JPH04317665A - Three-dimensional volumetric dose estimating device for radiation treatment - Google Patents

Three-dimensional volumetric dose estimating device for radiation treatment

Info

Publication number
JPH04317665A
JPH04317665A JP3084908A JP8490891A JPH04317665A JP H04317665 A JPH04317665 A JP H04317665A JP 3084908 A JP3084908 A JP 3084908A JP 8490891 A JP8490891 A JP 8490891A JP H04317665 A JPH04317665 A JP H04317665A
Authority
JP
Japan
Prior art keywords
dose
region
dimensional
volume
volume dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3084908A
Other languages
Japanese (ja)
Other versions
JP2616595B2 (en
Inventor
Yoko Yoshinaga
吉永 容子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8490891A priority Critical patent/JP2616595B2/en
Publication of JPH04317665A publication Critical patent/JPH04317665A/en
Application granted granted Critical
Publication of JP2616595B2 publication Critical patent/JP2616595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow the immediate viewing of the results in the dose calculations of all the treatment plans made for patients by determining the volumetric quantity which three-dimensionally considers a concern region, making the results of the volumetric dose calculations to a data base and building the treatment plan for each of the patients. CONSTITUTION:The contour of the concern region is inputted to all of the CT slices, where the region exists by a two-dimensional processing section 3 which determines the accumulated dose of the region estimated by an inside and outside discrimination section 2 inputted from an input means 8. Statistical processing is executed by a statistical processing section 5 which determines the volumetric dose three-dimensionally considering the concern region by a three-dimensional calculating section 4 which executes addition processing by considering the spacings between the CT slices, after determining the two-dimensional volumetric dose on the respective CT slice planes. The data base 7 is formed from the results of the volumetric dose calculations by a directory management section 6. The treatment plans are managed by the directory management section 6 for each of the patients by utilizing such data base.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、放射線治療の三次元容
積線量推定装置に関し、特に癌の放射線治療において最
適な放射線照射法を計画する場合、人体への放射線量の
吸収状態をシミュレーションした際に複数のシミュレー
ション結果より計画した照射法の適・不適を決める指標
となる放射線治療三次元容積線量推定装置に関する。
[Industrial Application Field] The present invention relates to a three-dimensional volumetric dose estimating device for radiotherapy, and in particular, when planning an optimal radiation irradiation method in cancer radiotherapy, the present invention is used to simulate the state of absorption of radiation dose into the human body. The present invention relates to a radiation therapy three-dimensional volumetric dose estimator that serves as an indicator to determine the appropriateness or unsuitability of a planned irradiation method based on multiple simulation results.

【0002】0002

【従来の技術】従来、この種の容積線量計画システムは
、放射線治療の中心となる点(アイソセンタ)を含むC
Tスライスに対してのみ、容積線量計画を行っていた。
BACKGROUND OF THE INVENTION Conventionally, this type of volumetric dose planning system has a C
Volumetric dose planning was performed only for T slices.

【0003】また、この種の容積線量計画システムは、
ある1人の患者に対し1つの治療計画を立てると、その
治療計画に対して容積線量計算を行い、その結果はCR
Tやプリンタに出力されていた。
[0003] Also, this type of volumetric dose planning system:
When one treatment plan is created for a certain patient, volume dose calculation is performed for that treatment plan, and the results are used as CR.
It was output to T or printer.

【0004】0004

【発明が解決しようとする課題】上述した従来の容積線
量推定システムは、放射線治療の中心となる点(アイソ
センタ)を含むCTスライスに対してのみ容積線量計算
を行っているため、容積線量を求める領域とは一つの臓
器また病巣などであり、ある大きさをもった立体である
にもかかわらず、その立体の一断面に対して容積線量計
算をしているので、関心領域の容積線量の目安を算出し
ているに過ぎないという欠点がある。
[Problem to be Solved by the Invention] The conventional volume dose estimation system described above calculates the volume dose only for CT slices that include the center point (isocenter) of radiation therapy. A region is an organ or a lesion, etc., and although it is a three-dimensional object with a certain size, the volume dose is calculated for one cross section of the three-dimensional object, so it is a guideline for the volume dose of the region of interest. The disadvantage is that it only calculates

