JPH0431799B2 - - Google Patents

Info

Publication number
JPH0431799B2
JPH0431799B2 JP63003096A JP309688A JPH0431799B2 JP H0431799 B2 JPH0431799 B2 JP H0431799B2 JP 63003096 A JP63003096 A JP 63003096A JP 309688 A JP309688 A JP 309688A JP H0431799 B2 JPH0431799 B2 JP H0431799B2
Authority
JP
Japan
Prior art keywords
welding
seam
laser
point
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63003096A
Other languages
Japanese (ja)
Other versions
JPH01181990A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP63003096A priority Critical patent/JPH01181990A/en
Publication of JPH01181990A publication Critical patent/JPH01181990A/en
Publication of JPH0431799B2 publication Critical patent/JPH0431799B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は金属管等の製造におけるレーザを用い
たシーム溶接に関するものである。 従来の技術 レーザ溶接(第2図a)の他の溶接法(例えば
TIG溶接(第2図b)とは異なる大きな特徴とし
てビード幅が狭いことがあげられる。それ故長時
間接続して溶接を行なう場合シームずれのため溶
接欠陥が発生しやすくなるが、その対策として溶
接点の手前1点でシームのずれを検出しそのずれ
分だけ溶接点において加工ヘツドを溶接点方向に
もどすシーム倣い制御の方法がある(特開昭62−
148089号公報)。 この方法はこれまで板の溶接(例えばコイル継
ぎ溶接)に試みられているが、この技術を管の溶
接に適用しようとすると以下のようなことが問題
になる。 即ち第3図aはシームずれのない理想的溶接を
示したもので、cはその開先部を真上から見た図
である。一方第3図bは管がねじれてシームがず
れた様子を示したもので、dはcと同様その開先
部を真上から見た図である。いま検出点としてギ
ヤツプABの中点Mを考えた場合Mの基準線(破
線で示してある)からのずれと、溶接点Wのずれ
とはその方向も大きさも異なる。即ち管のねじれ
から生じるシームのずれは、板の溶接のような基
準線からの平行ずれとは異なり、1点の検出のみ
では溶接点におけるずれのベクトルを予測するこ
とはできない。 発明が解決しようとする課題 以上のように従来の技術は管のねじれに対応で
きないところに問題があつた。本発明は上記に鑑
みレーザを用いたパイプのシーム溶接のレーザ照
射位置を正しく追従でき、溶接部の欠陥を防止で
きるシーム倣い制御方法を提供することを目的と
している。 課題を解決するための手段 上記の問題点を解決するため以下のような発明
を行つた。 即ち本発明は、レーザを用いたパイプのシーム
溶接において、溶接点の手前にあつて溶接方向に
所定の間隔をもつた2箇所を検出位置とし、該検
出位置でのギヤツプ中間点の溶接基準線からのず
れベクトルを測定し、それぞれのずれベクトルと
それぞれの検出位置の溶接点からの距離に基づ
き、溶接点の溶接基準線からのずれを算出し、そ
れに応じて溶接点にレーザ照射位置を一致させる
ことを特徴とするもので、以下図面に従い詳細に
説明する。 作 用 第4図のWは溶接点、δは基準線9からのずれ
ベクトル(1次元)を表わす。また第1検出点を
ギヤツプA1B1の中点M1、第2検出点をA2B2
中点M2とし、M1、M2の基準線からのずれベク
トルをC1、C2、さらに溶接点と第1検出点、第
1検出点と第2検出点、おのおのの溶接方向の距
離をD1、D2とすると、δは近似的にC1、C2
D1、D2の関数として表わせる。 δ=(C1、C2、D1、D2) 特に第1検出点、第2検出点が溶接点からそれ
ほど遠くない場合、W、A1、A2及びW、B1、B2
はおのおの直線上にあると仮定できるからは次
のように表わせる。 (C1、C2、D1、D2) =sgn〔(1+D1/D2)C1 2−(D1/D2)C1C2〕 |(1+D1/D2)C1−(D1/D2)C2| ……(1) ここでベクトルδ、C1、C2の向きは第4図の
通り、上向きを+、下向きを−とした。これか
ら、例えばsgn(δ)=−1のとき溶接点は基準線
から一方向に|δ|ずれていることになるから、
加工ヘツドを一方向に|δ|動かす制御を行なえ
ばよく、sgn(δ)=+1のとき溶接点は基準線か
ら+方向に|δ|ずれていることから、加工ヘツ
ドを+方向に|δ|動かす制御を行なえばよい。 また、第5図は検出システムの1例を示したも
のである。2つのスリツト光源5−1,5−2か
ら出たレーザ光がレール5−4上をx方向に移動
可能な第4図A1M1B1、A2M2B2の2か所に照射
される一方、この反射光を第4図x方向に視野を
広げるシリンドリカルレンズ5−5によつて、同
時にCCDカメラ5−3の視野内におさめる。そ
してCCDカメラの出力信号をもとにコントロー
ラで加工ヘツドの移動量を算出、制御を行なう検
出から駆動までの信号の流れの例を第6図に示
す。 実施例 以上の条件のもとで本発明に基づく実験を行つ
た(第1図)。 D1=D2=100(mm)、造管速度v=5(m/分)、
管の厚みt=3(mm)、レーザパワーP=5(kw)、
シームずれの初期値δ0=5(mm)。 実験1:M1、M2の位置を検出し、本発明の方法
で制御を行う。 実験2:M1の位置のみを検出し、従来の方法で
制御を行う。 実験1、実験2の結果を以下に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to seam welding using a laser in the manufacture of metal pipes and the like. Prior Art Welding methods other than laser welding (Fig. 2a) (e.g.
A major feature different from TIG welding (Figure 2b) is that the bead width is narrower. Therefore, when welding for a long period of time, welding defects are likely to occur due to seam misalignment, but as a countermeasure, detect seam misalignment at one point in front of the welding point, and adjust the machining head at the welding point by the amount of that misalignment. There is a seam tracing control method that returns the direction to the welding point.
Publication No. 148089). This method has been tried so far for plate welding (for example, coil seam welding), but when this technique is applied to pipe welding, the following problems arise. That is, FIG. 3a shows an ideal weld without seam displacement, and FIG. 3c shows the groove portion viewed from directly above. On the other hand, Figure 3b shows how the pipe is twisted and the seam is shifted, and Figure 3d is a view of the groove seen from directly above, as in Figure 3c. If we now consider the midpoint M of the gap AB as the detection point, the deviation of M from the reference line (indicated by a broken line) and the deviation of the welding point W are different in direction and magnitude. That is, the deviation of the