JPH04316A - Method for locally softening casting product - Google Patents

Method for locally softening casting product

Info

Publication number
JPH04316A
JPH04316A JP2101015A JP10101590A JPH04316A JP H04316 A JPH04316 A JP H04316A JP 2101015 A JP2101015 A JP 2101015A JP 10101590 A JP10101590 A JP 10101590A JP H04316 A JPH04316 A JP H04316A
Authority
JP
Japan
Prior art keywords
casting
cast
cast product
softening
metallic mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101015A
Other languages
Japanese (ja)
Other versions
JP2597032B2 (en
Inventor
Hideaki Ikeda
英明 池田
Takeshi Kokusho
毅 国生
Katsuyoshi Nakao
中尾 勝義
Hirohisa Harada
原田 浩久
Isao Matsumoto
勲 松本
Seiji Ebara
江原 誠二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
DKK Co Ltd
Original Assignee
Honda Motor Co Ltd
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Denki Kogyo Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2101015A priority Critical patent/JP2597032B2/en
Publication of JPH04316A publication Critical patent/JPH04316A/en
Application granted granted Critical
Publication of JP2597032B2 publication Critical patent/JP2597032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To easily process a cast product by applying annealing after casting to part for executing the processing of the cast product, which is cast by using a metallic mold, and softening. CONSTITUTION:By pouring molten iron composed of cast iron component corresponding to JIS FC20-FC30 into the metallic mold, a cam shaft 1 is cast, and at the time when the molten iron surface layer part 1a in contact with the metallic mold becomes shell-state solidified layer having high hardness chilled structure, the casting is released from the metallic mold. Under red heat condition (about 600-900 deg.C) of the cam shaft 1 released from the metallic mold, a journal part 3 as the necessary softening part is rapidly heated to about 1000-1100 deg.C with a high frequency heating member 4 and held for about 20-30sec. At this time, the temp. of part except the journal part 3 is the temp. of A1 transformation point or lower. Successively, the cam shaft 1 is naturally cooled, and after lowering the temp. to near the room temp., the whole cam shaft 1 is reheated in a furnace at about 550-600 deg.C execute the annealing for relieving casting stress. By this method, only the journal part 3 can be softened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金型等を用いて鋳造した鋳造品の一部を鋳造後
に焼鈍して軟化せしめる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of annealing and softening a part of a cast product cast using a metal mold or the like after casting.

(従来の技術) 金型を用いて鋳鉄部材を鋳造する方法として特開昭63
−174775号が知られている。
(Prior art) Japanese Patent Application Laid-Open No. 63
-174775 is known.

この方法はカムシャフト等の鋳物を鋳造するにあたり、
金型のキャビティ内に溶湯を充填した後、溶湯の表層を
急冷して殻状の凝固層とし、この時点で離型するように
したものである。このよウニスることで、金型に変形や
摩耗を生じることなく、表層が高硬度のチル組織となっ
たカムシャフトが得られる。
This method is used when casting products such as camshafts,
After filling the cavity of the mold with molten metal, the surface layer of the molten metal is rapidly cooled to form a shell-like solidified layer, at which point the mold is released. By coating in this way, a camshaft with a highly hard chilled structure on the surface layer can be obtained without causing deformation or wear on the mold.

上述したように金型を用いてカムシャフト等を鋳造すれ
ば、砂型を用いた場合に比べ、効率良く且つコスト的に
も有利に鋳物が得られる。
If a camshaft or the like is cast using a mold as described above, a casting can be obtained more efficiently and cost-effectively than when a sand mold is used.

しかしながら金型を使用する場合には、砂型に冷し金を
セットする場合と異なり、鋳物の表層全体がチル化し、
鋳造後にセンター穴やスプライン溝を加工すべき部分の
硬度が硬くなり過ぎ、刃具の寿命等の点で不利が生じる
However, when using a mold, the entire surface layer of the casting is chilled, unlike when setting a cold metal in a sand mold.
After casting, the hardness of the part where the center hole and spline groove are to be machined becomes too hard, resulting in disadvantages in terms of the life of the cutting tool, etc.

