JPH04316305A - Iron core structure of electromagnet - Google Patents

Iron core structure of electromagnet

Info

Publication number
JPH04316305A
JPH04316305A JP14425391A JP14425391A JPH04316305A JP H04316305 A JPH04316305 A JP H04316305A JP 14425391 A JP14425391 A JP 14425391A JP 14425391 A JP14425391 A JP 14425391A JP H04316305 A JPH04316305 A JP H04316305A
Authority
JP
Japan
Prior art keywords
iron core
steel plate
electromagnet
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14425391A
Other languages
Japanese (ja)
Inventor
Mitsuru Kamisaka
上坂 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP14425391A priority Critical patent/JPH04316305A/en
Publication of JPH04316305A publication Critical patent/JPH04316305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To see that the permeability is nearly fixed and high in a steel plate at large by making the steel plate, which constitutes the iron core of an electromagnet, so that the direction of its rolling may be nearly parallel with the direction of the line of magnetic force, and to see that the intensity of a magnetic field in a gap becomes nearly uniform and high by reducing the leaked magnetic field. CONSTITUTION:A steel plate 26, which constitutes the iron core 24 of an electromagnet 22, is made so that the rolling direction 36 may be nearly parallel with the direction of the line 38 of the magnetic force. For example, the iron core of the deflecting electromagnet 22 of synchrotron is constituted by stacking many sheets of silicon plates 26 being made in U shapes, and reinforcing members 34 such as stainless, etc., are welded to the peripheral angles of the iron cores 24 so as to fix the whole. Coils 28 and 30 are wound on the iron core 24 so as to generate a vertical magnetic field in the gap between magnetic poles. The silicon steel plate is put in five-division structure, being divided obliquely at each corner, and those segments are welded with each other to constitute one sheet of silicon steel plate 26. Each division 26a-26e is arranged so that the rolling direction 36 may be parallel with the direction of the magnetic path.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、電磁石を構成する鉄
芯の構造に関し、高透磁率を実現したものである。
[Industrial Field of Application] The present invention relates to the structure of an iron core constituting an electromagnet, which achieves high magnetic permeability.

【0002】0002

【従来の技術】例えばシンクロトロンで使用される偏向
電磁石においては、磁場の上昇時に鉄芯における渦電流
の発生を避けるため、鉄芯は一般にけい素鋼板の積層構
造が用いられている。けい素鋼板は圧延によって製造さ
れ、従来の偏向電磁石は、圧延されたけい素鋼板を打ち
抜いて図2のような「コ」字状けい素鋼板10を作り、
これを多数枚積層して鉄芯12を作り、この鉄芯12に
コイル14,16を巻いて作られていた。
2. Description of the Related Art In bending electromagnets used, for example, in synchrotrons, the iron core generally has a laminated structure of silicon steel plates in order to avoid the generation of eddy currents in the iron core when the magnetic field rises. Silicon steel plates are manufactured by rolling, and conventional bending electromagnets are manufactured by punching out rolled silicon steel plates to create a U-shaped silicon steel plate 10 as shown in FIG.
A large number of these were laminated to form an iron core 12, and coils 14 and 16 were wound around this iron core 12.