seam caused by the twisting of the pipe is different from the parallel deviation from the reference line such as when welding plates, and it is not possible to predict the deviation vector at the welding point by detecting only one point. Problems to be Solved by the Invention As described above, the conventional technology has a problem in that it cannot cope with twisting of the pipe. In view of the above, it is an object of the present invention to provide a seam tracing control method that can accurately track the laser irradiation position during pipe seam welding using a laser and can prevent defects in the welded portion. Means for Solving the Problems In order to solve the above problems, the following inventions were made. That is, in pipe seam welding using a laser, the present invention uses two detection positions that are located in front of the welding point and are spaced apart from each other by a predetermined distance in the welding direction, and detects the welding reference line at the midpoint of the gap at the detection positions. Based on each deviation vector and the distance of each detected position from the welding point, the deviation of the welding point from the welding reference line is calculated, and the laser irradiation position is matched to the welding point accordingly. This will be described in detail below with reference to the drawings. Effect W in FIG. 4 represents the welding point, and δ represents the deviation vector (one-dimensional) from the reference line 9. Also, the first detection point is the midpoint M 1 of the gap A 1 B 1 , the second detection point is the midpoint M 2 of the gap A 2 B 2 , and the deviation vectors of M 1 and M 2 from the reference line are C 1 and C 2 , furthermore, if the distances between the welding point and the first detection point, the first detection point and the second detection point, and the respective welding directions are D 1 and D 2 , δ is approximately C 1 , C 2 ,
It can be expressed as a function of D 1 and D 2 . δ=(C 1 , C 2 , D 1 , D 2 ) Especially when the first detection point and the second detection point are not far from the welding point, W, A 1 , A 2 and W, B 1 , B 2
Since we can assume that each is on a straight line, we can express it as follows. (C 1 , C 2 , D 1 , D 2 ) = sgn [(1+D 1 /D 2 )C 1 2 −(D 1 /D 2 )C 1 C 2 ] | (1+D 1 /D 2 )C 1 − (D 1 /D 2 )C 2 | ...(1) Here, the directions of the vectors δ, C 1 and C 2 are as shown in FIG. 4, with the upward direction being + and the downward direction being -. From this, for example, when sgn(δ) = -1, the welding point is deviated from the reference line in one direction |δ|, so
It is sufficient to control the machining head to move in one direction |δ|, and when sgn(δ)=+1, the welding point is deviated from the reference line in the + direction |δ|, so the machining head can be controlled in the + direction |δ| | All you have to do is control the movement. Further, FIG. 5 shows an example of the detection system. The laser beams emitted from the two slit light sources 5-1 and 5-2 move in the x direction on the rail 5-4 at two locations A 1 M 1 B 1 and A 2 M 2 B 2 in Fig. 4. While being irradiated, this reflected light is simultaneously placed within the field of view of the CCD camera 5-3 by a cylindrical lens 5-5 that widens the field of view in the x direction in FIG. FIG. 6 shows an example of the signal flow from detection to drive in which the controller calculates and controls the amount of movement of the processing head based on the output signal of the CCD camera. EXAMPLE An experiment based on the present invention was conducted under the above conditions (FIG. 1). D 1 = D 2 = 100 (mm), pipe making speed v = 5 (m/min),
Tube thickness t = 3 (mm), laser power P = 5 (kw),
Initial value of seam deviation δ 0 =5 (mm). Experiment 1: Detect the positions of M 1 and M 2 and control using the method of the present invention. Experiment 2: Detect only the position of M1 and control using the conventional method. The results of Experiment 1 and Experiment 2 are shown below.

