JPH04317428A - Optical element forming mold - Google Patents
Optical element forming moldInfo
- Publication number
- JPH04317428A JPH04317428A JP10837391A JP10837391A JPH04317428A JP H04317428 A JPH04317428 A JP H04317428A JP 10837391 A JP10837391 A JP 10837391A JP 10837391 A JP10837391 A JP 10837391A JP H04317428 A JPH04317428 A JP H04317428A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molding
- base
- molding surface
- surface part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims description 15
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 16
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 11
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 claims abstract description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 4
- 239000002131 composite material Substances 0.000 claims abstract description 3
- 238000000465 moulding Methods 0.000 claims description 56
- 230000003746 surface roughness Effects 0.000 abstract description 6
- 239000002245 particle Substances 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 15
- 230000035882 stress Effects 0.000 description 10
- 239000011521 glass Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000007373 indentation Methods 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 238000007545 Vickers hardness test Methods 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/084—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
- C03B11/086—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/10—Die base materials
- C03B2215/12—Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/14—Die top coat materials, e.g. materials for the glass-contacting layers
- C03B2215/20—Oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/30—Intermediate layers, e.g. graded zone of base/top material
- C03B2215/34—Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/30—Intermediate layers, e.g. graded zone of base/top material
- C03B2215/38—Mixed or graded material layers or zones
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、軟化した光学素材を押
圧し、光学素子を加圧成形する光学素子成形用型に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for molding an optical element by pressing a softened optical material to form an optical element under pressure.
【0002】0002
【従来の技術】従来、上記光学素子成形用型として、特
開平2−26841号公報に開示されているように、成
形用型の少なくとも成形面を酸化クロムを主成分とした
焼結体により形成したものが知られている。この成形用
型は、型材と、加熱軟化したガラスとの離型性かつ型形
状精度を維持すべく長寿命化を図ろうとしたものである
。すなわち、少なくとも成形面を酸化クロムを主成分と
した焼結体により形成することで、成形用型と溶融ガラ
スとの濡れを阻止し、溶融ガラスへの着色も防止し、溶
融ガラス中への発泡性も抑止し、また成形用型と溶融ガ
ラスとの反応を阻止し、酸化クロムの潤滑性作用との相
乗効果でもって型の成形面部の荒れを防止する作用を発
揮させるものである。型の長寿命化を考えた場合、成形
面部のガラスに対する離型性効果と基材の強度が複合さ
れて長寿命化が図られる。BACKGROUND ART Conventionally, as a mold for molding an optical element, at least the molding surface of the mold is formed of a sintered body containing chromium oxide as a main component, as disclosed in Japanese Patent Application Laid-Open No. 2-26841. What has been done is known. This mold is intended to have a long life in order to maintain mold releasability between the mold material and heated softened glass and to maintain mold shape accuracy. In other words, by forming at least the molding surface with a sintered body mainly composed of chromium oxide, it is possible to prevent wetting of the mold and the molten glass, prevent coloring of the molten glass, and prevent foaming in the molten glass. It also inhibits the reaction between the mold and the molten glass, and has a synergistic effect with the lubricating action of chromium oxide to prevent the molding surface of the mold from becoming rough. When considering extending the life of the mold, the mold releasability effect on the glass of the molding surface portion and the strength of the base material are combined to extend the life.
【0003】0003
【発明が解決しようとする課題】しかし、上記従来の成
形用型を用いて成形を繰り返していくと、ガラス成形時
のヒートショック,圧力作用の繰り返しにより、応力集
中の生じやすい型のエッジ部分の焼結体粒子の脱落やエ
ッジの欠け,クラック等の問題が生じた。また、成形す
るガラスの転移点が高い等の理由により、成形時の型温
度が高くなる場合、結晶粒の粒成長により面粗度が大き
くなりやすいという問題点があった。[Problems to be Solved by the Invention] However, when molding is repeated using the above-mentioned conventional molding mold, the edges of the mold tend to be prone to stress concentration due to repeated heat shock and pressure action during glass molding. Problems such as falling off of sintered particles, chipping of edges, and cracks occurred. Furthermore, when the mold temperature during molding becomes high due to reasons such as the high transition point of the glass to be molded, there is a problem in that surface roughness tends to increase due to grain growth of crystal grains.
