. It is at the point of atomization, which causes
It enables application to microcircuits, reduces soldering temperature, controls solder adhesion uniformly, and prevents oxidation by preventing direct contact of solder with air, baths, and stirrers. Also, the significant difference from reflow soldering is that there is no need to use expensive solder paste, there is no need for troublesome process control, and there is no problem of parts shifting due to the use of temporary fixing materials (adhesives or adhesives). There is no point.
【0008】本発明のディスパージョン半田付け法は、
半田付けの必要な任意の用途に適用出来る。例えば、フ
ロー半田法と同様にディスパージョンを流動させてプリ
ント基板に接触させる方法とか、静置したディスパージ
ョン槽にプリント基板を浸漬するとか、電子部品の外部
端子として半田膜を形成するとか、各種の応用が可能で
、本発明は以下に述べる特定の用途に限定されない。The dispersion soldering method of the present invention includes:
It can be applied to any application that requires soldering. For example, there are various methods such as making the dispersion flow and contacting the printed circuit board as in the flow soldering method, immersing the printed circuit board in a stationary dispersion tank, forming a solder film as an external terminal of electronic components, etc. The invention is not limited to the specific applications described below.
【0009】より具体的に述べると、本発明のディスパ
ージョン半田付け法は、窒素、アルゴン等の不活性雰囲
気中で、好ましくはポリブテンを基準にして50vol
%以下の量の錫又は錫合金よりなる半田を、好ましくは
190℃以上の温度に加熱した液状ポリブテン中で、好
ましくは5000回転/分以上のホモジナイザを使用し
て、好ましくは1分以上、更に好ましくは約5分以上撹
拌することにより半田を微粒子状に分散させて半田ディ
スパージョンを形成する。このディスパージョンは、約
5分程度なら安定なディスパージョンを保持するから、
これをプリント配線基板等の所定の半田付け箇所に導き
、流動下にあるいは静置下にプリント配線基板等の半田
付け箇所に接触させる。More specifically, the dispersion soldering method of the present invention preferably uses 50 vol based on polybutene in an inert atmosphere such as nitrogen or argon.
% or less of tin or tin alloy in liquid polybutene heated to a temperature of preferably 190° C. or higher, using a homogenizer preferably at 5000 revolutions/minute or higher, preferably for 1 minute or longer, and Preferably, by stirring for about 5 minutes or more, the solder is dispersed into fine particles to form a solder dispersion. This dispersion maintains a stable dispersion for about 5 minutes, so
This is guided to a predetermined soldering location on a printed wiring board, etc., and brought into contact with the soldering location on the printed wiring board, etc., while flowing or standing still.
【0010】本発明者はディスパージョン半田付け法に
適する各種の耐熱性液体熱媒体を探究するため、数多く
の物質を試験したところ、190℃以上の温度で長時間
安定に使用出来る熱媒体としてはポリブテン(日本石油
(株)より市販)のみが所定の耐熱性と熱媒体としての
要件を満足することを見出した。ポリブテン(ポリブチ
レンともいう)は1−ブテン1と2−ブテンの重合体で
あって分子量によって粘度が違うが、本発明に適する粘
度は室温において10000cp前後のポリブテンであ
る。このものは190〜200℃の動作温度で約10c
psの粘度を有する。又ポリブテンは耐熱性が良く酸化
し難いので半田の不足量を補えば繰返し使用出来るので
コストが大幅に低下しする。又、ポリブテンは半田ディ
スパージョンを安定に保持できる。[0010] In order to explore various heat-resistant liquid heating media suitable for dispersion soldering, the present inventor tested a large number of substances and found that they were the only heating medium that could be stably used for long periods of time at temperatures of 190°C or higher. It has been found that only polybutene (commercially available from Nippon Oil Co., Ltd.) satisfies the specified heat resistance and heat transfer requirements. Polybutene (also referred to as polybutylene) is a polymer of 1-butene and 2-butene, and its viscosity varies depending on its molecular weight, but the viscosity suitable for the present invention is about 10,000 cp at room temperature. This one is about 10c at an operating temperature of 190-200℃
It has a viscosity of ps. Furthermore, since polybutene has good heat resistance and is difficult to oxidize, it can be used repeatedly by making up for solder shortages, resulting in a significant reduction in cost. Moreover, polybutene can stably hold the solder dispersion.