そこで346図に示すように一旦鋳造した鋳物の一部を
高周波等を利用して再加熱し、次いで一定時間高温状態
で保持した後に放冷することで当該一部を焼鈍軟化する
方法が考えられるが、この方法のように一定速度でチル
組織となっている鋳物を加熱すると以下の問題がある。
Therefore, as shown in Fig. 346, a method can be considered in which a part of the casting that has been cast is reheated using high frequency, then held at a high temperature for a certain period of time, and then allowed to cool, thereby annealing and softening the part. However, when a casting with a chill structure is heated at a constant rate as in this method, the following problems arise.

(発明が解決しようとする課I!り 即ち、鋳鉄は鋳込んでから常温まで冷却せしめる間に以
下の3つの容積変化を行う。
(Issues to be solved by the invention) Namely, cast iron undergoes the following three volume changes during cooling to room temperature after being cast.

■ 鋳込み温度から凝固点までの液体としての収縮。■ Shrinkage as a liquid from the casting temperature to the freezing point.

■ 凝固による容積変化。(白銑鉄は収縮、灰銑鉄は膨
張) ■ 固体の冷却(変態)による膨張又は収縮。
■ Volume change due to coagulation. (White pig iron contracts, gray pig iron expands) ■ Expansion or contraction due to cooling (transformation) of a solid.

そして、上記■、■が鋳造後の残留応力の原因となり、
この残留応力は構造応力と組織応力に分けられる。構造
応力とは鋳造品の各部の冷却速度が異なることに起因し
て発生する応力で、組織応力は組織や組成の分布及び大
きさなどの材質の差に起因して発生する応力がある。
And, the above ■ and ■ cause residual stress after casting,
This residual stress can be divided into structural stress and tissue stress. Structural stress is stress that occurs due to different cooling rates of different parts of a cast product, and structural stress is stress that occurs due to differences in materials such as structure, composition distribution, and size.

先ず、構造応力の面から述べると、残留応力の発生過程
は凝固、冷却時の始めは、表層は速く冷却するため収縮
して引張応力状態となり内部は圧縮応力状態となる。こ
こで表層より温度の高い可塑的な内部がこの圧縮応力に
よって塑性変形を行なうと、その部分の実質寸法は縮小
する。するとこれによりさらに冷却の進んだ段階ではそ
の応力状態は逆転し、表層に圧縮、内部に引張りの残留
応力が発生し、その境界近くに引張りの極大が現われる
First, from the perspective of structural stress, the process of generating residual stress is during solidification and cooling.At the beginning of the cooling process, the surface layer cools quickly and contracts to become a tensile stress state, while the interior becomes a compressive stress state. When the plastic interior, which has a higher temperature than the surface layer, undergoes plastic deformation due to this compressive stress, the actual size of that portion is reduced. As a result, as cooling progresses further, the stress state is reversed, compressive residual stress occurs on the surface layer, tensile stress occurs inside, and a maximum tensile stress appears near the boundary.

一方、組織応力の面から述べると、金型鋳造に於ては、
その金型に接する面は冷却速度が極めて早いため表層は
白銑組織(パーライト及びレーデブライト)となり、冷
却速度の遅い内部は灰銑組織(黒鉛及びパーライト)と
なり、そしてその境界部は斑銑(パーライト、黒鉛及び
レーデブライト)どなる。この様に表層と内部とが組織
を異にし従がって比容積を異にする。この比容積の差に
よって表層に圧縮、内部に引張りの応力を生じ、この影
響が集中的に現われる境界部では圧縮、引張りとも大き
くなる傾向にある。
On the other hand, from the perspective of structural stress, in die casting,
The cooling rate of the surface in contact with the mold is extremely fast, so the surface layer becomes a white pig iron structure (pearlite and ledebrite), the inner part, where the cooling rate is slow, becomes a gray pig iron structure (graphite and pearlite), and the boundary between them becomes a white pig iron structure (pearlite and pearlite). , graphite and ledebrite) howl. In this way, the surface layer and the inside have different structures and therefore different specific volumes. This difference in specific volume causes compressive stress on the surface layer and tensile stress on the inside, and both the compressive stress and the tensile stress tend to increase at the boundary where this effect appears concentratedly.

