JPH04316745A - Fly wheel - Google Patents

Fly wheel

Info

Publication number
JPH04316745A
JPH04316745A JP8230991A JP8230991A JPH04316745A JP H04316745 A JPH04316745 A JP H04316745A JP 8230991 A JP8230991 A JP 8230991A JP 8230991 A JP8230991 A JP 8230991A JP H04316745 A JPH04316745 A JP H04316745A
Authority
JP
Japan
Prior art keywords
spring
mass body
mass
force
revolutions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8230991A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishidaka
石高 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP8230991A priority Critical patent/JPH04316745A/en
Publication of JPH04316745A publication Critical patent/JPH04316745A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of an excessive impact force occasioned by the fluctuation in rotation of an engine by assembling a mass body to another mass body fixed on a crank shaft and locating a spring member, intercoupling two mass bodies when a centrifugal force exceeding a given value is exerted, between the two mass bodies. CONSTITUTION:During low speed rotation wherein the number of revolutions of an engine attains in short of the number of idle revolutions, a centrifugal force exerted on a compression coil spring 20 of a spring member 17 is lower than the spring force of a tension coil spring 19, and the compression spring 20 is located in a spring receiving part 16 of an output member 12. Thus, second mass bodies 2 and 3 are integrally rotated by means of a frictional force generating means 24. Meanwhile, the number of revolutions of an engine attains the given number of revolutions approximately equal to the number of idle revolutions and a centrifugal force is increased to a value higher than the spring force of a tension spring 19, the compression coil spring 20 is radially slid within the spring receiving part 16 and engaged with a spring receiving part 9 of a retainer 10, the two mass bodies 2 and 3 are resiliently intercoupled through the compression coil spring 20, and impulsive rotation is relaxed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はクランクシャフトの端部
に取り付けられるフライホイールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flywheel attached to the end of a crankshaft.

【0002】0002

【従来の技術】この種のフライホイールは、エンジンの
トルク変動に伴なうクランクシャフトの回転変動を少な
くすると共にクランクシャフトの捩り振動を減衰し、ク
ラッチを介して出力軸に円滑に動力伝達できるように様
々な工夫が施されている。
[Prior Art] This type of flywheel reduces rotational fluctuations of the crankshaft due to fluctuations in engine torque, damps torsional vibrations of the crankshaft, and enables smooth power transmission to the output shaft via the clutch. Various efforts have been made to do so.

【0003】例えば、実公平2−6285号公報に開示
されたフライホイールは、図5に示すように、2分割し
た質量体101,102をトーショナル・ダンパ103
で連繋すると共に、両質量体101,102間に遠心ク
ラッチ104を介装し、エンジン(クランクシャフト1
05)の回転数がアイドル回転数に達しない低回転域の
場合に遠心クラッチ104で両質量体101,102を
一体回動させて共振を回避する一方、エンジンの回転数
が所定回転数を越え、エンジンのアイドル回転以上の常
用回転域に達した場合に遠心力で遠心クラッチ104の
ロック状態を解除し(図5の状態)、トーショナル・ダ
ンパ103で両質量体101,102を弾性的に連繋し
て回転変動を抑制するようにしている。
For example, in the flywheel disclosed in Japanese Utility Model Publication No. 2-6285, as shown in FIG.
At the same time, a centrifugal clutch 104 is interposed between both mass bodies 101 and 102,
05) is in a low rotation range where the engine rotation speed does not reach the idle rotation speed, the centrifugal clutch 104 rotates both mass bodies 101 and 102 together to avoid resonance, while the engine rotation speed exceeds a predetermined rotation speed. When the engine reaches a normal rotation range above idle rotation, the centrifugal clutch 104 is unlocked by centrifugal force (the state shown in FIG. 5), and the torsional damper 103 elastically connects the mass bodies 101 and 102. to suppress rotational fluctuations.

【0004】0004

【発明が解決しようとする課題】しかしながら、このよ
うな従来例にあっては、エンジンの回転数がアイドル回
転数に達しない低回転域まで下がると、遠心クラッチ1
04のばね106の弾性力がロックピン107に作用す
る遠心力よりも大きくなるため、エンジンのトルク変動
に伴なって両質量体101,102が中立位置Nから所
定角度(θ/2)相対回動すると、ばね106で半径方
向内方に付勢されたロックピン107がロック溝108
に係合して両質量体101,102を一体回動させるよ
うになっている。
[Problems to be Solved by the Invention] However, in such conventional examples, when the engine speed drops to a low speed range that does not reach the idle speed, the centrifugal clutch 1
Since the elastic force of the spring 106 of 04 becomes larger than the centrifugal force acting on the lock pin 107, both mass bodies 101 and 102 rotate relative to each other by a predetermined angle (θ/2) from the neutral position N as the engine torque fluctuates. When the lock pin 107 is biased radially inward by the spring 106, the lock pin 107 moves into the lock groove 108.
The two mass bodies 101 and 102 are rotated together.

【0005】従って、両質量体101,102が遠心ク
ラッチ104で一体化されている場合には、両質量体1
01,102を連繋するトーショナル・ダンパ(圧縮コ
イルばね)103が押し縮められた状態となる。この状
態は、エンジンが所定回転数以下の場合及びエンジンを
停止した場合において維持されるため、トーショナル・
ダンパ103に長時間圧縮力が作用することとなり、ト
ーショナル・ダンパ103の継時的機能の低下が心配さ
れている。
Therefore, when both mass bodies 101 and 102 are integrated by centrifugal clutch 104, both mass bodies 1
The torsional damper (compression coil spring) 103 that connects 01 and 102 is in a compressed state. This state is maintained when the engine speed is below a predetermined number of revolutions or when the engine is stopped, so the torsional
Compressive force will be applied to the damper 103 for a long time, and there is concern that the function of the torsional damper 103 will deteriorate over time.

【0006】本発明はこのような従来例の不具合を解消
することを目的とする。
[0006] The present invention aims to eliminate such problems of the conventional example.

【0007】[0007]

【課題を解決するための手段】即ち本発明のフライホイ
ールは、質量体を分割し、一方の質量体をクランクシャ
フトに固定して、この質量体に他方の質量体を相対回動
可能な状態に組み付け、これら両質量体の対応する位置
にばね受容部を形成し、これらばね受容部のうちいずれ
か一方のばね受容部内に、所定以上の遠心力が作用する
とそのばね受容部内を移動して他方のばね受容部にも係
合し、前記両質量体を弾性的に連繋するばね部材を収容
したことを特徴としている。
[Means for Solving the Problems] That is, the flywheel of the present invention has a mass body divided into parts, one mass body being fixed to a crankshaft, and the other mass body being able to rotate relative to this mass body. and form spring receivers at corresponding positions on both of these mass bodies, and when a centrifugal force of a predetermined amount or more is applied to one of these spring receivers, the spring moves within the spring receiver. It is characterized by housing a spring member that also engages with the other spring receiving portion and elastically connects both the mass bodies.

【0008】[0008]

【作用】エンジン(クランクシャフト)停止時はもちろ
んのこと、エンジン回転数がアイドル回転数に達しない
低速回転域でもってばね部材に作用する遠心力が所定以
上に達しない場合、ばね部材は両質量体を連繋しないた
め、ばね部材には必要以上の圧縮力やエンジンの回転変
動に伴なう過大な衝撃力が作用しない。
[Operation] Not only when the engine (crankshaft) is stopped, but also in the low-speed rotation range where the engine speed does not reach the idle speed, when the centrifugal force acting on the spring member does not reach the specified level, the spring member Since the bodies are not connected, the spring member is not subjected to excessive compression force or excessive impact force due to fluctuations in engine rotation.

【0009】[0009]

【実施例】以下本発明の実施例を図面に基づき詳述する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below in detail with reference to the drawings.

【0010】図1は本発明の一実施例を示すフライホイ
ールの取付状態断面図であり、この図において1はクラ
ンクシャフトである。このクランクシャフト1の軸端に
は、第1質量体2をレインフォースプレート3とともに
ボルト4で固定してある。この第1質量体2は、クラン
クシャフト1に内周端部を固定した略円板状の弾性板5
と、この弾性板5の外周端に嵌着したリングギヤ6及び
サイドプレート7とからなり、弾性板5とサイドプレー
ト7との間に作動室8を形成してある。そして、この作
動室8内の外周側にばね受容部9を備えたリテーナ10
を配置し、このリテーナ10をそれぞれ弾性板5とサイ
ドプレート7にボルト11を固定してある。
FIG. 1 is a sectional view of a flywheel installed according to an embodiment of the present invention, and in this figure, reference numeral 1 indicates a crankshaft. A first mass body 2 and a reinforcement plate 3 are fixed to the shaft end of the crankshaft 1 with bolts 4. The first mass body 2 includes a substantially disk-shaped elastic plate 5 whose inner peripheral end is fixed to the crankshaft 1.
A ring gear 6 and a side plate 7 are fitted to the outer peripheral end of the elastic plate 5, and an operating chamber 8 is formed between the elastic plate 5 and the side plate 7. A retainer 10 is provided with a spring receiving portion 9 on the outer peripheral side within the working chamber 8.
The retainer 10 is fixed to the elastic plate 5 and the side plate 7 with bolts 11, respectively.

【0011】12は出力部材である。この出力部材12
は、そのプレート部13を弾性板5と相対回動できるよ
うに係合してあり、そのボス部14をレインフォースプ
レート3に取り付けたベアリング15で回動可能に支持
してある。又、この出力部材12のプレート部13には
リテーナ10のばね受容部9に対応するばね受容部16
を形成してあり、このばね受容部16には半径方向(図
1中上下方向)にスライドできるようにばね部材17を
収容してある。
12 is an output member. This output member 12
The plate portion 13 is engaged with the elastic plate 5 so as to be relatively rotatable, and the boss portion 14 is rotatably supported by a bearing 15 attached to the reinforcement plate 3. Further, the plate portion 13 of the output member 12 has a spring receiving portion 16 corresponding to the spring receiving portion 9 of the retainer 10.
A spring member 17 is housed in the spring receiving portion 16 so as to be slidable in the radial direction (vertical direction in FIG. 1).

【0012】このばね部材17は、ばね受容部16の底
壁18に一端を溶接等で固定した引張りばね19と、こ
の引張りばね19の他端に溶接等で固定した圧縮コイル
ばね20とで構成してある(図2参照)。そして、この
ばね部材17は、所定以上の遠心力が作用すると圧縮コ
イルばね20が引張りばね19のばね力に抗してばね受
容部16内をスライドし、図3〜図4に示すように他方
のばね受容部9にも係合する。
This spring member 17 is composed of a tension spring 19 whose one end is fixed to the bottom wall 18 of the spring receiving part 16 by welding or the like, and a compression coil spring 20 which is fixed to the other end of this tension spring 19 by welding or the like. (See Figure 2). When a centrifugal force of a predetermined value or higher is applied to the spring member 17, the compression coil spring 20 slides within the spring receiving portion 16 against the spring force of the tension spring 19, and as shown in FIGS. It also engages with the spring receiving part 9 of.

【0013】尚、図2及び図4に示すように、リテーナ
10に形成したばね受容部9の周方向長さは出力部材1
2のばね受容部16の周方向長さよりも僅かに大きく形
成してある。従って、図4に示すように、第1質量体2
と出力部材12とが僅かに相対回動すると、第1質量体
2と出力部材12とがばね部材17で弾性的に連繋され
ることとなる。
As shown in FIGS. 2 and 4, the circumferential length of the spring receiving portion 9 formed on the retainer 10 is the same as that of the output member 1.
The circumferential length of the second spring receiving portion 16 is slightly larger than that of the second spring receiving portion 16 . Therefore, as shown in FIG.
When the output member 12 and the output member 12 rotate slightly relative to each other, the first mass body 2 and the output member 12 are elastically connected by the spring member 17.

【0014】そして、出力部材12のボス部14には円
板状部材21をボルト22で固定してあり、この円板状
部材21と出力部材12とで第2質量体23を構成して
ある。
A disc-shaped member 21 is fixed to the boss portion 14 of the output member 12 with bolts 22, and this disc-shaped member 21 and the output member 12 constitute a second mass body 23. .