【0005】また、従来のシステムでは、ある1人の患
者に対し1つの治療計画を立てるとその治療計画に対し
て容積線量計算を行い、その結果はCRTやプリンタに
出力される。そのため同一患者に対し、複数の治療計画
を立て、それぞれの容積線量計算結果を1つの指標とし
、どの計画が最適であるかを比較するためには、医師が
結果の出力されたプリンタ用紙を保管し、プリンタ用紙
を目で見較べることでしか比較できないため、管理上煩
わしい上、正確な比較が困難であった。
[0005] Furthermore, in conventional systems, when one treatment plan is established for a certain patient, volume dose calculation is performed for that treatment plan, and the results are output to a CRT or printer. Therefore, in order to create multiple treatment plans for the same patient, use the volume dose calculation results of each as one index, and compare which plan is optimal, doctors must keep the printer paper on which the results are printed. However, the comparison can only be made by visually comparing the printer paper, which is cumbersome in terms of management and difficult to make accurate comparisons.

【0006】[0006]

【課題を解決するための手段】本発明の放射線治療の三
次元容積線量推定装置は、上記問題点の解決を図り、関
心領域の容積線量を立体的に求めることと、容積線量を
指標とした複数の治療計画の比較を容易に行うこととを
目的としている。
[Means for Solving the Problems] The three-dimensional volume dose estimating device for radiation therapy of the present invention aims to solve the above-mentioned problems, and is capable of three-dimensionally determining the volume dose of a region of interest, and using the volume dose as an index. The purpose is to easily compare multiple treatment plans.

【0007】そのため、本発明の放射線治療の三次元容
積線量推定装置は、人体への放射線量の吸収状態をシミ
ュレーションする際に放射線治療を行うターゲット領域
に対して計画した照射法の適・不適を決める指標となる
放射線を当てたくない少なくとも1個の関心領域の容積
線量を推定する放射線治療の三次元容積線量推定装置に
おいて、容積線量を求める関心領域の内のCTスライス
上の吸収線量推定を行ったマトリクスのうち、どの計算
マトリクスが含まれるかを求める内外判定部と、前記内
外判定部で求めた領域内に含まれる前記計算マトリクス
を用いて各々の吸収線量を求める二次元処理部と、前記
二次元処理部で求めた容積線量を求める関心領域が存在
するCTスライス(2次元)の領域内マトリクスの吸収
線量を容積線量を求める関心領域が存在する全CTスラ
イスについて三次元的に加算処理を行うことにより容積
線量計算基データを作成する三次元加算部と、前記関心
領域に対して三次元加算部で作成した容積線量計算基デ
ータより該当領域の容積線量計算を行い、かつ少なくと
も1個の統計値を算出する統計処理部と、容積線量計算
結果及び容積線量計算データをデータベース化し患者ご
とに治療計画を管理するディレクトリ管理部と、前記関
心領域や前記指示を入力するための入力手段と、容積線
量計画結果のグラフ表示と統計値の数値表示とを行う出
力手段とを備えて構成される。
[0007] Therefore, the three-dimensional volumetric dose estimating device for radiotherapy of the present invention determines the suitability or unsuitability of the irradiation method planned for the target area for radiotherapy when simulating the state of radiation dose absorption into the human body. In a three-dimensional volume dose estimator for radiation therapy that estimates the volume dose of at least one region of interest that is not desired to be exposed to radiation, which serves as an index for determining the amount, the absorbed dose is estimated on a CT slice within the region of interest for which the volume dose is to be determined. an inside/outside determining section that determines which calculation matrix is included among the calculated matrices; a two-dimensional processing section that calculates each absorbed dose using the calculation matrix included in the area determined by the inside/outside determining section; Three-dimensionally adds the absorbed dose of the intra-regional matrix of the CT slice (two-dimensional) in which the region of interest for which the volume dose is to be obtained, determined by the two-dimensional processing unit, exists for all CT slices in which the region of interest for which the volume dose is to be obtained exists. a three-dimensional addition unit that creates volumetric dose calculation basis data by performing the above-mentioned operations; a statistical processing unit that calculates statistical values; a directory management unit that creates a database of volume dose calculation results and volume dose calculation data and manages treatment plans for each patient; and input means for inputting the region of interest and the instructions; The device is configured to include an output means for displaying a graph of the volume dose planning results and a numerical display of statistical values.

