JPH0431515Y2 - - Google Patents

Info

Publication number
JPH0431515Y2
JPH0431515Y2 JP1986002138U JP213886U JPH0431515Y2 JP H0431515 Y2 JPH0431515 Y2 JP H0431515Y2 JP 1986002138 U JP1986002138 U JP 1986002138U JP 213886 U JP213886 U JP 213886U JP H0431515 Y2 JPH0431515 Y2 JP H0431515Y2
Authority
JP
Japan
Prior art keywords
chamber
melting
heat source
molten metal
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986002138U
Other languages
Japanese (ja)
Other versions
JPS62115093U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986002138U priority Critical patent/JPH0431515Y2/ja
Publication of JPS62115093U publication Critical patent/JPS62115093U/ja
Application granted granted Critical
Publication of JPH0431515Y2 publication Critical patent/JPH0431515Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はアルミニウムその他の固形金属材料を
溶解する炉に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a furnace for melting aluminum and other solid metal materials.

〔従来の技術〕[Conventional technology]

アルミニウム、アルミニウム合金等の溶解炉と
して従来から知られている反射型炉は、炉床にイ
ンゴツト又はスクラツプ等の固形金属材料を置き
炉内天井面をバーナの燃焼火炎で加熱しその天井
面の輻射により固形金属材料を加熱溶融するもの
であるが、固形金属材料の上部表面だけを過度に
加熱させるので酸化物を多量に発生させメタルロ
スが大きい欠点がある。また、溶融金属中に燃焼
火炎中の水素ガスが吸収し易いためそれが元で鋳
物巣が生じ易くなるなど問題点がある。また、湯
槽の一側壁に該湯槽と連らなる垂直な煙道を設け
ると共に、該煙道の上端開口に固形金属材料の投
入口を設け、該投入口から煙道に固形金属材料を
投入し、湯槽に達した金属材料から順に溶解され
るようにし、燃焼排ガスがその煙道内を通つて排
出されるために固形金属原料が予熱できるように
したものは上記反射型炉よりも省エネルギー化が
達成できるものとして知られているが、この場合
でも酸化によるメタルロスの発生が多くまた水素
ガスの吸収も多い等の問題点がある。
Reverberatory furnaces, traditionally known as melting furnaces for aluminum, aluminum alloys, etc., place solid metal materials such as ingots or scraps on the hearth and heat the ceiling of the furnace with combustion flames from burners. However, since only the upper surface of the solid metal material is excessively heated, a large amount of oxides are generated and metal loss is large. In addition, hydrogen gas in the combustion flame is easily absorbed into the molten metal, which causes casting cavities to form. Further, a vertical flue connected to the hot water tank is provided on one side wall of the hot water tank, and an inlet for solid metal material is provided at the upper end opening of the flue, and the solid metal material is introduced into the flue from the inlet. The metal materials that reach the hot water tank are melted in order, and the combustion exhaust gas is discharged through the flue, allowing the solid metal raw materials to be preheated.This type of furnace achieves greater energy savings than the above-mentioned reverberant furnace. However, even in this case, there are problems such as a large amount of metal loss due to oxidation and a large amount of hydrogen gas absorption.

また、実公昭45−12814号公報に示された前炉
式小型アルミニウム溶解炉は、第6図に示したよ
うに、開閉自在のダンパーJを有する煙道kを上
部に有する密閉反射部Aと、上部開放状の前炉部
Bの連続部に連通口を形成し、この連通口に
上下自在のゲート板mを装着し、反射部Aには前
炉部Bの方向に焔を伸ばすことができるバーナn
を設け、前炉部B上の開口部を開閉する蓋板Oを
設けてなるもので、ゲート板mを上下し連通口
の開度を加減することによりバーナnの焔による
前炉部Bの加熱を加減できるようにしている。し
かしこの溶解炉はやはりバーナnの焔により直接
溶湯を加熱するものであるから上記従来の反射型
炉と同様に酸化によるメタルロスの発生が多い欠
点は解消できないと共に、前炉部Bに固形金属材
料を補給するとその前炉部B中の溶湯温度が急低
下することは避けらず汲出できる溶湯の温度がそ
れによつて大きく変動するため鋳込温度が一定し
ないことによる鋳造品の品質に悪影響を及ぼすお
それがある。
In addition, the small front-hearth type aluminum melting furnace shown in Japanese Utility Model Publication No. 12814/1970 has a sealed reflective part A having a flue k at the top with a damper J that can be opened and closed, as shown in Fig. 6. , a communication port is formed in the continuous part of the forehearth part B which is open at the top, a gate plate m which can be freely moved up and down is attached to this communication port, and the flame can be extended in the direction of the forehearth part B in the reflection part A. Burner n that can be done
and a cover plate O for opening and closing the opening on the forehearth part B. By moving the gate plate m up and down and adjusting the opening degree of the communication port, the forehearth part B is controlled by the flame of the burner N. It allows you to adjust the heating level. However, since this melting furnace directly heats the molten metal with the flame of burner N, it cannot eliminate the disadvantage of a large amount of metal loss due to oxidation, similar to the conventional reverberant furnace described above, and it also requires the use of solid metal material in the fore-furnace part B. When the molten metal is replenished, the temperature of the molten metal in the forehearth section B will inevitably drop rapidly, which will cause the temperature of the molten metal that can be pumped out to fluctuate greatly, which will have a negative impact on the quality of the cast product due to the inconsistent casting temperature. There is a risk.