【0015】24は摩擦力発生手段である。この摩擦力
発生手段24は、弾性板5と出力部材12との間に介装
してあり、フリクションプレート25,リテーナプレー
ト26及び皿ばね27とからなっている。そして、この
摩擦力発生手段24は、第1質量体2と第2質量体23
のいずれか一方に所定以上の回動力が作用しない限り両
質量体2,23を一体回動させる一方、両質量体2,2
3のうちいずれか一方に所定以上の回動力が作用すると
すべりを生じて両質量体2,23の相対回動を許すよう
にしてある。尚、この摩擦力発生手段24は、両質量体
2,23が相対回動する際に、フリクションプレート2
5と弾性板5との摺接面で摩擦抵抗を生じさせ、クラン
クシャフト系の捩り振動を減衰する。
24 is a friction force generating means. The frictional force generating means 24 is interposed between the elastic plate 5 and the output member 12, and includes a friction plate 25, a retainer plate 26, and a disc spring 27. This frictional force generating means 24 is configured to connect the first mass body 2 and the second mass body 23.
Both mass bodies 2, 23 are rotated together unless a rotational force exceeding a predetermined value acts on either one of them, while both mass bodies 2, 2
When a rotational force of more than a predetermined value is applied to either one of the mass bodies 2 and 3, the two mass bodies 2 and 23 are allowed to rotate relative to each other. Incidentally, this friction force generating means 24 is configured to act on the friction plate 2 when both the mass bodies 2 and 23 rotate relative to each other.
Frictional resistance is generated at the sliding contact surface between the elastic plate 5 and the elastic plate 5, thereby damping torsional vibration of the crankshaft system.

【0016】28はフライホイールAの第2質量体23
に摩擦係合されるクラッチディスクであり、このクラッ
チディスク28はそのボス部29を出力軸30にスプラ
イン嵌合してある。又、31はフライホイールAの第2
質量体23に取り付けたクラッチカバー組立体である。 尚、前記リングギヤ6は図外のスタータモータのピニオ
ンギヤに噛合してある。
28 is the second mass body 23 of the flywheel A.
The clutch disk 28 is frictionally engaged with the clutch disk 28, and the boss portion 29 of the clutch disk 28 is spline-fitted to the output shaft 30. 31 is the second flywheel A.
This is a clutch cover assembly attached to a mass body 23. The ring gear 6 is meshed with a pinion gear of a starter motor (not shown).

【0017】以上の実施例構造によれば、エンジン回転
数(クランクシャフト1の回転数)がアイドル回転数に
達しない低速回転の場合、ばね部材17の圧縮コイルば
ね20に作用する遠心力が引張りコイルばね19のばね
力よりも小さく、圧縮コイルばね20は出力部材12の
ばね受容部16内に位置している(図1〜図2参照)。 この場合、第1質量体2と第2質量体23は摩擦力発生
手段24により一体回動させられる。尚、一般に、クラ
ンクシャフト系の捩り振動の共振点はアイドル回転数よ
りも低いエンジン回転数に設定してある。従って、その
捩り振動の共振点近傍のエンジン回転数において、過大
なトルクがフライホイールAに入力されても、摩擦力発
生手段24がすべりを生じ、第1質量体2と第2質量体
23とが圧縮コイルばね20を押し縮めることなく相対
回動する。そのため、エンジンの回転変動に伴なう過大
な衝撃力がばね部材17に作用することがない。
According to the structure of the embodiment described above, when the engine rotation speed (the rotation speed of the crankshaft 1) is at a low speed that does not reach the idle rotation speed, the centrifugal force acting on the compression coil spring 20 of the spring member 17 causes tension. The compression coil spring 20 is smaller than the spring force of the coil spring 19 and is located within the spring receiving portion 16 of the output member 12 (see FIGS. 1-2). In this case, the first mass body 2 and the second mass body 23 are rotated together by the frictional force generating means 24. Generally, the resonance point of the torsional vibration of the crankshaft system is set at an engine rotation speed lower than the idle rotation speed. Therefore, even if excessive torque is input to the flywheel A at an engine speed near the resonance point of the torsional vibration, the frictional force generating means 24 will slip, causing the first mass body 2 and the second mass body 23 to slip. rotates relative to each other without compressing the compression coil spring 20. Therefore, excessive impact force due to engine rotational fluctuations does not act on the spring member 17.