【0008】[0008]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0009】図1は本発明の一実施例の構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【0010】治療計画シミュレーション部1で、医師は
患者のCT画像を見て、放射線をあてる領域(以後ター
ゲットと呼ぶ)を決める。そののち、患者体内への放射
線吸収線量分布をCT画像上に描かせながら、治療角、
照射野の大きさ等、治療機に関するパラメータ(以後「
治療パラメータ」と呼ぶ)を決定する。これ以後、本発
明の三次元容積線量推定装置の構成要素である内外判定
部2〜出力手段9にて、治療計画シミュレーション部1
で計画した治療方法に対して、容積線量計算を行いその
結果のデータベース化を行う。
[0010] In the treatment planning simulation section 1, a doctor looks at a CT image of a patient and determines an area (hereinafter referred to as a target) to which radiation will be applied. After that, while drawing the radiation absorption dose distribution inside the patient's body on the CT image, the treatment angle,
Parameters related to the treatment machine, such as the size of the irradiation field (hereinafter referred to as “
(referred to as "treatment parameters"). Thereafter, the treatment plan simulation unit 1
Volume dose calculations are performed for the treatment method planned in , and the results are compiled into a database.

【0011】この治療計画シミュレーション部1で、設
定した関心領域以外に容積線量計算を行う領域があれば
、入力手段8で、デジタイザからその輪郭を入力する。 仮に、治療計画シミュレーション部1で第1の関心領域
(以後「roi1」と呼ぶ)を入力していて、ここで新
たに第2及び第3の関心領域(以後「roi2,roi
3」と呼ぶ)を付け加えたとする。そうしたとき、以下
の方法すなわち内外判定部1ないし統計処理部5により
、ターゲット,roi1〜roi3,患者の体輪郭内の
5つの領域について容積線量を求める。以後、便宜上、
領域nについてのみ容積線量を求める方法として説明す
る。
In the treatment planning simulation section 1, if there is a region to be subjected to volume dose calculation other than the set region of interest, the input means 8 inputs its contour from a digitizer. Suppose that a first region of interest (hereinafter referred to as "roi1") is input in the treatment planning simulation unit 1, and new second and third regions of interest (hereinafter referred to as "roi2, roi") are input.
3) is added. In such a case, the volumetric dose is determined for the target, roi1 to roi3, and five regions within the patient's body contour using the following method, that is, the inside/outside determination unit 1 to the statistical processing unit 5. From now on, for convenience,
This will be explained as a method for determining the volume dose only for region n.

【0012】まず、図1の内外判定部2で、領域n内に
含まれる計算マトリクスを、領域の輪郭情報を基に求め
る領域内に、どの計算マトリクスが含まれるかどうかは
第2図のように計算マトリクスの中点が領域内かどうか
で判定する。例えば図2の場合でいうと太い実線の領域
nに対して斜線部が領域n内に含まれる計算マトリクス
であると仮定する。そして、計算マトリクスの中点が、
領域n内かどうかを判定するアルゴリズムとしては、以
下のものを使用するとよい。すなわち、計算マトリクス
の中点を始点として、半直線を任意の方向に引いたとき
の領域nの輪郭との交点を総て求める。この交点が偶数
個であるか奇数個であるかにより、偶数個であれば輪郭
外、奇数個であれば輪郭内であると判定できる。図3に
ある中点の内外判定例を示す。すなわち、図3の分図(
A)では半直線との交点が1個の場合と5個の場合と両
方が例示され、いずれも交点の数は奇数であるので、中
点は輪郭内であると判定する。また、図3の分図(B)
では半直線との交点の数は偶数であるので、中点は輪郭
外にあると判定する。なお、輪郭が半直線と接するとき
は交点が2個であると約束する。
First, the inside/outside determining unit 2 in FIG. 1 determines which calculation matrices are included in the area by determining calculation matrices included in area n based on the contour information of the area, as shown in FIG. It is determined whether the midpoint of the calculation matrix is within the area. For example, in the case of FIG. 2, it is assumed that with respect to the region n indicated by the thick solid line, the shaded portion is the calculation matrix included within the region n. Then, the midpoint of the calculation matrix is
The following algorithm may be used to determine whether it is within region n. That is, when a half-line is drawn in an arbitrary direction starting from the midpoint of the calculation matrix, all the points of intersection with the outline of region n are determined. Depending on whether the number of intersections is even or odd, it can be determined that if the number is even, it is outside the contour, and if it is odd, it is inside the contour. An example of inside/outside determination of the midpoint in FIG. 3 is shown. That is, the subdiagram of Fig. 3 (
In A), both the case where the number of intersections with the half line is one and the case where there are five are exemplified, and since the number of intersections is an odd number in both cases, it is determined that the midpoint is within the contour. Also, the partial diagram (B) in Figure 3
Since the number of intersections with the half line is an even number, the midpoint is determined to be outside the contour. Note that when a contour touches a half-line, there are two points of intersection.