【0004】本発明は、上記従来の問題点に鑑みてなさ
れたもので、長寿命な光学素子成形用型を提供すること
を目的とする。The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a mold for molding an optical element having a long life.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、図1に示すように、光学素子成形用型を
、基台1上に成形面部2を形成してなる複合材であって
、成形面部2がクロミア(Cr2 O3 )を含有する
厚さ5mm以下の焼結体からなり、基台1がマグネシア
系,ジルコニア系,ベリリア系またはアルミナ系の焼結
体からなるとともに、基台1における成形面部2との接
合部において、成形面部2を形成する材料の含有率が成
形面部2側へ向けて除々に大きくなる混合層1aを形成
して構成した。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a mold for molding an optical element, as shown in FIG. The molding surface portion 2 is made of a sintered body containing chromia (Cr2O3) and has a thickness of 5 mm or less, and the base 1 is made of a magnesia-based, zirconia-based, beryllia-based, or alumina-based sintered body, At the joint portion of the base 1 with the molding surface portion 2, a mixed layer 1a is formed in which the content of the material forming the molding surface portion 2 gradually increases toward the molding surface portion 2 side.
【0006】なお、本発明において、成形面部2におけ
るCr2 O3 の含有量は50vol %以上が好ま
しい。これは、成形後の良好な離型性を確保するためで
ある。In the present invention, the content of Cr2O3 in the molding surface portion 2 is preferably 50 vol % or more. This is to ensure good mold releasability after molding.
【0007】[0007]
【作用】前述のような焼結体粒子の脱落,エッジの欠け
,クラック等の問題が生じるのは、型に引っ張り応力が
発生するためである。したがって、このような問題が生
じるのを防止するには、型にあらかじめ圧縮応力を加え
ておけば良い。一方、結晶粒の粒成長を抑制するために
も、圧縮応力を生じさせておくことが有効である。これ
は、以下のような簡単な実験により確認することができ
た。すなわち、Cr2 O3 を主成分とした焼結体の
表面を鏡面に磨いた後、ビッカース硬度計にて圧痕を付
けると、圧痕の周囲にのみ圧縮応力が生じる。この試料
を加熱放置した後に表面を観察すると、図2に示すよう
に、圧痕3の周囲にのみ結晶粒4の粒成長が見られない
。図2は、ビッカースの圧痕を付けた後、大気中700
℃に5時間保持した試料の光学顕微鏡(×500)によ
る観察結果を示すもので、中心部がビッカースの圧痕3
である。圧痕3の周囲の圧縮応力が生じている部分のみ
、結晶粒4の粒成長が見られない。したがって、型の長
寿命化のためには、圧縮応力を生じるようにしておくこ
とが、極めて有効であることがわかる。[Operation] Problems such as falling off of sintered particles, chipping of edges, and cracks as described above occur because tensile stress is generated in the mold. Therefore, in order to prevent such problems from occurring, compressive stress may be applied to the mold in advance. On the other hand, it is effective to generate compressive stress in order to suppress grain growth of crystal grains. This could be confirmed by the following simple experiment. That is, when the surface of a sintered body mainly composed of Cr2O3 is polished to a mirror surface and then an indentation is made using a Vickers hardness tester, compressive stress is generated only around the indentation. When the surface of this sample was observed after being heated, no growth of crystal grains 4 was observed only around the indentations 3, as shown in FIG. Figure 2 shows 700 ml of water in the atmosphere after making a Vickers indentation.
This shows the observation results using an optical microscope (×500) of a sample kept at ℃ for 5 hours, with a Vickers indentation 3 in the center.
It is. No grain growth of the crystal grains 4 is observed only in the area around the indentation 3 where compressive stress is generated. Therefore, it can be seen that it is extremely effective to generate compressive stress in order to extend the life of the mold.