【0018】エンジン回転数がアイドル回転数近傍の所
定回転数に達し、ばね部材17の圧縮コイルばね20に
作用する遠心力が引張りばね19のばね力よりも大きく
なると、圧縮コイルばね20が出力部材12のばね受容
部16内を半径方向外方へスライドしてリテーナ10の
ばね受容部9にも係合し、第1質量体2と第2質量体2
3とが圧縮コイルばね20で弾性的に連繋されることと
なる(図3〜図4参照)。これにより、エンジンの回転
変動に伴なって第1質量体2と第2質量体23が相対回
動すると、エンジンの回転変動による衝撃力がばね部材
17により緩衝され、捩り振動が摩擦力発生手段24に
より減衰される。この結果、エンジンの動力は、クラン
クシャフト1,フライホイールA及びクラッチディスク
28を介して出力軸30に円滑に伝達される。
When the engine speed reaches a predetermined speed near the idle speed and the centrifugal force acting on the compression coil spring 20 of the spring member 17 becomes larger than the spring force of the tension spring 19, the compression coil spring 20 becomes the output member. The first mass body 2 and the second mass body 2
3 are elastically connected by a compression coil spring 20 (see FIGS. 3 and 4). As a result, when the first mass body 2 and the second mass body 23 rotate relative to each other due to engine rotational fluctuations, the impact force due to the engine rotational fluctuations is buffered by the spring member 17, and torsional vibration is suppressed by the frictional force generating means. 24. As a result, engine power is smoothly transmitted to the output shaft 30 via the crankshaft 1, flywheel A, and clutch disc 28.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
のフライホイールは、質量体を分割し、一方の質量体を
クランクシャフトに固定して、この質量体に他方の質量
体を相対回動可能な状態に組み付け、これら両質量体の
対応する位置にばね受容部を形成し、これらばね受容部
のうちいずれか一方のばね受容部内に、所定以上の遠心
力が作用するとそのばね受容部内を移動して他方のばね
受容部にも係合し、前記両質量体を弾性的に連繋するば
ね部材を収容してあるため、エンジン停止時やエンジン
の回転変動に伴なう過大な衝撃力が入力される低速回転
域において、必要以上の圧縮力や衝撃力がばね部材に作
用することがない。従って、本発明のフライホイールに
よれば、上記ばね部材の耐久性が向上し、長期に亘りフ
ライホイールとしての所望の機能が発揮される。
Effects of the Invention As is clear from the above description, the flywheel of the present invention has a mass body divided into parts, one mass body fixed to the crankshaft, and the other mass body rotated relative to this mass body. These mass bodies are assembled in a movable state, and spring receiving parts are formed at corresponding positions of both of these mass bodies, and when a centrifugal force of a predetermined amount or more is applied to one of these spring receiving parts, the inside of that spring receiving part is Since the spring member moves and engages with the other spring receiving part and elastically connects the two mass bodies, excessive impact force is prevented when the engine is stopped or due to fluctuations in engine rotation. In the low-speed rotation range where the input speed is input, no excessive compressive force or impact force is applied to the spring member. Therefore, according to the flywheel of the present invention, the durability of the spring member is improved, and the desired function of the flywheel is exhibited over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示すフライホイールの取付状
態の断面図。
FIG. 1 is a cross-sectional view of a flywheel in an attached state showing an embodiment of the present invention.

【図2】図1のB−B線に沿う断面図。FIG. 2 is a sectional view taken along line BB in FIG. 1;

【図3】ばね部材の作動状態を示すフライホイールの断
面図。
FIG. 3 is a sectional view of the flywheel showing the operating state of the spring member.

【図4】図3のC−C線に沿う断面図。FIG. 4 is a sectional view taken along line CC in FIG. 3;

【図5】従来のフライホイールの要部断面図。FIG. 5 is a sectional view of main parts of a conventional flywheel.

【符号の説明】[Explanation of symbols]

A…フライホイール、1…クランクシャフト、2…質量
体(第1質量体)、9,16…ばね受容部、17…ばね
部材、23…質量体(第2質量体)。
A... Flywheel, 1... Crankshaft, 2... Mass body (first mass body), 9, 16... Spring receiver, 17... Spring member, 23... Mass body (second mass body).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  質量体を分割し、一方の質量体をクラ
ンクシャフトに固定して、この質量体に他方の質量体を
相対回動可能な状態に組み付け、これら両質量体の対応
する位置にばね受容部を形成し、これらばね受容部のう
ちいずれか一方のばね受容部内に、所定以上の遠心力が
作用するとそのばね受容部内を移動して他方のばね受容
部にも係合し、前記両質量体を弾性的に連繋するばね部
材を収容したことを特徴とするフライホイール。
Claim 1: A mass body is divided, one mass body is fixed to a crankshaft, and the other mass body is assembled to this mass body in a relatively rotatable state, and the two mass bodies are placed at corresponding positions. A spring receiving portion is formed, and when a centrifugal force of a predetermined amount or more is applied to one of these spring receiving portions, the spring receiving portion moves within the spring receiving portion and engages with the other spring receiving portion. A flywheel characterized by housing a spring member that elastically connects both mass bodies.
JP8230991A 1991-04-15 1991-04-15 Fly wheel Pending JPH04316745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8230991A JPH04316745A (en) 1991-04-15 1991-04-15 Fly wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8230991A JPH04316745A (en) 1991-04-15 1991-04-15 Fly wheel