【0013】このようにして、領域nを入力したCTス
ライスすべてに対して上記の方法にて内外判定を行う。 例えば、図4で説明すると患者に対し、No.1〜No
.5のCTスライス5枚を撮影し、No.2〜No.4
の3枚に領域nが見うけられ、この3枚のスライスに領
域nを入力したとすると、No.2〜No.4のスライ
スについて内外判定操作を行う。ただし領域nが体輪郭
内である場合は撮影した全スライスについて、内外判定
を行う。
[0013] In this way, the inside/outside determination is performed using the above method for all CT slices into which region n has been input. For example, referring to FIG. 4, when the patient receives No. 1~No
.. Five CT slices of No. 5 were taken. 2~No. 4
If region n is found in three slices, and if region n is input to these three slices, then no. 2~No. The inside/outside judgment operation is performed for slice No. 4. However, if region n is within the body contour, the inside/outside determination is performed for all photographed slices.

【0014】次に、2次元処理部3では、内外判定部2
で求めた領域n内の各CTスライスの計算マトリクスの
各々がもつ吸収線量データを求める。この吸収線量デー
タは、治療計画シミュレーション部1ですでに計算して
いるので、ここでは該当する計算マトリクスのデータを
読み取ればよいことになる。
Next, in the two-dimensional processing section 3, the inside/outside determining section 2
Obtain the absorbed dose data of each calculation matrix of each CT slice within the region n obtained in . Since this absorbed dose data has already been calculated by the treatment plan simulation section 1, it is sufficient here to read the data of the corresponding calculation matrix.

【0015】次に、三次元加算部4では、二次元処理部
2までで求めた領域nが入力されている各々のCTスラ
イスに対する領域n内の計算マトリクスのデータを、該
当するCTスライスすべてにわたり加算する。第4図に
よれば、スライスNo.2からスライスNo.4までの
領域n内の線量データを加算するのであるが、このとき
スライスi(iは2〜4)の線量データは体軸方向へ、
隣接するCTスライスの中点までの厚みをもっていると
仮定し、今までの領域n内の2次元の計算マトリクスを
、厚みのある3次元のボクセル(厚さを有するピクセル
)であると認識する。
[0015] Next, the three-dimensional addition section 4 adds the data of the calculation matrix within the region n for each CT slice into which the region n obtained up to the two-dimensional processing section 2 is input, over all the corresponding CT slices. to add. According to FIG. 4, slice No. 2 to slice no. The dose data in area n up to 4 are added up, but at this time, the dose data of slice i (i is 2 to 4) is added in the body axis direction,
Assuming that the CT slice has a thickness up to the midpoint of adjacent CT slices, the two-dimensional calculation matrix in the region n up to now is recognized as a thick three-dimensional voxel (pixel having a thickness).

【0016】ここにおいて両端nは、複数個のボクセル
の集まりとして認識され、ボクセル1つ1つが吸収線量
データを持っていることとなる。この領域n内のボクセ
ルの大きさと、そのボクセルの線量データの複数組の対
のことを、図6に示すように今後容積線量計算基データ
と呼ぶ。
[0016] Here, both ends n are recognized as a collection of a plurality of voxels, and each voxel has absorbed dose data. A plurality of pairs of the voxel size in the region n and the dose data of the voxel will be hereinafter referred to as volumetric dose calculation base data, as shown in FIG.