以上述べた様に金型鋳造に於ては熱応力による残留応力
と表層と内部の組織の相違による残留応力が重畳する。
As mentioned above, in mold casting, residual stress due to thermal stress and residual stress due to the difference in structure between the surface layer and the inside are superimposed.

このような鋳造応力は加熱により除去でき鋳物を加熱し
てゆくと300〜500℃の間で応力は急激に減少し、
600℃ではほとんど消失する。
Such casting stress can be removed by heating, and as the casting is heated, the stress decreases rapidly between 300 and 500°C.
It almost disappears at 600°C.

そこで、上述の残留応力分布状態、即ち表層が圧縮、内
部が引張り、境界部付近が引張り極大にある金型鋳造品
を高周波加熱により、急速加熱すると、表層のみが加熱
され表層部の体積膨張により熱応力が発生する。この熱
応力は加熱の初期に発生し、表層は圧縮、内部は引張り
となる。この高周波による急速加熱により金型鋳造部材
の表層と内部の境界に存在する引張りの極大が急速加熱
による熱応力の引張りを助長し、チル層直下を起点とす
るクラックを発生させる。
Therefore, when a die casting product with the above-mentioned residual stress distribution state, that is, the surface layer is compressed, the inside is tensile, and the area near the boundary is at maximum tension, is rapidly heated by high-frequency heating, only the surface layer is heated and due to the volumetric expansion of the surface layer. Thermal stress occurs. This thermal stress occurs at the beginning of heating, and the surface layer becomes compressive while the inside becomes tensile. Due to the rapid heating by this high frequency, the maximum tension existing at the boundary between the surface layer and the interior of the die-casting member promotes the tension of thermal stress due to the rapid heating, and generates cracks starting just below the chilled layer.

また、局部急速加熱により軸方向に於て、加熱部と非加
熱部との間において、苛酷な応力が発生する。即ち急速
加熱部が近傍の低温部に拘束されて生ずる熱応力により
加熱部に塑性変形が起こり、このため加熱部と非加熱部
との境界部付近に引張りの極大が生じ、境界部付近を起
点とするクラックを発生するか或いは境界部付近から変
形する。
In addition, severe stress is generated between the heated portion and the non-heated portion in the axial direction due to localized rapid heating. In other words, plastic deformation occurs in the heated part due to the thermal stress generated when the rapidly heated part is restrained by the nearby low-temperature part, and as a result, maximum tension occurs near the boundary between the heated part and the non-heated part, and the tensile force starts near the boundary. Cracks occur or deformation occurs near the boundary.

(課題を解決するための手段) 上記課題を解決すべく本発明は、金型内に溶湯を注湯し
た後、金型と接触する溶湯表層部が高硬度チル組織の殻
状の凝固層となった時点で離型し、離型した鋳造品が常
温まで冷却せずに赤熱状態にあるうちに鋳造品の軟化す
べき部分を高周波誘導加熱によって昇温及び保持し、次
いで高周波誘導加熱を停止して常温付近まで冷却せしめ
た後に鋳造品全体を焼鈍するようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides that after pouring molten metal into a mold, the surface layer of the molten metal that comes into contact with the mold forms a shell-like solidified layer of a high hardness chill structure. The mold is released at the point when the temperature is reached, and the part of the cast product that should be softened is raised and maintained in temperature by high-frequency induction heating while the released cast product is in a red-hot state without being cooled to room temperature, and then the high-frequency induction heating is stopped. After cooling to around room temperature, the entire cast product was annealed.

(作用) 離型後に赤熱状態(600〜900℃)にある軟化すべ
き部分をA1変態点以下で600℃までの温度範囲に降
温せしめた後に高周波加熱を行うと、チル層に存在する
パーライト部分がオーステナイト化し、またA1変態点
以下で900℃までの温度範囲に降温せしめた後に高周
波加熱を行うとチル層に存在する残留オーステナイトは
そのままの状態を維持する。そして、上記オーステナイ
ト組織は一旦マルチンサイト組織となって硬化した後、
焼鈍によりHRC35以下のソルバイト組織となる。
(Function) When high-frequency heating is performed after cooling the red-hot state (600 to 900°C) to a temperature range of 600°C below the A1 transformation point after demolding, the pearlite part present in the chilled layer is heated. becomes austenite, and if high-frequency heating is performed after the temperature has been lowered to a temperature range of 900° C. below the A1 transformation point, the residual austenite present in the chilled layer remains in that state. Then, once the austenite structure becomes a multitinsite structure and hardens,
Annealing results in a sorbite structure with an HRC of 35 or less.