【0008】型の成形面部に圧縮応力を加える方法の1
つは、型を成形面部と基台との複合材とし、成形面部と
基台とを熱膨張係数の異なる材料で構成し、成形に使用
する温度で、圧縮の熱応力が加わるようにすることであ
る。素材の焼結温度は1000℃以上であり、型の使用
温度は400〜700℃程度であることから、成形面部
の材料よりも基台の方が熱膨張係数が大きいものを選ぶ
必要がある。さらに、強度,耐熱性,加工性,コスト等
を考慮すると、基台としてはマグネア系,ジルコニア系
,ベリリア系またはアルミナ系の焼結体が適している。
表1にこれらの材料の熱膨張係数を示す。[0008] Method 1 of applying compressive stress to the molding surface of the mold
One is to make the mold a composite material with a molding surface and a base, and the molding surface and the base are made of materials with different coefficients of thermal expansion, so that compressive thermal stress is applied at the temperature used for molding. It is. Since the sintering temperature of the raw material is 1000°C or higher and the operating temperature of the mold is about 400 to 700°C, it is necessary to select a material with a larger coefficient of thermal expansion for the base than for the molding surface. Further, in consideration of strength, heat resistance, workability, cost, etc., a magnea-based, zirconia-based, beryllia-based, or alumina-based sintered body is suitable as the base. Table 1 shows the thermal expansion coefficients of these materials.
【0009】[0009]
【表1】[Table 1]
【0010】このように熱膨張係数が異なった材料を接
合する場合、ろう付け法等の方法では、接合部分が熱応
力に耐えきれずに破断してしまう。したがって、本発明
では、焼結結合することとし、基台における成形面部と
の接合部において、成形面部を形成する材料の含有率が
成形面部側へ向けて除々に大きくなるようにした。また
、成形面部の厚さが5mmを越える場合、成形面部に十
分な圧縮応力が生じずに型の長寿命化にほとんど効果が
ないことから、厚さ5mm以下とした。[0010] When joining materials having different coefficients of thermal expansion as described above, if a method such as brazing is used, the joined portion cannot withstand the thermal stress and breaks. Therefore, in the present invention, sinter bonding is performed, and the content of the material forming the molding surface gradually increases toward the molding surface at the joint with the molding surface in the base. Further, if the thickness of the molding surface exceeds 5 mm, sufficient compressive stress will not be generated in the molding surface and there will be little effect on extending the life of the mold, so the thickness was set to 5 mm or less.
【0011】[0011]
【実施例1】図3に示すように、基台1は、部分安定化
ジルコニア粉末を原料として形成した。また、基台1に
おける成形面部2との接合部には、厚さ2mmにわたっ
て、クロミア粉末の含有率が成形面部2側へ向けて連続
的に除々に大きくなるように、クロミア粉末と前記ジル
コニア粉末とを混合した混合層1aを形成した。成形面
部2は、3mol %のイットリア(Y2 O3 )を
添加した部分安定化ジルコニア粉末8.7vol%と、
クロミア粉末91.3vol %とを原料として厚さ1
mmに形成した。基台1と成形面部2とは、焼結により
接合した。Example 1 As shown in FIG. 3, a base 1 was formed using partially stabilized zirconia powder as a raw material. In addition, at the joint portion of the base 1 with the molding surface portion 2, chromia powder and the zirconia powder are added such that the content of the chromia powder gradually increases continuously toward the molding surface portion 2 side over a thickness of 2 mm. A mixed layer 1a was formed by mixing the above. The molding surface portion 2 is made of 8.7 vol% of partially stabilized zirconia powder to which 3 mol% of yttria (Y2O3) is added;
Using 91.3vol% chromia powder as raw material, the thickness is 1.
It was formed in mm. The base 1 and the molding surface part 2 were joined by sintering.
【0012】上記本実施例の成形用型を用いてガラス光
学素子を成形したところ、20,000ショットの成形
後も何ら問題は生じなかった。When a glass optical element was molded using the mold of this example, no problem occurred even after 20,000 shots.
【0013】なお、上記成形結果を表2に示すとともに
、比較例1〜3として基台1と成形面部2との接合方法
や成形面部2の厚さ等を変化させたものを用いた成形結
果も表2中に併記した。なお、比較例3においては、本
実施例のような混合層1aを形成しなかった。The above molding results are shown in Table 2, and the molding results using comparative examples 1 to 3 in which the joining method of the base 1 and the molding surface part 2, the thickness of the molding surface part 2, etc. were changed. Also listed in Table 2. Note that in Comparative Example 3, the mixed layer 1a as in the present example was not formed.