【0017】次の統計処理部5で、容積線量基データよ
り、領域n体積、容積線量値、線量及び容積線量度数分
布を求める。また、必要に応じて領域n内の平均線量値
と最大/最小線量値を計算する。領域nの体積は、領域
n内の各々のボクセルの大きさの総和であるとし、容積
線量値は、各々ボクセルの大きさとボクセルの線量値と
を乗算したものの総和とする。また、度数分布はボクセ
ル1つを1度数として作成する。平均線量値は、ボクセ
ルの体積を考慮したボクセルの線量値の加重平均をとり
、最大/最小線量値はボクセル中最大/最小の線量値を
もつものの線量値とする。
Next, the statistical processing section 5 calculates the volume of region n, the volume dose value, the dose, and the volume dose frequency distribution from the volume dose basis data. Furthermore, the average dose value and maximum/minimum dose value within region n are calculated as necessary. The volume of region n is the sum of the sizes of each voxel in region n, and the volumetric dose value is the sum of the products of each voxel size and voxel dose value. Further, the frequency distribution is created with one voxel as one frequency. The average dose value is a weighted average of the voxel dose values taking into consideration the volume of the voxel, and the maximum/minimum dose value is the dose value of the voxel having the maximum/minimum dose value.

【0018】ディレクトリ管理部6では、内外判定部2
から統計処理部5の一連の操作で求めた容積線量計算基
データと容積線量計算結果とをデータベース化し、患者
ごとに(1人の患者について複数の計画をたてていれば
その計画ごとに)管理をする。管理表としては図7に示
すように、患者名,患者番号,プラン番号,計画日付,
コメントなどが表示され、医師は過去に行った治療計画
についてこの管理表を見ながら患者番号とプラン番号を
入力手段8で入力することにより、該当患者の該当計画
の容積線量計算の結果を、出力手段9で表示し見ること
ができる。
In the directory management section 6, the internal/external determining section 2
The volume dose calculation basis data and the volume dose calculation results obtained through a series of operations in the statistical processing unit 5 are created into a database for each patient (or for each plan if multiple plans are made for one patient). manage. As shown in Figure 7, the management table includes patient name, patient number, plan number, plan date,
Comments, etc. are displayed, and the doctor inputs the patient number and plan number using the input means 8 while looking at this management table for past treatment plans, and outputs the volume dose calculation results for the relevant plan for the patient. It can be displayed and viewed using means 9.

【0019】最後に出力手段9で、統計処理部5で求め
た線量及び容積線量の度数分布のグラフ表示のほか統計
値の数値表示を行う。
Finally, the output means 9 displays graphically the frequency distribution of the dose and volumetric dose obtained by the statistical processing section 5, as well as numerically displays the statistical values.

【0020】[0020]

【発明の効果】以上説明したように本発明は、関心領域
が存在するCTスライス全てに関心領域の輪郭を入力し
、各CTスライス面で2次元的な容積線量を求めた上で
CTスライスの間隔を考慮し、加算処理を行うことによ
り関心領域を立体的に考えた容積線量を求めて、容積線
量計算の結果をデータベース化し、患者ごとに治療計画
を管理することにより、同一患者に対し複数の治療計画
を立て、線量計算結果を1つの指標としてどの計画が最
適であるかを比較する際、患者名(もしくは患者ID)
を指定するだけで、その患者に対して計画したすべての
治療計画の線量計算結果を、直ちに見ることができると
いう効果がある。
As explained above, the present invention inputs the outline of the region of interest into all CT slices in which the region of interest exists, calculates the two-dimensional volume dose on each CT slice plane, and then calculates the volumetric dose of the CT slice. By taking the interval into consideration and performing addition processing, the volume dose that considers the region of interest three-dimensionally is calculated, the results of the volume dose calculation are compiled into a database, and the treatment plan is managed for each patient. When creating a treatment plan and comparing which plan is optimal using the dose calculation results as an indicator, the patient name (or patient ID)
By simply specifying , you can immediately view the dose calculation results for all treatment plans planned for that patient.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】内外判定部の内外判定基準の説明図。FIG. 2 is an explanatory diagram of the inside/outside determination criteria of the inside/outside determination section.

【図3】内外判定部の輪郭内外判定アルゴリズムの説明
図。
FIG. 3 is an explanatory diagram of the contour inside/outside determination algorithm of the inside/outside determining section.

【図4】内外判定部で計算対象になるCTスライスの説
明図。
FIG. 4 is an explanatory diagram of CT slices to be calculated by the inside/outside determination unit.

【図5】三次元加算部でのスライス間のデータ範囲の説
明図。
FIG. 5 is an explanatory diagram of a data range between slices in a three-dimensional addition unit.

【図6】線量計算基データを示す説明図。FIG. 6 is an explanatory diagram showing dose calculation basis data.

【図7】ディレクトリ管理を示す説明図。FIG. 7 is an explanatory diagram showing directory management.