(実施例) 以下に本発明の実施例を添付図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明方法に係る局部軟化方法を実施する前の
カムシャフトの断面図、第2図は局部軟化方法を実施し
た後のカムシャフトの断面図であり、カムシャフト1は
複数のカム部2・・・を対をなすように軸方向に離間し
て一体的に形成し、これら対をなすカム2.2の間及び
カムシャフト1両端にジャーナル部3を設けている。
FIG. 1 is a cross-sectional view of a camshaft before carrying out the local softening method according to the method of the present invention, and FIG. 2 is a cross-sectional view of the camshaft after carrying out the local softening method. The cams 2, .

また、カムシャフト1は[表]に示すJISFC20〜
FC30相当の鋳鉄成分からなる。
In addition, the camshaft 1 is JISFC20~ shown in [Table]
Consists of cast iron components equivalent to FC30.

[表層 そして上記の成分からなる溶湯を金型に注入してカムシ
ャフト1を鋳造する。ここで鋳造に用いる金型は例えば
0.8〜4.Owt%のC1を含有するCu−C,合金
から構成される熱伝導率の高いものとし、好ましくはカ
ムシャフト1の表面部を急冷するための冷却路を内部に
形成したものとする。
[Surface layer] Molten metal consisting of the above components is poured into a mold to cast the camshaft 1. The mold used for casting here is, for example, 0.8 to 4. The camshaft 1 is made of a Cu-C alloy containing Owt% of C1 and has high thermal conductivity, and preferably has a cooling path formed therein for rapidly cooling the surface portion of the camshaft 1.

而して斯る構造の金型のキャビティ内に溶湯を注入する
ことで、表層部1aがHRC40〜50(特にカム部は
)(RC45以上)のチル組織となり、芯部1bが)I
RC40以下の組織となる。
By injecting the molten metal into the cavity of the mold having such a structure, the surface layer 1a becomes a chilled structure with HRC40 to 50 (especially the cam part) (RC45 or higher), and the core part 1b becomes HRC45 or higher.
The organization will be RC40 or lower.

以上のカムシャフトの一部、例えば両端のジャーナル部
3を軟化せしめるには第3図に示すように、まず金型鋳
造における離型後の赤熱状態(600〜900℃)にあ
る、カムシャフトの所要軟化部分であるジャーナル部を
高周波加熱部材4により1000〜1100℃まで急速
加熱する。このように赤熱状態からの加熱により、表層
部と内部との温度差及びジャーナル部と他の部分(カム
部)との温度差を小さくできるので、加熱によるクラッ
ク及び変形の発生を防止できる。またジャーナル部以外
への伝熱を抑制できる。
In order to soften a part of the camshaft, for example, the journal parts 3 at both ends, as shown in Fig. The journal portion, which is the required softening portion, is rapidly heated to 1000 to 1100° C. by the high-frequency heating member 4. In this way, by heating from a red-hot state, the temperature difference between the surface layer part and the inside and the temperature difference between the journal part and other parts (cam part) can be reduced, so it is possible to prevent the occurrence of cracks and deformation due to heating. Furthermore, heat transfer to areas other than the journal portion can be suppressed.

引き続いて行なう保持加熱にあってはジャーナル部3の
温度を1000〜1100℃に20〜30秒維持する。
During the subsequent holding and heating, the temperature of the journal portion 3 is maintained at 1000 to 1100° C. for 20 to 30 seconds.

この保持加熱により、チル層を構成するレーデブライト
共晶中のセメンタイトの一部は、分解し、黒鉛化される
By this holding and heating, a part of the cementite in the ledebrite eutectic constituting the chill layer is decomposed and graphitized.