【0014】[0014]
【表2】[Table 2]
【0015】一方、本実施例の成形用型において、成形
面部2の厚さだけを変化させて20,000ショットの
成形を行った時の型中心部における粗度を測定した。そ
の測定結果を図4に示す。図4は、横軸に成形面部2の
厚さ(mm)を、縦軸に型面粗度Rmax (μm)を
とったもので、図4から成形面部2の厚さが5mmを越
えると型面粗度の劣化を抑える効果がほとんどなくなっ
てしまうことがわかる。特に、成形面部2の厚さは、1
mm以下であることが最も好ましい。On the other hand, in the molding mold of this example, the roughness at the center of the mold was measured after 20,000 shots of molding were performed while changing only the thickness of the molding surface portion 2. The measurement results are shown in FIG. In Fig. 4, the horizontal axis shows the thickness (mm) of the molding surface part 2, and the vertical axis shows the mold surface roughness Rmax (μm). It can be seen that the effect of suppressing the deterioration of surface roughness is almost completely lost. In particular, the thickness of the molding surface portion 2 is 1
Most preferably, it is less than mm.
【0016】[0016]
【実施例2】図5に示すように、基台1はアルミナ(A
l2O3 )粉末を原料として形成した。また、基台1
における成形面部2との接合部には、厚さ1mmにわた
って、クロミア粉末およびジルコニア(ZrO2 )粉
末の含有率が成形面部2側へ向けて段階的に除々に大き
くなるように、これら両粉末とアルミナ粉末とを混合し
た混合層1aを形成した。成形面部2はクロミア粉末7
8.7 vol%と、アルミナ粉末12.9 vol%
と、ジルコニア粉末8.4 vol%とを原料として厚
さ1mmに形成した。基台1を成形面部2とは、焼結に
より接合した。[Embodiment 2] As shown in FIG. 5, the base 1 was made of alumina (A
12O3) powder was used as a raw material. Also, base 1
Chromia powder and zirconia (ZrO2) powder and alumina powder are added to the joint with the molding surface part 2 over a thickness of 1 mm so that the content of these powders gradually increases toward the molding surface part 2 side. A mixed layer 1a was formed by mixing the powder. Molding surface part 2 is made of chromia powder 7
8.7 vol% and alumina powder 12.9 vol%
and 8.4 vol % of zirconia powder were used as raw materials to form a thickness of 1 mm. The base 1 and the molding surface part 2 were joined by sintering.
【0017】上記本実施例の成形用型を用いてガラス光
学素子を成形したところ、20.000ショットの成形
後も何ら問題は生じなかった。When a glass optical element was molded using the mold of this example, no problem occurred even after 20,000 shots.
【0018】なお、上記の基台1をアルミナ系焼結体の
代わりに、マグネシア系,ベリリア系焼結体として構成
した成形用型も、本実施例と同様の効果が得られた。[0018] The same effects as in this example were also obtained using a mold in which the base 1 was made of a magnesia-based or beryllia-based sintered body instead of an alumina-based sintered body.
【0019】[0019]
【発明の効果】以上のように、本発明の光学素子成形用
型によれば、成形面部に圧縮応力が加わるように構成し
たので、焼結体粒子の脱落やエッジの欠け,クラック等
を生じず、結晶粒の粒成長による面粗度の劣化も防止で
き、型寿命が長くなる。[Effects of the Invention] As described above, according to the mold for molding an optical element of the present invention, since compressive stress is applied to the molding surface portion, sintered particles may fall off, edges may be chipped, cracks, etc. may occur. First, deterioration of surface roughness due to grain growth of crystal grains can be prevented, and the life of the mold can be extended.
【図1】本発明の光学素子成形用型を示す縦断面図であ
る。FIG. 1 is a longitudinal sectional view showing a mold for molding an optical element of the present invention.
【図2】光学素子成形用型の成形面部にビッカースの圧
痕を付けた場合の光学顕微鏡による観察結果を示す平面
図である。FIG. 2 is a plan view showing the results of observation using an optical microscope when a Vickers indentation is made on the molding surface of the mold for molding an optical element.
【図3】本発明の実施例1の成形用型をその組成ととも
に示す縦断面図である。FIG. 3 is a longitudinal cross-sectional view showing the molding die of Example 1 of the present invention together with its composition.
【図4】本発明の実施例1の成形用型において成形面部
の厚さを変化させた場合の型面粗度を示すグラフである
。FIG. 4 is a graph showing the mold surface roughness when the thickness of the molding surface portion is changed in the mold of Example 1 of the present invention.