【0003】0003

【発明が解決しようとする課題】けい素鋼板における磁
化力と磁束密度の関係は、図3に示すようにけい素鋼板
の圧延方向とこれを通過する磁力線の方向とのなす角度
θによって変化し、これら両方向が平行な場合(θ=0
°)が最も透磁率が高く、平行からずれる(θ=90°
に近づく)に従って透磁率が低くなる。前記図2に示し
た従来のけい素鋼板10は、圧延されたけい素鋼板を単
純に「コ」字状に打ち抜いた構造であるため、圧延方向
は図2中矢印18で示すように、全ての部分で一様な方
向となっている。これに対し、コイル14,16の励磁
によって生じる磁力線の方向は、矢印20で示すように
けい素鋼板10の形に沿って周回しているので、圧延方
向18と磁力線20の方向とのなす角度θは部分部分で
様々に変化し、透磁率も均一でなくなる。このため、洩
れ磁場が大きく、ギャップ22での磁場強度が弱く、ま
た均一に得られなかった。この発明は、前記従来の技術
における欠点を解決して、鋼板全体で透磁率を略々一定
にかつ高くすることができ、これにより漏れ磁場を低減
させてギャップでの磁場強度を略々均一かつ高くするこ
とができる電磁石の鉄芯構造を略々提供しようとするも
のである。
[Problem to be Solved by the Invention] The relationship between magnetizing force and magnetic flux density in a silicon steel sheet varies depending on the angle θ between the rolling direction of the silicon steel sheet and the direction of the magnetic field lines passing through it, as shown in FIG. , when these two directions are parallel (θ=0
°) has the highest magnetic permeability and deviates from parallel (θ = 90°
), the magnetic permeability decreases. The conventional silicon steel sheet 10 shown in FIG. 2 has a structure in which a rolled silicon steel sheet is simply punched out in a "U" shape, so the rolling direction is all the same as shown by the arrow 18 in FIG. The direction is uniform in this part. On the other hand, since the direction of the magnetic lines of force generated by the excitation of the coils 14 and 16 revolves around the shape of the silicon steel plate 10 as shown by the arrow 20, the angle formed between the rolling direction 18 and the direction of the magnetic lines of force 20 is θ varies in different parts, and the magnetic permeability is not uniform. For this reason, the leakage magnetic field was large, the magnetic field strength at the gap 22 was weak, and it was not possible to obtain a uniform magnetic field. The present invention solves the drawbacks of the conventional technology and can make the magnetic permeability substantially constant and high throughout the steel plate, thereby reducing the leakage magnetic field and making the magnetic field strength at the gap substantially uniform and high. It is intended to generally provide an iron core structure of an electromagnet that can be made high.

【0004】0004

【課題を解決するための手段】請求項1記載の発明は、
電磁石の鉄芯を構成する鋼板をその圧延方向が磁力線の
方向(磁路の方向)と略々平行になるように形成してな
るものである。
[Means for solving the problem] The invention according to claim 1 includes:
The steel plate that constitutes the iron core of the electromagnet is formed so that its rolling direction is approximately parallel to the direction of the magnetic lines of force (the direction of the magnetic path).

【0005】また、請求項2記載の発明は、電磁石の鉄
芯を構成する鋼板を分割構造とし、各分割部分を圧延方
向と磁力線の方向(磁路の方向)が略々平行になるよう
に配列して接合してなるものである。
[0005] Furthermore, the invention according to claim 2 has a steel plate constituting the iron core of the electromagnet having a divided structure, and each divided portion is arranged so that the rolling direction and the direction of the magnetic lines of force (the direction of the magnetic path) are approximately parallel to each other. It is made by arranging and joining.

【0006】[0006]

【作用】請求項1記載の発明によれば、電磁石の鉄芯を
構成する鋼板をその圧延方向が磁力線の方向と略々平行
になるように形成したので、鋼板の各部分で透磁率が略
々一定でかつ高くなり、漏れ磁場が減少して、ギャップ
での磁場強度を略々均一でかつ高くすることができる。 また、請求項2記載の発明によれば、電磁石の鉄芯を構
成する鋼板を分割構造とし、各分割部分を圧延方向と磁
力線の方向が略々平行になるように配列して接合したの
で請求項1の鉄芯構造を容易に作ることができる。
[Operation] According to the invention as claimed in claim 1, since the steel plate constituting the iron core of the electromagnet is formed so that its rolling direction is approximately parallel to the direction of the lines of magnetic force, the magnetic permeability of each portion of the steel plate is approximately equal to that of the iron core of the electromagnet. The leakage field decreases, making the magnetic field strength at the gap substantially uniform and high. Further, according to the invention as claimed in claim 2, the steel plate constituting the iron core of the electromagnet has a divided structure, and each divided portion is arranged and joined so that the rolling direction and the direction of the lines of magnetic force are approximately parallel to each other. The iron core structure in item 1 can be easily made.