【表】【table】

【表】 以上からわかるように、1点制御(実験2)の
場合、逆にずれが大きくなり、加工ヘツドの移動
限界(±10mm)に達している(これはM1の初期
値が−1.5であつたため、これを0にするような
制御が行なわれたことに起因する)。一方、本発
明である2点制御(実験1)においては速やかに
ずれが小さくなり、Lが1500mm以降では±0.25mm
以内で安定している。 発明の効果 以上のように本発明によつて従来の技術で成し
得なかつた管のねじれに起因するシームずれ溶接
欠陥を防ぐことが可能になりその効果は極めて大
きいものである。
[Table] As can be seen from the above, in the case of one-point control (Experiment 2), the deviation increases and reaches the movement limit (±10 mm) of the machining head (this is because the initial value of M 1 is −1.5 (This is due to the fact that control was performed to set it to 0.) On the other hand, in the two-point control (Experiment 1) of the present invention, the deviation quickly becomes small, and when L is 1500 mm or more, the deviation is ±0.25 mm.
It is stable within Effects of the Invention As described above, according to the present invention, it is possible to prevent seam deviation welding defects caused by twisting of the tube, which could not be achieved with conventional techniques, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した際のシステムの概略
図である。第2図は同じ厚みをもつ管における
TIG溶接ビード幅aとレーザ溶接ビード幅bを比
較した横断面図、第3図aはシームずれのない理
想的な溶接状態を示す斜視図、bはシームずれが
起こつたときの溶接状態を示す斜視図、c,dは
それぞれの溶接状態における開先部を真上から見
た図である。また第4図は2点検出制御における
検出位置及び制御位置と定量点に示した平面図で
あり、第5図は検出システムの概略図である。第
6図は位置検出から駆動までの信号の流れ図であ
る。 1……パイプ、2……スクイズロール、3……
加工ヘツド、4……コントローラ、5−1,5−
2……レーザ光、5−3……CCDカメラ、5−
4……レール、5−5……シリンドリカルレン
ズ、7……駆動、8……位置検出、9……基準
線。
FIG. 1 is a schematic diagram of a system in which the present invention is implemented. Figure 2 shows pipes with the same thickness.
A cross-sectional view comparing TIG welding bead width a and laser welding bead width b, Figure 3 a is a perspective view showing an ideal welding condition without seam deviation, and Figure 3 b shows a welding condition when seam deviation occurs. Perspective views c and d are views of the groove portion in each welded state viewed from directly above. Further, FIG. 4 is a plan view showing detection positions, control positions, and quantitative points in two-point detection control, and FIG. 5 is a schematic diagram of the detection system. FIG. 6 is a signal flow chart from position detection to drive. 1...pipe, 2...squeeze roll, 3...
Processing head, 4... Controller, 5-1, 5-
2... Laser light, 5-3... CCD camera, 5-
4...Rail, 5-5...Cylindrical lens, 7...Drive, 8...Position detection, 9...Reference line.

Claims (1)

【特許請求の範囲】 1 レーザを用いたパイプのシーム溶接におい
て、溶接点の手前にあつて溶接方向に所定の間隔
をもつた2箇所を検出位置とし、該検出位置での
ギヤツプ中間点の溶接基準線からのずれベクトル
を測定し、それぞれのずれベクトルとそれぞれの
検出位置の溶接点からの距離に基づき、溶接点の
溶接基準線からのずれを算出し、それに応じて溶
接点に加工ヘツドを一致させることを特徴とする
レーザ溶接におけるシーム倣い制御方法。 2 スリツト光源からのレーザ光を測定位置で反
射させCCDカメラで受光することにより、ずれ
ベクトルを測定する特許請求の範囲第1項記載の
レーザ溶接におけるシーム倣い制御方法。 3 ワーク移動方向に視野を広げるシリンドリカ
ルレンズを用い、2箇所の検出位置を同一視野内
に収め、同時に測定することを特徴とする特許請
求の範囲第2項記載のレーザ溶接におけるシーム
倣い制御方法。
[Claims] 1. In pipe seam welding using a laser, two detection positions are defined as two locations in front of the welding point with a predetermined interval in the welding direction, and welding at the midpoint of the gap is performed at the detection positions. The deviation vector from the reference line is measured, and the deviation of the welding point from the welding reference line is calculated based on each deviation vector and the distance from the welding point of each detected position, and the processing head is placed at the welding point accordingly. A seam tracing control method in laser welding characterized by matching. 2. A seam tracing control method in laser welding according to claim 1, wherein a deviation vector is measured by reflecting laser light from a slit light source at a measurement position and receiving the light with a CCD camera. 3. A seam tracing control method in laser welding according to claim 2, characterized in that two detection positions are placed within the same field of view and measured simultaneously using a cylindrical lens that widens the field of view in the direction of movement of the workpiece.
JP63003096A 1988-01-12 1988-01-12 Method for controlling seam profile in laser welding Granted JPH01181990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63003096A JPH01181990A (en) 1988-01-12 1988-01-12 Method for controlling seam profile in laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003096A JPH01181990A (en) 1988-01-12 1988-01-12 Method for controlling seam profile in laser welding

Publications (2)

Publication Number Publication Date
JPH01181990A JPH01181990A (en) 1989-07-19
JPH0431799B2 true JPH0431799B2 (en) 1992-05-27

Family

ID=11547811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003096A Granted JPH01181990A (en) 1988-01-12 1988-01-12 Method for controlling seam profile in laser welding

Country Status (1)

Country Link
JP (1) JPH01181990A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751780B2 (en) * 1992-04-14 1998-05-18 三菱電機株式会社 Laser beam processing equipment
DE102007030395B4 (en) 2007-06-29 2010-09-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method and device for laser beam welding of a workpiece

Also Published As

Publication number Publication date
JPH01181990A (en) 1989-07-19

Similar Documents

Publication Publication Date Title
KR100420722B1 (en) Method and apparatus for monitoring and positioning beams or jets for machining on a workpiece
US5347101A (en) Automatic tracking system for pipeline welding
US6034347A (en) Continuous butt-welding process and device for metal sheets, in particular for building car bodies in the car industry
JP2904247B2 (en) Welding robot for corrugated lap joints
JPH0431799B2 (en)
JP2751780B2 (en) Laser beam processing equipment
Baheti Vision processing and control of robotic arc welding system
JPH0141438B2 (en)
JPS62192286A (en) Beam welding equipment
JPH05337669A (en) Laser beam machine
JP2663834B2 (en) Seam scanning control method in composite heat source welding
JP2502533B2 (en) Welding robot with sensor
JPS62148089A (en) Method and device for detecting weld line
JPH0263684A (en) Method for profiling weld line
JPS62114787A (en) Laser beam welding device with welding position corrector
JPS62137188A (en) Control device for beam welding equipment
JP3200100B2 (en) How to maintain torch posture of automatic welding machine
JP2803932B2 (en) Seam center detector for laser welding
JPH0442077Y2 (en)
JPS59169669A (en) Welding device
JPH10180444A (en) Equipment and method for automatic welding
Nagarajan et al. On-line identification and control of part-preparation and fixturing errors in arc welding
JPH10216969A (en) Automatic laser beam machine and welding method
JPH0641734Y2 (en) Weld line trajectory deviation detection device
JPH06114581A (en) Laser beam welding machine