ここで、第3図に示す実施例にあフては高周波加熱をス
タートする温度を600℃以上でAI変憇点(738℃
)以下としている。この場合にはチル層に存在するパー
ライト組織がオーステナイト組織に変化する。一方、第
5図に示すように高周波加熱をスタートする温度をA1
変態点以上で900℃以下とするとチル層内に残留する
オーステナイト組織はその状態で維持する。
Here, in the embodiment shown in Fig. 3, the temperature at which high-frequency heating is started is set to 600°C or higher to reach the AI change point (738°C).
) below. In this case, the pearlite structure present in the chill layer changes to an austenite structure. On the other hand, as shown in Figure 5, the temperature at which high frequency heating starts is set to A1.
When the temperature is above the transformation point and below 900°C, the austenite structure remaining in the chill layer is maintained in that state.

この時点でジャーナル部以外の他の部分はAI変態点以
下の温度にある。
At this point, the other parts other than the journal part are at a temperature below the AI transformation point.

次に上記状態にあるカムシャフトを放冷する。Next, the camshaft in the above state is allowed to cool.

この放冷により、上記オーステナイト部分はマルテン化
し、硬化する。しかし急速冷却によるマルテン化ではな
いため、変化の発生はない。
By this cooling, the austenite portion is martenized and hardened. However, since martenization is not caused by rapid cooling, no change occurs.

次に再加熱により 550〜600℃で2時間の条件に
より電気炉を用いて鋳造応力除去のための焼鈍を行う。
Next, annealing is performed to remove casting stress by reheating and using an electric furnace at 550 to 600° C. for 2 hours.

平焼鈍により、鋳造時に発生した鋳造応力が除去される
と共にジャーナル部表層のマルテンサイト化部分はHR
C35以下のソリバイト組織となる。
By flat annealing, the casting stress generated during casting is removed and the martensitic part on the surface layer of the journal part becomes HR.
It becomes a solivite structure of C35 or less.

また上記焼鈍条件により、ジャーナル部以外のセメンタ
イトの黒鉛化は生じない。
Further, due to the above annealing conditions, graphitization of cementite other than the journal portion does not occur.

(発明の効果) 第5図は以下の条件によって軟化処理した後のカムシャ
フトの各部の残留応力を示すものである。
(Effects of the Invention) FIG. 5 shows the residual stress in each part of the camshaft after softening treatment under the following conditions.

条件: 高周波加熱前ワーク温度 650℃及び780℃高周波
昇温加熱条件   (a)  周波数・・・5 KHz
/5ec(b)出  力・・・26Kw (c)加熱時間・・・15秒 (d)加熱温度・・−1,050℃ 高周波保持加熱条件   a)周波数・・・3 KHz
/5ecb)出  力・・・18Kw C)保持時間・・・30秒 d)加熱温度・・・1.050℃ 電気炉焼鈍条件     a)加熱温度・・・600℃
b)保持時間・・・2H 第5図及び以上の説明から明らかなように本発明によれ
ば、離型直後の赤熱状態(600〜900℃)にある鋳
造品の一部を高周波加熱することで表層部と内部との温
度差を小さくしたので、加熱により発生する熱応力も非
常に小さく、所要加熱温度まで急速加熱をしてもクラッ
クの発生を防止できる。また、加熱部分とその他の部分
との温度差が少ないため、高周波加熱による変形が少な
しA、更に急速加熱の為、不必要部分まで熱が伝わるこ
とを抑制できるので不必要部分の軟化を防止できる
Conditions: Work temperature before high-frequency heating: 650°C and 780°C High-frequency heating conditions: (a) Frequency: 5 KHz
/5ec (b) Output...26Kw (c) Heating time...15 seconds (d) Heating temperature...-1,050℃ High frequency maintenance heating conditions a) Frequency...3 KHz
/5ecb) Output...18Kw C) Holding time...30 seconds d) Heating temperature...1.050℃ Electric furnace annealing conditions a) Heating temperature...600℃
b) Holding time...2H As is clear from FIG. 5 and the above explanation, according to the present invention, a part of the cast product that is in a red-hot state (600 to 900°C) immediately after being released from the mold is subjected to high-frequency heating. Since the temperature difference between the surface layer and the inside is made small, the thermal stress generated by heating is also very small, and cracks can be prevented even when rapidly heated to the required heating temperature. In addition, since there is little temperature difference between the heated part and other parts, there is little deformation due to high-frequency heating.A, and because of rapid heating, it is possible to suppress the transmission of heat to unnecessary parts, preventing softening of unnecessary parts. can