【符号の説明】[Explanation of symbols]

1    治療計画シミュレーション部2    内外
判定部 3    二次元処理部 4    三次元加算部 5    統計処理部 6    ディレクトリ管理部 7    データベース 8    入力手段 9    出力手段
1 Treatment plan simulation section 2 Internal/external determination section 3 Two-dimensional processing section 4 Three-dimensional addition section 5 Statistical processing section 6 Directory management section 7 Database 8 Input means 9 Output means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  人体への放射線量の吸収状態をシミュ
レーションする際に放射線治療を行うターゲット領域に
対して計画した照射法の適・不適を決める指標となる放
射線を当てたくない少なくとも1個の関心領域の容積線
量を推定する放射線治療の三次元容積線量推定装置にお
いて、容積線量を求める関心領域の内のCTスライス上
の吸収線量推定を行ったマトリクス(以下「計算マトリ
クス」という)のうち、どの計算マトリクスが含まれる
かを求める内外判定部と、前記内外判定部で求めた領域
内に含まれる前記計算マトリクスを用いて各々の吸収線
量を求める二次元処理部と、前記二次元処理部で求めた
容積線量を求める関心領域が存在するCTスライス(2
次元)の領域内マトリクスの吸収線量は容積線量を求め
る関心領域が存在する全CTスライスについて三次元的
に加算処理を行うことにより容積線量計算基データを作
成する三次元加算部と、前記関心領域に対して三次元加
算部で作成した容積線量計算基データより該当領域の容
積線量計算を行い、かつ少なくとも1個の統計値を算出
する統計処理部と、容積線量計算結果及び容積線量計算
データをデータベース化し患者ごとに治療計画を管理す
るディレクトリ管理部と、前記関心領域や前記指示を入
力するための入力手段と、容積線量計画結果のグラフ表
示と統計値の数値表示とを行う出力手段とを備えて成る
ことを特徴とする放射線治療の三次元容積線量推定装置
Claim 1: When simulating the absorption state of radiation dose to the human body, at least one interest in not wanting to be exposed to radiation serves as an index to determine the suitability of the irradiation method planned for the target area for radiotherapy. In a three-dimensional volume dose estimator for radiotherapy that estimates the volume dose of a region, which of the matrices (hereinafter referred to as "calculation matrix") used to estimate the absorbed dose on a CT slice within the region of interest for which the volume dose is to be calculated is used. an inside/outside determination section that determines whether a calculation matrix is included; a two-dimensional processing section that determines each absorbed dose using the calculation matrix included in the area determined by the inside/outside determination section; A CT slice (2
The absorbed dose of the intra-regional matrix of the dimension) is determined by a three-dimensional addition unit that creates volume dose calculation base data by performing three-dimensional addition processing on all CT slices in which the region of interest for which the volume dose is to be calculated, and the region of interest for which the volume dose is calculated. A statistical processing unit that calculates the volume dose of the corresponding area from the volume dose calculation base data created by the three-dimensional addition unit and calculates at least one statistical value, and a statistical processing unit that calculates the volume dose calculation result and the volume dose calculation data. A directory management unit that creates a database and manages treatment plans for each patient, an input means for inputting the region of interest and the instructions, and an output means for graphically displaying volume dose planning results and numerically displaying statistical values. A three-dimensional volumetric dose estimating device for radiation therapy, comprising:
JP8490891A 1991-04-17 1991-04-17 Three-dimensional volume dose estimation device for radiation therapy Expired - Lifetime JP2616595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8490891A JP2616595B2 (en) 1991-04-17 1991-04-17 Three-dimensional volume dose estimation device for radiation therapy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8490891A JP2616595B2 (en) 1991-04-17 1991-04-17 Three-dimensional volume dose estimation device for radiation therapy

Publications (2)

Publication Number Publication Date
JPH04317665A true JPH04317665A (en) 1992-11-09
JP2616595B2 JP2616595B2 (en) 1997-06-04

Family

ID=13843837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8490891A Expired - Lifetime JP2616595B2 (en) 1991-04-17 1991-04-17 Three-dimensional volume dose estimation device for radiation therapy

Country Status (1)