Publications (1)

Publication Number Publication Date
JPH04316745A true JPH04316745A (en) 1992-11-09

Family

ID=13770959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8230991A Pending JPH04316745A (en) 1991-04-15 1991-04-15 Fly wheel

Country Status (1)

Country Link
JP (1) JPH04316745A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715447A1 (en) * 1994-01-26 1995-07-28 Valeo Torsional damping device, in particular for a motor vehicle.
KR100394626B1 (en) * 2000-12-05 2003-08-14 현대자동차주식회사 Triple mass vibration damping flywheel for vehicles
FR2847630A1 (en) * 2002-11-22 2004-05-28 Zf Sachs Ag Torsional oscillations reducing device for vehicle, has limiting components and spinner, each including cut that forms cavity to receive damping part, leaf spring in cavity to transform peripheral movement of part into radial movement
JP2012180907A (en) * 2011-03-02 2012-09-20 Toyota Motor Corp Torsional vibration damping device
WO2017018575A1 (en) * 2015-07-29 2017-02-02 한국파워트레인 주식회사 Vehicle torque converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715447A1 (en) * 1994-01-26 1995-07-28 Valeo Torsional damping device, in particular for a motor vehicle.
WO1995020728A1 (en) * 1994-01-26 1995-08-03 Valeo Torsion damper device, particularly for motor vehicles
US5720475A (en) * 1994-01-26 1998-02-24 Valeo Torsion damping device, especially for a motor vehicle
KR100394626B1 (en) * 2000-12-05 2003-08-14 현대자동차주식회사 Triple mass vibration damping flywheel for vehicles
FR2847630A1 (en) * 2002-11-22 2004-05-28 Zf Sachs Ag Torsional oscillations reducing device for vehicle, has limiting components and spinner, each including cut that forms cavity to receive damping part, leaf spring in cavity to transform peripheral movement of part into radial movement
JP2012180907A (en) * 2011-03-02 2012-09-20 Toyota Motor Corp Torsional vibration damping device
WO2017018575A1 (en) * 2015-07-29 2017-02-02 한국파워트레인 주식회사 Vehicle torque converter

Similar Documents

Publication Publication Date Title
US4751992A (en) Composite flywheel with slip clutch
US4274524A (en) Rotational torque transmission mechanism
US4727767A (en) Torque variation absorbing device
US5374218A (en) Assembly for compensation of fluctuations of torque
EP0420830B1 (en) Flywheel for an internal combustion engine
JPH102377A (en) Device for compensating rotational impact force
GB2186054A (en) Flywheel assembly
US6209701B1 (en) Damper disk assembly
US5935008A (en) Flywheel assembly having a damper mechanism that includes a friction hysterisis generating device
JP4625791B2 (en) Spring seat and spring assembly
EP0308829B1 (en) Torque variation absorbing device
JPS63259244A (en) Flywheel assembly
KR100394626B1 (en) Triple mass vibration damping flywheel for vehicles
JPH04316745A (en) Fly wheel
KR20050013495A (en) Rotary vibration damper
JPH0949531A (en) Viscosity resistance generating mechanism
JP3264294B2 (en) Torsional vibration damping device
JP2836388B2 (en) Fluid transmission with lock-up clutch
JP3429526B2 (en) Flywheel assembly
CN215861525U (en) Torque fluctuation suppression device
JPH05346138A (en) Torque transmission device
JP3013884B2 (en) Damper device and flywheel mechanism
JP3317747B2 (en) Flywheel assembly
KR20040037781A (en) Vibration damping damper
JPH0674820B2 (en) Flywheel assembly