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に係る局部軟化方法を実施する前の
カムシャフトの断面図、第2図は局部軟化方法を実施し
た後のカムシャフトの断面図、第3図及び第4図は本発
明方法の加熱パターンを示すグラフ、第5図は焼鈍後の
カムシャフトの各部の残留応力を示す図、第6図は従来
方法を示すグラフである。 尚、図面中1はカムシャフト、1aは表層部、1bは芯
部、2はカム部、3はジャーナル部、4は加熱部材であ
る。 出 願人 特許 同 代 理 人 弁理士 同   弁理士 同   弁理士 本田技研工業株式会社 電気興業株式会社 下  1) 容一部 大  橋  邦  彦 小  山      有 第 図 第2図 時P」
Fig. 1 is a cross-sectional view of the camshaft before the local softening method according to the present invention is applied, Fig. 2 is a cross-sectional view of the camshaft after the local softening method is applied, and Figs. FIG. 5 is a graph showing the heating pattern of the inventive method, FIG. 5 is a graph showing residual stress in each part of the camshaft after annealing, and FIG. 6 is a graph showing the conventional method. In the drawings, 1 is a camshaft, 1a is a surface layer portion, 1b is a core portion, 2 is a cam portion, 3 is a journal portion, and 4 is a heating member. Applicant Patent Attorney Same Patent Attorney Same Patent Attorney Same Patent Attorney Honda Motor Co., Ltd. Denki Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)金型内に溶湯を注湯した後、金型と接触する溶湯
表層部が高硬度チル組織の殻状の凝固層となった時点で
離型し、離型した鋳造品が赤熱状態にあるうちに鋳造品
の軟化すべき部分を高周波誘導加熱によって昇温及び保
持し、次いで高周波誘導加熱を停止して常温付近まで降
温せしめた後、鋳造品全体を炉内で加熱して応力除去の
ための焼鈍を行うようにしたことを特徴とする鋳造品の
局部軟化方法。
(1) After pouring the molten metal into the mold, the mold is released when the surface layer of the molten metal in contact with the mold becomes a shell-like solidified layer with a high hardness chill structure, and the released cast product becomes red-hot. The part of the casting that needs to be softened is heated and maintained by high-frequency induction heating while the casting is still in operation, then the high-frequency induction heating is stopped and the temperature is allowed to cool down to around room temperature, and then the entire casting is heated in a furnace to relieve stress. A method for locally softening a cast product, characterized in that annealing is performed for the purpose of softening the cast product.
(2)前記高周波誘導加熱による加熱保持温度を100
0〜1100℃とし、応力除去のための焼鈍における加
熱保持温度を550℃〜600℃とすることを特徴とす
る請求項(1)に記載の鋳造品の局部軟化方法。
(2) The heating holding temperature by the high frequency induction heating is set to 100
2. The method for locally softening a cast product according to claim 1, wherein the temperature is 0 to 1100C, and the heating holding temperature during annealing for stress relief is 550 to 600C.
(3)前記鋳造品の組成はJISFC20〜FC30相
当か又はNiを0.4〜0.6wt%、Crを0.5〜
1.0wt%、Moを0.5〜1.0wt%を含むもの
としたことを特徴とする請求項(1)に記載の鋳造品の
局部軟化方法。
(3) The composition of the cast product is equivalent to JISFC20 to FC30, or 0.4 to 0.6 wt% Ni and 0.5 to 0.5 wt% Cr.
The method for locally softening a cast product according to claim 1, characterized in that the content of Mo is 1.0 wt% and Mo is 0.5 to 1.0 wt%.
JP2101015A 1990-04-17 1990-04-17 Local softening method of casting Expired - Fee Related JP2597032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101015A JP2597032B2 (en) 1990-04-17 1990-04-17 Local softening method of casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101015A JP2597032B2 (en) 1990-04-17 1990-04-17 Local softening method of casting