Country Link
JP (1) JP2616595B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126178A (en) * 1998-10-27 2000-05-09 Mitani Sangyo Co Ltd Method of quantifying stereo surface shape and automatic identification method of malignant tumor
JP2000126182A (en) * 1998-10-27 2000-05-09 Mitani Sangyo Co Ltd Tumor diagnosing method
JP2000242722A (en) * 1999-02-23 2000-09-08 Mitsubishi Electric Corp System, device and method for planning radiotherapy, and recording medium
US8175894B2 (en) 2004-03-09 2012-05-08 Kabushiki Kaisha Toshiba X-ray exposure report system, medical apparatus, and examination protocol distribution system
US9125286B2 (en) 2012-12-28 2015-09-01 General Electric Company X-ray dose estimation technique
WO2017103238A1 (en) * 2015-12-17 2017-06-22 Koninklijke Philips N.V. Method for estimating the radiation dose received by an organ during a computed tomography scan
US9852929B2 (en) 2014-10-23 2017-12-26 Mitsui High-Tec, Inc. Lead frame and manufacturing method of lead frame
JP2019042389A (en) * 2017-09-06 2019-03-22 キヤノンメディカルシステムズ株式会社 Radiotherapy apparatus and patient positioning device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126178A (en) * 1998-10-27 2000-05-09 Mitani Sangyo Co Ltd Method of quantifying stereo surface shape and automatic identification method of malignant tumor
JP2000126182A (en) * 1998-10-27 2000-05-09 Mitani Sangyo Co Ltd Tumor diagnosing method
JP2000242722A (en) * 1999-02-23 2000-09-08 Mitsubishi Electric Corp System, device and method for planning radiotherapy, and recording medium
US8175894B2 (en) 2004-03-09 2012-05-08 Kabushiki Kaisha Toshiba X-ray exposure report system, medical apparatus, and examination protocol distribution system
US9125286B2 (en) 2012-12-28 2015-09-01 General Electric Company X-ray dose estimation technique
US9852929B2 (en) 2014-10-23 2017-12-26 Mitsui High-Tec, Inc. Lead frame and manufacturing method of lead frame
WO2017103238A1 (en) * 2015-12-17 2017-06-22 Koninklijke Philips N.V. Method for estimating the radiation dose received by an organ during a computed tomography scan
US10932730B2 (en) 2015-12-17 2021-03-02 Koninklijke Philips N.V. Method for estimating the radiation dose received by an organ during a computed tomography scan
JP2019042389A (en) * 2017-09-06 2019-03-22 キヤノンメディカルシステムズ株式会社 Radiotherapy apparatus and patient positioning device

Also Published As

Publication number Publication date
JP2616595B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US4977505A (en) Means to correlate images from scans taken at different times including means to determine the minimum distances between a patient anatomical contour and a correlating surface
US5079699A (en) Quick three-dimensional display
US6792071B2 (en) Method of performing geometric measurements on digital radiological images
EP1349098B1 (en) Method of performing geometric measurements on digital radiological images using graphical templates
CN103443824B (en) System, method and apparatus for visual image registration mapping
Samavati et al. A hybrid biomechanical intensity based deformable image registration of lung 4DCT
Lemoine et al. An anatomical-based 3D registration system of multimodality and atlas data in neurosurgery
RU2721078C2 (en) Segmentation of anatomical structure based on model
EP2877980B1 (en) Dose deformation error calculation method and system
JPH04317665A (en) Three-dimensional volumetric dose estimating device for radiation treatment
Linney et al. Three-dimensional visualization of computerized tomography and laser scan data for the simulation of maxillo-facial surgery
CN111383328A (en) 3D visualization method and system for breast cancer focus
EP2266457B1 (en) Intermediate image generating method, device, and program
Manssour et al. Visualizing inner structures in multimodal volume data
CN110997065B (en) Calibration of radiation therapy treatment plan for a system
EP3423968B1 (en) Medical image navigation system
Meuschke et al. EvalViz–Surface visualization evaluation wizard for depth and shape perception tasks
Masui et al. Technology for visualizing the local change in shape of edema using a depth camera
Larsen et al. Computer processing of CT images: Advances and prospects
JPH08318001A (en) Radiation treatment planning system
JP2590580B2 (en) Radiation absorbing organ surface damage calculation mechanism
Evers et al. Extending a teleradiology system by tools for visualization and volumetric analysis through a plug-in mechanism
Yan et al. High-speed interactive multimodality image fusion tool-kit
Udupa et al. Display of medical objects and their interactive manipulation
US20230298163A1 (en) Method for displaying a 3d model of a patient

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970121