【0011】半田付けに際して、半田をポリブテンを基
準にして50vol%以下の量で液状ポリブテンに添加
する。これ以上の半田量では半田が充分に微粒子化しな
い。半田量は少ないほど微粒化し易い。例えば平均粒子
径10μの半田微粒子を得るには約5vol%以下にす
る。ついで窒素ガス又はアルゴンガス雰囲気中で、ポリ
ブテン浴を190℃以上、好ましくは190〜200℃
の温度に昇温して半田を溶融し、ホモジナイザにより浴
を強烈に撹拌する。ホモジナイザは例えばポリトロン社
製の超高速ホモジナイザが使用出来る。ホモジナイザの
回転数は、上記の温度条件下において5000回/分〜
30000回/分であり、例えば平均粒子径約10μを
得るには約10000回/分以上にする。又撹拌時間は
1分以上、例えば約5分である。これにより平均粒子径
が数μないし数十μの半田微粒子のディスパージョンが
得られる。これより少ない回転数では半田微粉末の平均
粒子径が大きく、且つ粒度分布が広くなり、粒径の揃っ
た半田粒子を得ることは出来ない。During soldering, solder is added to liquid polybutene in an amount of 50 vol % or less based on the polybutene. If the amount of solder exceeds this amount, the solder will not become sufficiently fine particles. The smaller the amount of solder, the easier it is to become atomized. For example, to obtain fine solder particles with an average particle diameter of 10 μm, the amount should be about 5 vol % or less. Then, in a nitrogen gas or argon gas atmosphere, the polybutene bath is heated to 190°C or higher, preferably 190 to 200°C.
The solder is melted by increasing the temperature to , and the bath is vigorously stirred using a homogenizer. As the homogenizer, for example, an ultra-high speed homogenizer manufactured by Polytron can be used. The rotation speed of the homogenizer is 5000 times/min under the above temperature conditions.
For example, to obtain an average particle size of about 10 μm, the speed should be about 10,000 times/min or more. The stirring time is 1 minute or more, for example about 5 minutes. As a result, a dispersion of fine solder particles having an average particle diameter of several microns to several tens of microns can be obtained. If the rotation speed is lower than this, the average particle size of the fine solder powder becomes large and the particle size distribution becomes wide, making it impossible to obtain solder particles with uniform particle size.
【0012】このように形成された半田ディスパージョ
ンをそのままプリント配線基板等に接触させると槽内の
半田は次第に減少するので、ポリブテンと半田の割合が
変動して半田付けの品質と能率に影響する。したがって
、半田−ポリブテン混合槽の半田濃度を監視し、所定の
半田濃度を維持するように半田を自動的に補給するとよ
い。その例は後で示す。If the solder dispersion thus formed is brought into contact with a printed wiring board, etc., the solder in the tank will gradually decrease, and the ratio of polybutene to solder will change, affecting the quality and efficiency of soldering. . Therefore, it is preferable to monitor the solder concentration in the solder-polybutene mixing tank and automatically replenish solder to maintain a predetermined solder concentration. An example of this will be shown later.
【0013】(実施例の説明)以下に本発明の好ましい
実施例を述べる。
実施例
容量0.5リットルのビーカーに半田(密度8.42g
/cm3 )20gと熱媒体であるポリブテン(密度0
.87g/cm3 、室温における粘度約10000c
ps)200ccに加え(容積比1.2/100)、窒
素雰囲気中で200℃に加熱した。200℃での粘度は
約10cpsであった。ホモジナイザを10000回/
分の剪断速度で5分間回転撹拌して溶融半田を分散させ
、微粒化しディスパージョンを得た。ついでホモジナイ
ザを取り除き、この温度を保ちながら空気中で、面積の
異なる四角形の微小な銅めっき区画を多数形成したプリ
ント基板を浸漬した。得られた半田はどの区画も浸漬時
間により異なる一定で薄い半田が付着した。比較のため
同じ構成のプリント基板に従来のフロー半田法で半田を
付着したが。本発明の場合に比して小さい区画は中央部
分が弧状に盛り上がり、又大きい区画は大量の半田が付
着した。又ディスパージョンの安定性を調べたところホ
モジナイザを取り除いてから約5分間の実用懸濁時間を
有した。(Description of Embodiments) Preferred embodiments of the present invention will be described below. Example Solder (density: 8.42 g) was placed in a beaker with a capacity of 0.5 liters.
/cm3) 20g and heat medium polybutene (density 0
.. 87g/cm3, viscosity at room temperature approximately 10000c
ps) 200 cc (volume ratio 1.2/100) and heated to 200° C. in a nitrogen atmosphere. The viscosity at 200°C was about 10 cps. Homogenizer 10,000 times/
The molten solder was dispersed and atomized by rotary stirring for 5 minutes at a shear rate of 5 minutes to obtain a dispersion. The homogenizer was then removed, and the printed circuit board, on which many square copper-plated sections with different areas had been formed, was immersed in air while maintaining this temperature. The resulting solder adhered to each section as a constant thin layer of solder that varied depending on the immersion time. For comparison, solder was applied to a printed circuit board with the same configuration using the conventional flow soldering method. Compared to the case of the present invention, the center part of the smaller section was raised in an arc shape, and a large amount of solder adhered to the larger section. The stability of the dispersion was also examined and found to have a practical suspension time of about 5 minutes after the homogenizer was removed.
【0014】次に、本発明を実施する工程図を図2、3
及び4に示す。先ず図2のように適当なデイスペンサ1
によりプリント基板2の所定の箇所に所要量の接着剤又
は粘着剤3を施し、次に図2のように電子部品4を部品
装着装置(図示ぜず)により搭載して接着剤3により熱
硬化又は乾燥等により固定する。最後に基板2を上下反
転して図3のように本発明の方法で得た半田ディスパー
ジョン5をノズル6からプリント基板に放出して接触さ
せて半田付けを完了する。半田微粒子はポリブテンで保
護されているからこの工程は空気中で行なうことが出来
る。Next, process diagrams for carrying out the present invention are shown in FIGS. 2 and 3.
and 4. First, as shown in Figure 2, install a suitable dispenser 1.
A required amount of adhesive or pressure-sensitive adhesive 3 is applied to a predetermined location of the printed circuit board 2, and then, as shown in FIG. Or fix by drying etc. Finally, the board 2 is turned upside down and, as shown in FIG. 3, the solder dispersion 5 obtained by the method of the present invention is discharged from the nozzle 6 onto the printed circuit board and brought into contact with it to complete the soldering. Since the solder particles are protected by polybutene, this process can be performed in air.
【0015】次に図1を参照して本発明の方法を実施す
る装置の1例を示す。なお、この例では半田付けを実行
するための半田浴は密封され不活性雰囲気で満たされる
が、この部分だけ空気中に露出していてもポリブテンが
半田を空気から実質的に遮断するので半田の酸化を防止
し、余り支障は生じない。さて、図1において、ホモジ
ナイズ槽10は半田・ポリブテン混合物を収容する。ホ
モジナイザ槽10の内部は図示しない加熱器により半田
を融解状態に保つ温度に維持されている。ホモジナイザ
11が槽10に取りつけてあり、その羽根12が半田と
ポリブテンを強烈に分散させて微粒状半田をポリブテン
中に分散したディスパージョンDを形成する。窒素タン
ク13から窒素ガスが槽10内に導入されて半田の酸化
を防止する。このようにして形成されたディスパージョ
ンは耐熱性ポンプ14により管路15及び16を介して
半田浴17に導かれ、ノズル18からプリント配線基板
PCBへ吹きつけられる。半田浴17には好ましくは窒
素タンク24から窒素ガスが導入されて半田の酸化を防
止する。余りのディスパージョンは戻り管路19を経て
ホモジナイズ槽10の底に戻る。なおディスパージョン
Dが流れる管路は保温又は加熱しておく。また槽、浴、
管路、ノズルの材料としてはステンレスを内張りするな
どの手段を講じるとよい。またディスパージョンの基板
PCBへの当て方は、図示の下から当てる方法のほか、
上から当てても良いし複流として両面(両面に半田が必
要な場合)に当てても良い。なお、プリント基板上の半
田付着厚さは、ディスパージョンの半田濃度、流量及び
接触時間の関数であるので、適宜所定の関係を選択すれ
ば良い。Next, an example of an apparatus for carrying out the method of the present invention will be shown with reference to FIG. Note that in this example, the solder bath for performing soldering is sealed and filled with an inert atmosphere, but even if only this part is exposed to the air, the polybutene effectively blocks the solder from the air, so the solder does not melt. Prevents oxidation and does not cause much trouble. Now, in FIG. 1, a homogenization tank 10 contains a solder/polybutene mixture. The inside of the homogenizer tank 10 is maintained at a temperature that keeps the solder in a molten state by a heater (not shown). A homogenizer 11 is attached to the tank 10, and its blades 12 intensively disperse the solder and polybutene to form a dispersion D in which finely divided solder is dispersed in the polybutene. Nitrogen gas is introduced into tank 10 from nitrogen tank 13 to prevent solder from oxidizing. The thus formed dispersion is guided by a heat-resistant pump 14 to a solder bath 17 via conduits 15 and 16, and is sprayed from a nozzle 18 onto a printed wiring board PCB. Nitrogen gas is preferably introduced into the solder bath 17 from a nitrogen tank 24 to prevent oxidation of the solder. The remaining dispersion returns to the bottom of the homogenization tank 10 via a return line 19. Note that the pipe through which dispersion D flows is kept warm or heated. Also, tanks, baths,
It is advisable to take measures such as lining the pipes and nozzles with stainless steel. In addition, there are two ways to apply the dispersion to the substrate PCB:
You can apply it from above, or you can apply it to both sides (if soldering is required on both sides) as a double flow. Note that since the thickness of solder adhesion on the printed circuit board is a function of the solder concentration, flow rate, and contact time of the dispersion, a predetermined relationship may be appropriately selected.
【0016】管路15には例えば光の透過等を利用した
半田濃度計20が設けてあり、濃度を刻刻に監視する。
得られた濃度は電気信号に変換され比較器21において
限界濃度と対比され、半田不足が生じた時に半田タンク
22の制御弁23を開放して半田を補給する。The conduit 15 is provided with a solder concentration meter 20 that uses, for example, light transmission, and monitors the concentration every moment. The obtained concentration is converted into an electric signal and compared with a limit concentration in a comparator 21. When solder shortage occurs, the control valve 23 of the solder tank 22 is opened to replenish solder.
【0017】(発明の効果)以上のように本発明による
と、
(1)ポリブテンに分散している溶融半田は数ミクロン
〜数十μ、例えば10μ程度の平均粒子径を有し、また
半田/ポリブテンの比が低いことから、電気メッキに近
い状態で半田膜厚を自由に制御できる。そのため配線パ
ターンが微細回路の場合でも細線間の半田ブリッジを回
避出来る。
(2)半田はポリブテン中に分散されているから大気や
その他の部分に直接触れないので酸化が防止され、半田
不良が生じない。
(3)ポリブテンを熱媒体として使用するから半田付け
温度が190〜200℃と従来よりも低い温度を使用で
きる。
以上が主要な効果であるが、
(4)流動式の場合、半田/ポリブテンの比がフロー半
田の場合に比べて低いことによる能率低下は、ディスパ
ージョンの流量を制御することで容易に補償できる。
(5)ポリブテンは耐熱性で劣化し難いため、半田を補
充しながら永続的に使用ができる。
(6)リフロー半田法のようなスクリーン印刷による問
題や、基板上の温度分布の不均一性などの問題がなく、
コストも安い。(Effects of the Invention) As described above, according to the present invention, (1) The molten solder dispersed in polybutene has an average particle diameter of several microns to several tens of microns, for example, about 10 microns, and the solder/ Since the polybutene ratio is low, the solder film thickness can be freely controlled in a state similar to electroplating. Therefore, even if the wiring pattern is a fine circuit, solder bridges between fine lines can be avoided. (2) Since the solder is dispersed in polybutene, it does not come into direct contact with the atmosphere or other parts, so oxidation is prevented and solder defects do not occur. (3) Since polybutene is used as a heat medium, a soldering temperature of 190 to 200° C. can be used, which is lower than conventional soldering temperatures. The above are the main effects, but (4) In the case of flow soldering, the decrease in efficiency due to the lower solder/polybutene ratio compared to flow soldering can be easily compensated for by controlling the flow rate of the dispersion. . (5) Polybutene is heat resistant and does not easily deteriorate, so it can be used permanently while replenishing solder. (6) There are no problems caused by screen printing such as reflow soldering, or problems such as uneven temperature distribution on the board.
The cost is also low.
【図1】本発明の方法を実施する装置の例を示す。FIG. 1 shows an example of a device implementing the method of the invention.
【図2】本発明の方法を使用してプリント基板装着を行
なう際の接着剤塗布工程を示す。FIG. 2 shows the adhesive application process during printed circuit board mounting using the method of the present invention.
【図3】本発明の方法を使用してプリント基板装着を行
なう際の部品装着工程を示す。FIG. 3 shows a component mounting process when mounting a printed circuit board using the method of the present invention.
【図4】本発明の方法を使用してプリント基板装着を行
なう際の半田付け工程を示す。FIG. 4 shows a soldering process when mounting a printed circuit board using the method of the present invention.