【0007】[0007]

【実施例】この発明の一実施例を説明する。ここでは、
この発明をシンクロトロンの偏向電磁石の鉄芯に適用し
た場合について説明する。図1はこの発明が適用された
偏向電磁石の側面構造を示したものである。この偏向電
磁石22は、鉄芯24が「コ」字状に形成されたけい素
鋼板26を多数枚積層して構成されている。鉄芯24の
外周角部にはステンレス等の補強部材34が溶接されて
、全体を固定している。鉄芯24にはコイル28,30
が巻かれ、磁極間のギャップ32に垂直方向の磁場を生
じさせ、このギャップ32内に配置されるシンクロトロ
ンの蓄積リング内の粒子ビームに水平方向の偏向力を与
える。
[Embodiment] An embodiment of the present invention will be explained. here,
A case will be described in which the present invention is applied to an iron core of a bending electromagnet of a synchrotron. FIG. 1 shows the side structure of a bending electromagnet to which the present invention is applied. This bending electromagnet 22 is constructed by laminating a large number of silicon steel plates 26 each having an iron core 24 formed in a "U" shape. A reinforcing member 34 made of stainless steel or the like is welded to the outer peripheral corner of the iron core 24 to fix the entire structure. Coils 28 and 30 are attached to the iron core 24.
is wound to create a vertical magnetic field in the gap 32 between the magnetic poles, which provides a horizontal deflection force on the particle beam in the storage ring of the synchrotron located within this gap 32.

【0008】1枚のけい素鋼板26は各角部で斜めに分
割された5分割構造とされ、これらを相互に溶接で接合
して、1枚のけい素鋼板26を構成している。各分割部
分26a〜26eは圧延方向36が磁路の方向と平行に
なるように配設されている。
One silicon steel plate 26 has a five-part structure diagonally divided at each corner, and these parts are joined together by welding to form one silicon steel plate 26. Each divided portion 26a to 26e is arranged so that the rolling direction 36 is parallel to the direction of the magnetic path.

【0009】上記の構成によれば、コイル28,30を
励磁すると、鉄芯24中に磁力線38が生じる。この場
合、各分割部分26a〜26eで圧延方向と磁力線38
の方向が略々平行になるので、磁路全体で透磁率が高く
かつ略々均一になる。したがって、漏れ磁場が少なくな
り、ギャップ32内の磁場強度が高くかつ略々均一にな
り、粒子ビームに対し強くかつ安定な偏向力を与えるこ
とができる。
According to the above configuration, when the coils 28 and 30 are excited, lines of magnetic force 38 are generated in the iron core 24. In this case, in each divided portion 26a to 26e, the rolling direction and the line of magnetic force 38
Since the directions are substantially parallel, the magnetic permeability is high and substantially uniform throughout the magnetic path. Therefore, the leakage magnetic field is reduced, the magnetic field strength within the gap 32 is high and substantially uniform, and a strong and stable deflection force can be applied to the particle beam.

【0010】図1の鉄芯24の製造工程の一実施例を図
4に従って説明する。■圧延されたけい素鋼板40から
、各分割部分26a〜26eをそれぞれ磁路の方向と圧
延方向を一致させて打ち抜く。■  打ち抜かれた分割
部分26a〜26eを「コ」字状に並べて、各角部42
をスポット溶接等で接合し、1枚のけい素鋼板26を作
る。そして、同様の工程でけい素鋼板26を必要枚数作
る。なお、スポット溶接のはみ出し部分はグラインダで
削って平坦化する。■  これらけい素鋼板26をシン
クロトロン蓄積リングの偏向部分の形状に沿って扇形に
積層配列し、外周角部にL型鋼の補強部材34を当てて
、その側部34aを各けい素鋼板26に溶接することに
より、けい素鋼板26を固定して鉄芯24を作る。そし
て、これにコイル28,30(図1)を巻いて偏向電磁
石が完成する。
An embodiment of the manufacturing process for the iron core 24 shown in FIG. 1 will be described with reference to FIG. 4. (2) Punching out each of the divided portions 26a to 26e from the rolled silicon steel plate 40 with the direction of the magnetic path and the rolling direction matching each other. ■ Arrange the punched divided portions 26a to 26e in a "U" shape and attach each corner 42.
are joined by spot welding or the like to make one silicon steel plate 26. Then, the required number of silicon steel plates 26 are made in the same process. Note that the protruding portion of the spot weld is ground down with a grinder to make it flat. ■ These silicon steel plates 26 are stacked and arranged in a fan shape along the shape of the deflection part of the synchrotron storage ring, and the reinforcing member 34 of L-shaped steel is applied to the outer peripheral corner, and the side part 34a is attached to each silicon steel plate 26. By welding, the silicon steel plates 26 are fixed to form the iron core 24. Then, coils 28 and 30 (FIG. 1) are wound around this to complete the deflection electromagnet.

【0011】[0011]

【変更例】前記実施例ではけい素鋼板26を5分割とし
たが、図5のように角部をさらに分割して分割部分26
a〜26iからなる9分割構造とすることもできる。こ
の場合、角部の分割部分26b,26d,26f,26
hは、圧延方向36を磁路に沿って斜めの方向に形成す
る。また、これ以外にも様々な分割数、分割位置が可能
である。
[Modification example] In the above embodiment, the silicon steel plate 26 was divided into five parts, but as shown in FIG.
It is also possible to have a nine-part structure consisting of a to 26i. In this case, the corner divided portions 26b, 26d, 26f, 26
h forms the rolling direction 36 in an oblique direction along the magnetic path. In addition, various numbers of divisions and various division positions are possible.

【0012】また、前記実施例では、この発明をシンク
ロトロンの偏向電磁石に適用した場合について示したが
、他の各種電磁石に適用することができる。また、鋼板
はけい素鋼板に限らず、各種磁性鋼板を用いることがで
きる。
Further, in the above embodiment, the present invention is applied to a bending electromagnet of a synchrotron, but it can be applied to various other electromagnets. Furthermore, the steel plate is not limited to silicon steel plates, and various magnetic steel plates can be used.

【0013】[0013]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、電磁石の鉄芯を構成する鋼板をその圧延方
向が磁力線の方向と略々平行になるように形成したので
、鋼板の各部分で透磁率が略々一定でかつ高くなり、漏
れ磁場が減少して、ギャップでの磁場強度を略々均一で
かつ高くすることができる。また、請求項2記載の発明
によれば、電磁石の鉄芯を構成する鋼板を分割構造とし
、各分割部分を圧延方向と磁力線の方向が略々平行にな
るように配列して接合したので請求項1の鉄芯構造を容
易に作ることができる。
As explained above, according to the invention as set forth in claim 1, the steel plate constituting the iron core of the electromagnet is formed so that its rolling direction is approximately parallel to the direction of the lines of magnetic force. The magnetic permeability is substantially constant and high in each portion of the gap, and the leakage field is reduced, making it possible to make the magnetic field strength in the gap substantially uniform and high. Further, according to the invention as claimed in claim 2, the steel plate constituting the iron core of the electromagnet has a divided structure, and each divided portion is arranged and joined so that the rolling direction and the direction of the lines of magnetic force are approximately parallel to each other. The iron core structure in item 1 can be easily made.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  この発明の一実施例を示す側面図である。FIG. 1 is a side view showing an embodiment of the present invention.

【図2】  従来の鉄芯構造を示す側面図である。FIG. 2 is a side view showing a conventional iron core structure.

【図3】  けい素鋼板の圧延方向と磁力線のなす角度
による透磁率の変化を示す特性図である。
FIG. 3 is a characteristic diagram showing changes in magnetic permeability depending on the angle between the rolling direction of a silicon steel plate and the lines of magnetic force.

【図4】  図1の鉄芯の製造工程の一実施例を示す工
程図である。
4 is a process diagram showing an example of the manufacturing process of the iron core of FIG. 1. FIG.

【図5】  この発明の他の実施例を示す側面図である
FIG. 5 is a side view showing another embodiment of the invention.

【符号の説明】[Explanation of symbols]

22  偏向電磁石(電磁石) 24  鉄芯 26  けい素鋼板(鋼板) 26a〜26i  分割部分 36  圧延方向 38  磁力線 22 Bending electromagnet (electromagnet) 24 Iron core 26 Silicon steel plate (steel plate) 26a-26i Divided part 36 Rolling direction 38 Lines of magnetic force

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電磁石の鉄芯を構成する鋼板をその圧延方
向が磁力線の方向と略々平行になるように形成してなる
電磁石の鉄芯構造。
1. An iron core structure for an electromagnet, in which a steel plate constituting the iron core of the electromagnet is formed so that its rolling direction is approximately parallel to the direction of lines of magnetic force.
【請求項2】電磁石の鉄芯を構成する鋼板を分割構造と
し、各分割部分を圧延方向と磁力線の方向が略々平行に
なるように配列して接合してなる電磁石の鉄芯構造。
2. An iron core structure for an electromagnet, in which a steel plate constituting the iron core of the electromagnet has a divided structure, and each divided portion is arranged and joined so that the rolling direction and the direction of the lines of magnetic force are substantially parallel.
JP14425391A 1991-04-15 1991-04-15 Iron core structure of electromagnet Pending JPH04316305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14425391A JPH04316305A (en) 1991-04-15 1991-04-15 Iron core structure of electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14425391A JPH04316305A (en) 1991-04-15 1991-04-15 Iron core structure of electromagnet

Publications (1)

Publication Number Publication Date
JPH04316305A true JPH04316305A (en) 1992-11-06

Family

ID=15357801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14425391A Pending JPH04316305A (en) 1991-04-15 1991-04-15 Iron core structure of electromagnet

Country Status (1)

Country Link
JP (1) JPH04316305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478386A (en) * 1992-11-13 1995-12-26 Daicel Chemical Industries, Ltd. Biodegradable cellulose ester composition and article
JP2009162770A (en) * 2001-02-06 2009-07-23 Gsi Ges Fuer Schwerionenforschung Mbh Beam scanning system for heavy ion gantry
JP2020188541A (en) * 2019-05-10 2020-11-19 株式会社一宮電機 Rotating electric machine and method of manufacturing core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478386A (en) * 1992-11-13 1995-12-26 Daicel Chemical Industries, Ltd. Biodegradable cellulose ester composition and article
US5609677A (en) * 1992-11-13 1997-03-11 Daicel Chemical Industries, Ltd. Biodegradable cellulose ester composition and article
JP2009162770A (en) * 2001-02-06 2009-07-23 Gsi Ges Fuer Schwerionenforschung Mbh Beam scanning system for heavy ion gantry
JP2020188541A (en) * 2019-05-10 2020-11-19 株式会社一宮電機 Rotating electric machine and method of manufacturing core

Similar Documents

Publication Publication Date Title
JPS63241905A (en) Magnetic field generating equipment
TW201618136A (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
WO1999026451A1 (en) Thin electromagnetic transducer
JPS62186500A (en) Charged beam device
JP2000083364A (en) Movable core linear motor
JPH04316305A (en) Iron core structure of electromagnet
JP3210273B2 (en) Bending magnet and method of manufacturing the same
JPH10208931A (en) Core member and armature member for solenoid actuator
JP4066351B2 (en) Electromagnet for fixed magnetic field alternating gradient accelerator
JPS6288246A (en) Electromagnet for deflection of charged particle beam
JPS5915466Y2 (en) Iron core reactor with gap
JP2002010610A (en) Linear motor
JP4106993B2 (en) Reactor
JP2019125650A (en) Pile core and electric device
JP2533705B2 (en) Electromagnet device
JP2757724B2 (en) Three-phase tripod transformer core
JP4370178B2 (en) Orbit control electromagnet
JPS6130938A (en) Manufacture of stator core
JP2000277323A (en) Variable magnetic field magnet
JPS5847690Y2 (en) electromagnetic shield
JPH09275022A (en) Low noise iron core excellent in magnetic characteristic
JPH09205022A (en) Reactor core
JPS58147011A (en) Thin transformer
JPS6021510A (en) Laminated magnetic core for stationary induction electric apparatus
JP3774647B2 (en) Electromagnet and charged particle irradiation device