【図5】本発明の実施例2の成形用型をその組成ととも
に示す縦断面図である。FIG. 5 is a longitudinal cross-sectional view showing a molding die of Example 2 of the present invention together with its composition.
1 基台 1a 混合層 2 成形面部 1 Base 1a Mixed layer 2 Molding surface part
Claims (1)
材であって、成形面部がクロミアを含有する厚さ5mm
以下の焼結体からなり、基台がマグネシア系,ジルコニ
ア系,ベリリア系またはアルミナ系の焼結体からなると
ともに、基台における成形面部との接合部において、成
形面部を形成する材料の含有率が成形面部側へ向けて除
々に大きくなる混合層を有することを特徴とする光学素
子成形用型。[Claim 1] A composite material comprising a molded surface portion formed on a base, the molded surface portion containing chromia and having a thickness of 5 mm.
The base is made of a magnesia-based, zirconia-based, beryllia-based, or alumina-based sintered body, and the content of the material forming the molded surface at the joint with the molded surface on the base. 1. A mold for molding an optical element, comprising a mixed layer that gradually increases in size toward the molding surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10837391A JPH04317428A (en) | 1991-04-12 | 1991-04-12 | Optical element forming mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10837391A JPH04317428A (en) | 1991-04-12 | 1991-04-12 | Optical element forming mold |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04317428A true JPH04317428A (en) | 1992-11-09 |
Family
ID=14483131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10837391A Withdrawn JPH04317428A (en) | 1991-04-12 | 1991-04-12 | Optical element forming mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04317428A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0860404A1 (en) * | 1997-02-21 | 1998-08-26 | Matsushita Electric Industrial Co., Ltd. | Press-moulding die, method for manufacturing the same and use thereof for press-moulding a glass article |
-
1991
- 1991-04-12 JP JP10837391A patent/JPH04317428A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0860404A1 (en) * | 1997-02-21 | 1998-08-26 | Matsushita Electric Industrial Co., Ltd. | Press-moulding die, method for manufacturing the same and use thereof for press-moulding a glass article |
US6119485A (en) * | 1997-02-21 | 2000-09-19 | Matsushita Electric Industrial Co., Ltd. | Press-molding die, method for manufacturing the same and glass article molded with the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4939232B2 (en) | Composite ceramic body, method for producing the same, microchemical chip, and reformer | |
EP0066022B1 (en) | Engine parts | |
JPS6323643B2 (en) | ||
US6380113B1 (en) | Tetragonal zirconia ceramic powders, tetragonal zirconia-alumina composite using the ceramic powder and method of preparation for the same | |
JPH0628947B2 (en) | Double-layer heat-resistant plate for tool bricks | |
KR20010086446A (en) | Composite material | |
JPH11276504A (en) | Orthodontic bracket and method for manufacturing the same | |
Nagano et al. | Diffusion bonding of zirconia/alumina composites | |
US5804522A (en) | Hardened alumina material | |
JPH04317428A (en) | Optical element forming mold | |
JP4976973B2 (en) | Manufacturing method of composite ceramics | |
US4840854A (en) | Reinforced plate-like sintered bodies | |
Powell‐Doğan et al. | Residual‐stress‐induced grain pullout in a 96% alumina | |
JPS63164228A (en) | Wire bonding capillary made of ceramic | |
JP4269910B2 (en) | Bonding capillary | |
Rice | Processing induced sources of mechanical failure in ceramics | |
JPH09227228A (en) | Low-temperature deterioration resistant zirconia material and its production | |
KR102573024B1 (en) | Capillary for Wire Bonding and Method for Manufacturing the Same | |
EP0351134B1 (en) | A ceramics cutting tool and a process for the production of the same | |
JPS5891083A (en) | Ceramics adhesive composition and ceramics adhesion | |
JP2000053463A (en) | Jig for can manufacturing | |
JP2009140784A (en) | Method of manufacturing airtight terminal | |
JPS6077406A (en) | Substrate for thin film magnetic head and manufacture of the same | |
JPS6230666A (en) | High toughenss silicon nitride sintered body and manufacture | |
JPH0524866A (en) | Mold for forming optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980711 |