Publications (2)

Publication Number Publication Date
JPH04316A true JPH04316A (en) 1992-01-06
JP2597032B2 JP2597032B2 (en) 1997-04-02

Family

ID=14289390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101015A Expired - Fee Related JP2597032B2 (en) 1990-04-17 1990-04-17 Local softening method of casting

Country Status (1)

Country Link
JP (1) JP2597032B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054533A (en) * 2000-12-28 2002-07-08 이계안 Heat treatment for removing residual stress of cast iron
WO2003028923A1 (en) * 2001-09-27 2003-04-10 Honda Giken Kogyo Kabushiki Kaisha Cast iron member manufacturing method
KR20040013801A (en) * 2002-08-08 2004-02-14 현대자동차주식회사 Heat treatment method for removing residual stress of cylinder head
JP2011230614A (en) * 2010-04-27 2011-11-17 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel
CN112553418A (en) * 2021-01-26 2021-03-26 东风汽车紧固件有限公司 Local high-frequency annealing device for sleeve part and processing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149640A (en) * 1988-11-30 1990-06-08 Honda Motor Co Ltd Wear-resistant member and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149640A (en) * 1988-11-30 1990-06-08 Honda Motor Co Ltd Wear-resistant member and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054533A (en) * 2000-12-28 2002-07-08 이계안 Heat treatment for removing residual stress of cast iron
WO2003028923A1 (en) * 2001-09-27 2003-04-10 Honda Giken Kogyo Kabushiki Kaisha Cast iron member manufacturing method
CN1299852C (en) * 2001-09-27 2007-02-14 本田技研工业株式会社 Cast iron member manufacturing method
US7354549B2 (en) 2001-09-27 2008-04-08 Honda Giken Kogyo Kabushiki Kaisha Cast iron member manufacturing method
KR20040013801A (en) * 2002-08-08 2004-02-14 현대자동차주식회사 Heat treatment method for removing residual stress of cylinder head
JP2011230614A (en) * 2010-04-27 2011-11-17 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel
CN112553418A (en) * 2021-01-26 2021-03-26 东风汽车紧固件有限公司 Local high-frequency annealing device for sleeve part and processing method thereof

Also Published As

Publication number Publication date
JP2597032B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JPH05132890A (en) Roll preparation and roll
JPH04316A (en) Method for locally softening casting product
US20020170635A1 (en) Process for manufacturing aluminum alloys and aluminium castings
UA82437C2 (en) Method for heat treatment of cast parts made from light metal melt, in particular from aluminium melt
US5113924A (en) Method of casting wear-resistant, cast iron machine element
US4802528A (en) Hoops for continuous casting rolls
JP3164259B2 (en) Die casting mold having water cooling hole and method of manufacturing the same
JPH04317A (en) Method for locally softening casting product
US5163391A (en) Wear resistant cast iron rocker arm and method of making same
JP2665267B2 (en) Local softening method of casting
JPH02149639A (en) Method for locally softening cast article
KR100196341B1 (en) Method for forming an induction hardened torque trasmitting shaft from iron
JP2948047B2 (en) Manufacturing method of die casting mold having water cooling hole
JPH02149640A (en) Wear-resistant member and its manufacture
JPH0512411B2 (en)
JPH10202331A (en) Manufacture of hot working die
CN110343818A (en) A kind of heat treatment method of mould steel
JP2764884B2 (en) Heat treatment method of camshaft
JP2886268B2 (en) Camshaft of valve train for internal combustion engine and method of manufacturing the same
JPS60167724A (en) Method of manufacturing outer cylinder of equal-speed joint
JPS61199035A (en) Manufacture of composite roll having tough neck part
JPH06315754A (en) Production of die having water cooling hole
JP2006231386A (en) Method for producing aluminum sheet and continuous casting-rolling apparatus for aluminum sheet
WO1998047648A3 (en) Low-alloy cast iron tappet, apparatus, and process for its manufacturing
KR0138441B1 (en) Surface hardening method of forged steel product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees