JPH0431531Y2 - - Google Patents

Info

Publication number
JPH0431531Y2
JPH0431531Y2 JP1985143256U JP14325685U JPH0431531Y2 JP H0431531 Y2 JPH0431531 Y2 JP H0431531Y2 JP 1985143256 U JP1985143256 U JP 1985143256U JP 14325685 U JP14325685 U JP 14325685U JP H0431531 Y2 JPH0431531 Y2 JP H0431531Y2
Authority
JP
Japan
Prior art keywords
strain
levers
base
ground
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985143256U
Other languages
Japanese (ja)
Other versions
JPS6251205U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985143256U priority Critical patent/JPH0431531Y2/ja
Publication of JPS6251205U publication Critical patent/JPS6251205U/ja
Application granted granted Critical
Publication of JPH0431531Y2 publication Critical patent/JPH0431531Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 土のひずみを測定するひずみ計の改良に関す
る。
[Detailed explanation of the invention] (a) Industrial application field: Concerning the improvement of a strain meter for measuring strain in soil.

(ロ) 従来の技術 この種のものとして従来は、測定しようとする
地盤深さまでボーリング孔を掘削し、ボーリング
孔底部にひずみ計を置き、埋めもどして、周辺の
土のひずみを測定するようにしている。
(b) Conventional technology Conventionally, a borehole of this kind was excavated to the depth of the soil to be measured, a strain gauge was placed at the bottom of the borehole, and the strain was measured by filling the hole back into the ground and measuring the strain in the surrounding soil. ing.

(ハ) 考案が解決しようとする問題点 上述した従来の測定においては、ひずみ計を設
置した周辺部のボーリング孔内壁はすでに応力が
開放された状態となつていることと、埋めもどし
た土に包囲されることで、すでに元の地盤とはか
なり異なつた状態での測定がなされる。このため
測定したデータには多分な誤差を生じるものとな
る問題点があつた。
(c) Problems to be solved by the invention In the conventional measurement described above, the inner wall of the borehole in the area around where the strain gauge was installed is already in a state where the stress is released, and the backfilled soil By being surrounded, measurements are taken on conditions that are already quite different from the original ground. For this reason, there was a problem in that the measured data contained many errors.

(ニ) 問題点を解決するための手段 基部と、この基部から同一方向に突設され所定
間隔を有したすくなくとも一対の起歪レバーと、
基部に一端を固定され両起歪レバーをその先端部
のみ露出してそれぞれ収納する収納ケースと、両
レバーに貼付されたひずみゲージとからなるよう
にした。
(d) Means for solving the problem: a base; at least a pair of strain levers protruding from the base in the same direction and having a predetermined interval;
It consists of a storage case which has one end fixed to the base and stores both strain levers with only their tips exposed, and strain gauges attached to both levers.

(ホ) 作用 まず、両起歪レバー先端部を地盤に差し込む。
そして周辺地盤にひずみが生じると、両起歪レバ
ーがこれにともなつて変位し、撓み変形する。す
ると両起歪レバーに貼付したひずみゲージがこれ
を電気的に受感する。この電気的出力は所定部位
の指示計により取り出される。
(E) Action First, insert the tips of both strain levers into the ground.
When strain occurs in the surrounding ground, both strain levers are displaced and deformed accordingly. Then, the strain gauges attached to both strain levers sense this electrically. This electrical output is taken out by an indicator at a predetermined location.

(ヘ) 実施例 以下、この考案の一実施例を図面を参照しなが
ら説明する。1はたとえば金属製角棒形状の4本
のアーム2〜5を十字形に形成してなる基部であ
る。このアーム2,3の両端部材には土の動きに
追従すべく曲げ剛性の低い可撓性材料たとえば合
成樹脂よりなる長板状の起歪レバー6,7が互い
に一方の面を対向させるように、かつ同一方向に
突設されている。同様にアーム4,5の両端部に
も起歪レバー8,9が突設されている。各起歪レ
バー6〜9の先端部には受動部10〜13が形成
されている。さらに、起歪レバー6〜9はアーム
2〜5に一端を固定された収納ケース14〜17
に各受動部10〜13のみを残し、収納されてい
る。また各収納ケース14〜17は、たとえば合
成樹脂からなり、各起歪レバー6〜9を取り囲む
空間を確保して、形成されている。これら各収納
ケース14〜17の他端開口部は、たとえば薄ゴ
ム板材料からなるカバー18〜21により閉塞さ
れている。各起歪レバー6〜9の固定側部分の両
面には、それぞれひずみゲージ22〜29が貼付
されており、一対の起歪レバー6,7に貼付され
たひずみゲージ22〜25により第5図に示すブ
リツジ回路が構成されているとともに、一対の起
歪レバー8,9に貼付されたひずみゲージ26〜
29により第6図に示すブリツジ回路が構成され
ている。また、基部1の中央部には、操作パイプ
30が起歪レバー6〜9の突設方向と相反する方
向に着脱自在に螺合するパイプ取付部31が形成
されている。さらに、各アーム2〜5には、パイ
プ取付部31から各先端部側に向けて通孔32…
…が形成されており、各ひずみゲージ22〜29
は、ケーブル33により、この通孔32を通つて
導き出され指示計34に接続するようになつてい
る。通孔32……を出たケーブル33は軟質の保
護チユーブ35により保護収納されている。この
保護チユーブ35は操作パイプ30内に通して使
用できるようになつている。
(f) Embodiment An embodiment of this invention will be described below with reference to the drawings. Reference numeral 1 denotes a base formed by forming four arms 2 to 5 in the shape of a square bar made of metal, for example, into a cross shape. At both end members of the arms 2 and 3, long plate-shaped strain levers 6 and 7 made of a flexible material with low bending rigidity, such as synthetic resin, are arranged with one side facing each other in order to follow the movement of the soil. , and protrude in the same direction. Similarly, strain levers 8 and 9 are protruded from both ends of the arms 4 and 5. Passive parts 10-13 are formed at the tip of each strain lever 6-9. Further, the strain levers 6 to 9 are connected to storage cases 14 to 17 whose ends are fixed to the arms 2 to 5.
Only the passive parts 10 to 13 are left and housed. Each of the storage cases 14 to 17 is made of, for example, synthetic resin, and is formed with a space surrounding each of the strain levers 6 to 9. The other end opening of each of these storage cases 14-17 is closed by covers 18-21 made of, for example, a thin rubber plate material. Strain gauges 22 to 29 are attached to both sides of the fixed side portion of each strain lever 6 to 9, respectively, and the strain gauges 22 to 25 attached to the pair of strain levers 6 and 7 are connected to The bridge circuit shown in FIG.
29 constitutes a bridge circuit shown in FIG. Further, a pipe attachment portion 31 is formed in the center of the base portion 1, into which the operation pipe 30 is removably screwed in a direction opposite to the protruding direction of the strain levers 6 to 9. Further, each arm 2 to 5 has a through hole 32 extending from the pipe attachment part 31 toward each tip end side.
... is formed, and each strain gauge 22 to 29
is led out through this through hole 32 by a cable 33 and connected to an indicator 34. The cable 33 exiting through the through holes 32 is protected and housed in a soft protective tube 35. This protective tube 35 can be passed through the operating pipe 30 and used.

次に、その使用状態を説明する。まず、測定し
たい地盤深さまでボーリング孔36を掘削する。
一方、保護チユーブ35に収納したケーブル33
を操作パイプ30に通し、この操作パイプ30の
一端をパイプ取付部31に螺合する。このように
した後、操作パイプ30を上記一端側を先にして
ボーリング孔36に挿入する。そして各起歪レバ
ー6〜9をボーリング孔36の底面に測定線上に
位置するよう差し込む。その後操作パイプ30を
地上にて回転し、パイプ取付部31から取り外し
て引き上げる。さらに、ボーリング孔36を埋め
もどすとともに、ケーブル33の末端を指示計3
4に接続する。このようにしてセツトが完了する
と、続いて測定を行うことができる。すなわち、
地盤が第4図A線で示す方向にたとえば圧縮側に
ひずみを生じたとする。すると、受動部10およ
び11はその間隔を縮める方向に変位(例として
第3図二点鎖線に示す)し、起歪レバー6および
7が撓み(この際、カバー18,19は可撓性材
料によつて形成されていることで変形して起歪レ
バー6,7の動きに追従するため、起歪レバー
6,7の動きを何ら拘束することはない)、ひず
みゲージ22〜25が抵抗値変化をきたす。した
がつて第5図に示すブリツジ回路から出力電圧を
生じ、これをケーブル33を介して指示計34で
測定することで受動部10と11間の変位量を得
ることができる。同様に地盤に第4図B線で示す
方向にひずみが生じた場合は、受動部12および
13が変位し、指示計34で測定することで受動
部12と13間の変位量を得ることができる。
Next, its usage will be explained. First, a bore hole 36 is excavated to the ground depth to be measured.
On the other hand, the cable 33 stored in the protective tube 35
is passed through the operating pipe 30, and one end of the operating pipe 30 is screwed into the pipe attachment part 31. After doing this, the operation pipe 30 is inserted into the borehole 36 with the one end side first. Then, each of the strain levers 6 to 9 is inserted into the bottom surface of the boring hole 36 so as to be located on the measurement line. Thereafter, the operating pipe 30 is rotated on the ground, removed from the pipe attachment part 31, and pulled up. Furthermore, the borehole 36 is refilled and the end of the cable 33 is connected to the indicator 3.
Connect to 4. Once the setting is completed in this way, measurements can be carried out subsequently. That is,
Suppose that the ground is strained in the direction indicated by line A in Figure 4, for example, on the compression side. Then, the passive parts 10 and 11 are displaced in a direction that reduces the distance between them (as shown by the two-dot chain line in FIG. 3 as an example), and the strain levers 6 and 7 are bent (at this time, the covers 18 and 19 are (Since the strain gauges 22 to 25 are formed by the strain levers 6 and 7, they deform and follow the movement of the strain levers 6 and 7, so the movement of the strain levers 6 and 7 is not restricted in any way). bring about change. Therefore, by generating an output voltage from the bridge circuit shown in FIG. 5 and measuring this with the indicator 34 via the cable 33, the amount of displacement between the passive parts 10 and 11 can be obtained. Similarly, if strain occurs in the ground in the direction shown by line B in Figure 4, the passive parts 12 and 13 will be displaced, and the amount of displacement between the passive parts 12 and 13 can be obtained by measuring with the indicator 34. can.

ここで得た第4図A線で示す方向の変位量を
Δl、両起歪レバー6と7の間隔(受動部10と
11の間隔)をl、土のひずみをεとすると ε=Δl/lで 土のひずみは求められ、またB線方向もおなじ
計算式にて求めることができる。
If the amount of displacement in the direction shown by line A in Figure 4 obtained here is Δl, the distance between the strain levers 6 and 7 (the distance between the passive parts 10 and 11) is l, and the strain of the soil is ε, then ε=Δl/ The strain in the soil can be calculated using l, and the direction of line B can also be calculated using the same formula.

なお、上記実施例では二対の起歪レバーを設け
たが、一方向のひずみを測定する場合は一対の起
歪レバーで構成すればよい。さらに、この考案に
よれば、ボーリング孔など掘削することなく、地
表面付近の測定も行え、この場合上記実施例の如
く操作パイプ等は必要ない。さらに地盤の軟弱程
度によつては基部下面をテーパー形状として貫入
抵抗を低下させ、ボーリング孔の掘削を行わずに
所定深さまで貫入することも可能である。収納ケ
ースは、土のひずみに応じて若干撓むような材質
としても良いことは勿論である。
In the above embodiment, two pairs of strain levers are provided, but when measuring strain in one direction, a pair of strain levers may be used. Further, according to this invention, measurements near the ground surface can be carried out without digging a borehole or the like, and in this case, there is no need for an operating pipe or the like as in the above embodiment. Furthermore, depending on the degree of softness of the ground, it is also possible to make the lower surface of the base tapered to reduce penetration resistance and penetrate to a predetermined depth without drilling a borehole. It goes without saying that the storage case may be made of a material that flexes slightly in response to the strain of the soil.

(ト) 考案の効果 起歪レバーの先端部を差し込むだけで設置がな
され、したがつて測定すべき地盤を掘削するなど
組織を破壊することなく測定することができ、信
頼性の高いデータを得ることができる。特に軟質
地盤においては土のひずみ量が大きく、かつ土の
組織破壊を嫌うことからして最適な方法といえ
る。さらに構成も比較的簡単であるため製作も低
コストになるなどの優れた効果を奏する。
(g) Effects of the invention: Installation can be done by simply inserting the tip of the strain lever, and therefore measurements can be made without destroying the tissue, such as by excavating the ground to be measured, and highly reliable data can be obtained. be able to. This method is especially suitable for soft ground because the amount of strain in the soil is large and destruction of the soil structure is disliked. Furthermore, since the structure is relatively simple, manufacturing costs can be reduced and other excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案の一実施例を示し、第1図は斜
視図、第2図は設置状態の説明図、第3図は縦断
面図、第4図は横断面図、第5図および第6図は
ブリツジ回路図である。 1……基部、6〜9……起歪レバー、14〜1
7……収納ケース、22〜29……ひずみゲー
ジ。
The drawings show one embodiment of this invention, and FIG. 1 is a perspective view, FIG. 2 is an explanatory diagram of the installed state, FIG. 3 is a vertical sectional view, FIG. 4 is a horizontal sectional view, and FIGS. 5 and 6. The figure is a bridge circuit diagram. 1...Base, 6-9...Strain lever, 14-1
7...Storage case, 22-29...Strain gauge.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 基部と、この基部から同一方向に突設され所定
間隔を有したすくなくとも一対の起歪レバーと、
基部に一端を固定され両起歪レバーをその先端部
のみ露出してそれぞれ収納する収納ケースと、両
レバーに貼付されたひずみゲージとからなること
を特徴とするひずみ計。
a base; at least a pair of strain levers protruding from the base in the same direction and having a predetermined interval;
A strain gauge characterized by comprising a storage case having one end fixed to a base and housing both strain levers with only their tips exposed, and strain gauges affixed to both levers.
JP1985143256U 1985-09-18 1985-09-18 Expired JPH0431531Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985143256U JPH0431531Y2 (en) 1985-09-18 1985-09-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985143256U JPH0431531Y2 (en) 1985-09-18 1985-09-18

Publications (2)

Publication Number Publication Date
JPS6251205U JPS6251205U (en) 1987-03-30
JPH0431531Y2 true JPH0431531Y2 (en) 1992-07-29

Family

ID=31052766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985143256U Expired JPH0431531Y2 (en) 1985-09-18 1985-09-18

Country Status (1)

Country Link
JP (1) JPH0431531Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071786B2 (en) * 2007-07-24 2012-11-14 財団法人ヒューマンサイエンス振興財団 Penetration pipe strain gauge

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838605U (en) * 1971-09-10 1973-05-12

Also Published As

Publication number Publication date
JPS6251205U (en) 1987-03-30

Similar Documents

Publication Publication Date Title
Weiler Jr et al. Factors affecting stress cell measurements in soil
CA2200834C (en) Stress measuring rock support device
US5629480A (en) Rock extensometer
JPH0431531Y2 (en)
JP3702461B2 (en) Ground layer displacement measuring device and its installation method
US4607435A (en) Temperature compensated extensometer
US3323216A (en) Lateral deformation indicator
JPH10185633A (en) Underground displacement measuring device
Choquet et al. Reliability, long-term stability and gage performance of vibrating wire sensors with reference to case histories
JPH09304126A (en) Ring-type multistage rock-bed change measuring apparatus
US6966229B2 (en) Pressure sensor
SU874867A1 (en) Device for measuring deformation of landslide layers of soil mass
KR101204878B1 (en) a sensor system for displacement volume and direction
Burd et al. A large strain finite element formulation for one dimensional membrane elements
JP2704172B2 (en) Morphometry detector
JPH08327351A (en) Underground displacement measuring method and apparatus
KR100529840B1 (en) Micro Vibration Displacement
JPH0678957B2 (en) Bedrock pressure detector
JPH062087Y2 (en) Shear strain sensor device
KR100490826B1 (en) Miniature Vibration-based Underground Strain Gauge
JP3531537B2 (en) Prediction method of slack in front of tunnel face
Blackwood et al. A remotely operated borehole deformation gauge for monitoring stress change in rock
KR200274378Y1 (en) measuring device for variation of ground
CN107817069A (en) Exploration engineering soft rock detecting earth stress device
JPS63193016A (en) Articulated clinometer