【符号の説明】
10:ホモジナイズ槽、11:ホモジナイザ、12:羽
根
13:窒素タンク、14:耐熱性ポンプ、15、16:
管路
17:半田浴、18:ノズル、19:戻り管路、20:
半田濃度計
21:比較器、22:半田タンク、23:制御弁、24
:窒素タンク[Explanation of symbols] 10: Homogenization tank, 11: Homogenizer, 12: Vane 13: Nitrogen tank, 14: Heat resistant pump, 15, 16:
Pipe 17: Solder bath, 18: Nozzle, 19: Return pipe, 20:
Solder concentration meter 21: Comparator, 22: Solder tank, 23: Control valve, 24
:Nitrogen tank
Claims (6)
雰囲気中において、半田の融点以上の温度で、機械的に
撹拌することにより半田を微粒子状に分散させた半田デ
ィスパージョンを形成し、こうして得られた半田ディス
パージョンを半田付けの必要な所定の箇所に接触させる
ことを特徴とする半田付け方法。Claim 1: Solder is added to liquid polybutene and mechanically stirred in an inert atmosphere at a temperature above the melting point of the solder to form a solder dispersion in which the solder is dispersed in fine particles. A soldering method characterized by bringing the solder dispersion into contact with a predetermined location that requires soldering.
ol%以下の量で使用される請求項1に記載の半田付け
方法。[Claim 2] The solder is 50V based on polybutene.
The soldering method according to claim 1, wherein the soldering method is used in an amount of ol% or less.
である請求項1または2に記載の半田付け方法。3. The soldering method according to claim 1, wherein the temperature above the melting point of the solder is 183° C. or above.
を5000回転/分以上のホモジナイザで一分以上撹拌
することにより形成される請求項1ないし3のいずれか
に記載の半田付け方法。4. The soldering method according to claim 1, wherein the dispersion is formed by stirring the solder and polybutene with a homogenizer at 5,000 revolutions per minute or more for one minute or more.
パージョンへのプリント基板の浸漬、又は半田ディスパ
ージョンのプリント基板への流動接触による請求項1な
いし4項の何れかに記載の半田付け方法。5. The soldering method according to claim 1, wherein the printed circuit board is brought into contact with the printed circuit board by dipping the printed circuit board in a solder dispersion or by flowing the solder dispersion into contact with the printed circuit board.
田濃度が低下したときに半田を補充する請求項1ないし
5のいずれかに記載の半田付け方法。6. The soldering method according to claim 1, wherein the solder concentration is monitored and solder is replenished when the solder concentration falls below a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11365491A JPH04319068A (en) | 1991-04-19 | 1991-04-19 | Dispersion soldering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11365491A JPH04319068A (en) | 1991-04-19 | 1991-04-19 | Dispersion soldering method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04319068A true JPH04319068A (en) | 1992-11-10 |
Family
ID=14617757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11365491A Withdrawn JPH04319068A (en) | 1991-04-19 | 1991-04-19 | Dispersion soldering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04319068A (en) |
-
1991
- 1991-04-19 JP JP11365491A patent/JPH04319068A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900000457B1 (en) | Solderable Conductive Polymer Composition and Film Forming Method Thereof | |
US5880017A (en) | Method of bumping substrates by contained paste deposition | |
JP4342176B2 (en) | Functional alloy particles | |
CN101313397B (en) | Carbon nanotubes solder composite for high performance interconnect | |
JP3996276B2 (en) | Solder paste, manufacturing method thereof, and solder pre-coating method | |
CN100585822C (en) | Flip-chip mounting method, bump forming method, and mounting device | |
JPH01113198A (en) | Soldering paste | |
EP0143530A1 (en) | A method for forming an electrically conductive polymer film containing silver and the electrically conductive silver/polymer composition itself | |
JPWO2006126527A1 (en) | Silver-coated ball and method for manufacturing the same | |
WO2005091354A1 (en) | Solder composition and method of bump formation therewith | |
JPH04319068A (en) | Dispersion soldering method | |
JP3998536B2 (en) | Bonding material and manufacturing method thereof, supplying method of bonding material, and electronic circuit board | |
JP2997904B2 (en) | Electronic component soldering method | |
JP2997905B2 (en) | Electronic component soldering method | |
JPH0864943A (en) | Dispersion soldering method | |
JPH07114205B2 (en) | Method of forming solder bumps | |
JP2001068848A (en) | Solder composition and solder supply method using same | |
EP0143531A1 (en) | A method of forming a solderable, electrically conductive film on a substrate and the conductive composition itself | |
JPH05261586A (en) | Cream solder | |
JPWO2006038376A1 (en) | Solder composition and method for forming solder layer using the same | |
JPH08281472A (en) | Solder paste for precoating | |
US4929284A (en) | Water removable solder stop | |
JPH032355B2 (en) | ||
JP2024102008A (en) | Pre-coating construction method | |
JPH0410694A (en) | Solder coating method of printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980711 |