一方、特公昭49−8763号公報に記載された溶解
炉は、第5図に示したように、溶融金属iが貯留
できる湯槽b内に耐火性の容器cを直立状態に支
持し、該容器cの溶融金属iより突出する上端開
口部にバーナdを設け、該バーナdの火炎を該容
器c内に吸込み容器cの器壁より熱伝達させて溶
融金属iを加熱すると共に、投入口eからインゴ
ツト等の固形金属材料fを該湯槽中に投入し溶解
させるものである。gは湯汲出口、hは煙道を示
す。この溶解炉は湯槽b中に投入した固形金属材
料fに湯槽内にてすでに溶解している溶融金属i
の熱を伝達させるものであるから固形金属材料f
をバーナ火炎にさらすことなく溶解でき酸化物の
発生が少なくなり歩留りが向上する利点があるも
のである。
On the other hand, the melting furnace described in Japanese Patent Publication No. 49-8763, as shown in FIG. A burner d is provided at the upper end opening protruding from the molten metal i of c, and the flame of the burner d is sucked into the container c and heat is transferred from the wall of the container c to heat the molten metal i. A solid metal material f such as an ingot is poured into the bath and melted. g indicates the hot water outlet, and h indicates the flue. This melting furnace is used to melt the molten metal i already melted in the hot water tank b into the solid metal material f put into the hot water tank b.
Solid metal material f
This has the advantage that it can be melted without exposing it to the burner flame, reducing the generation of oxides and improving the yield.

しかし、この溶解炉では固形金属材料fを一時
に多量に投入すると湯槽b内の溶融金属iの温度
が下がり必要な鋳込温度が保持されない欠点があ
ると共に湯槽b底に不溶解金属を折出させて品質
にも悪影響を及ぼすおそれがあつた。このため固
形金属材料fの投入量を相当厳重に管理しなけれ
ば上記の如き品質不良の問題が生じる欠点があつ
た。
However, in this melting furnace, if a large amount of solid metal material f is charged at once, the temperature of the molten metal i in the bath b decreases, and the required casting temperature cannot be maintained. This may have an adverse effect on quality. For this reason, unless the input amount of the solid metal material f is controlled very strictly, the above-mentioned problem of poor quality may occur.

〔考案の目的〕[Purpose of invention]

そこで本考案は上記の如き従来の溶解炉の種々
の問題点を解消せんとするものである。即ち本考
案の目的を次に列挙する。
Therefore, the present invention aims to solve the various problems of the conventional melting furnace as described above. That is, the objects of the present invention are listed below.

(1) 金属材料の酸化を防ぎメタルロスを減少させ
ることにより歩留を向上させること。
(1) Improve yield by preventing oxidation of metal materials and reducing metal loss.

(2) 水素ガスの吸収等のおそれがなく品質が保持
されること。
(2) There is no risk of absorption of hydrogen gas, etc., and the quality is maintained.

(3) 固形金属材料の投入量に影響されることなく
常に所要温度の溶融金属が汲出できるように
し、操業を容易ならしめること。
(3) To facilitate operations by making it possible to always pump out molten metal at the required temperature without being affected by the amount of solid metal material input.

〔目的を達成するための手段) 上記目的を達成するため本考案の溶解炉は、熱
源室の両側に溶解室と湯汲出室が形成されるよう
に湯槽内を仕切壁により仕切し、該仕切壁には溶
融金属が流通し得る連通口を夫々設け、熱源室に
は耐火性の有底筒体をその上端開口部が溶融金属
の湯面より突出するように該熱源室の溶融金属中
に直立状態に浸漬させて支持すると共に該上端開
口部に該有底筒体内へ燃焼火災を吹き込むバーナ
を設け、溶解室には固形金属材料を投入できる投
入口を設け、溶解室と熱源室とを仕切する前記仕
切壁の熱源室側にはその連通口の開口量を調整で
きるゲート板を設けてなることを特徴としたもの
である。
[Means for achieving the object] In order to achieve the above object, the melting furnace of the present invention partitions the inside of the hot water tank with a partition wall so that a melting chamber and a hot water drawing chamber are formed on both sides of the heat source chamber. Each wall is provided with a communication port through which molten metal can flow, and a refractory bottomed cylinder is inserted into the molten metal in the heat source chamber so that its upper opening protrudes above the surface of the molten metal. The melting chamber is immersed and supported in an upright state, and a burner for blowing combustion fire into the bottomed cylinder is provided at the upper end opening, and the melting chamber is provided with an inlet into which a solid metal material can be introduced, and the melting chamber and the heat source chamber are connected. The heat source chamber side of the partition wall is provided with a gate plate that can adjust the opening amount of the communication port.

〔作用〕[Effect]

有底筒体の筒壁を熱伝達させて溶融金属を間接
加熱するものであるので、燃焼火炎が直接接触す
ることによつて起きる酸化がない。また、ゲート
板を可動し連通口の開口量を調節することにより
熱源室と溶解室との熱量の移動が調整できるの
で、その調整により溶解室への固形金属材料の投
入量にかかわりなく溶融金属の温度保持ができる
と共に、投入した固形金属材料の溶解速度を調節
できる。そして湯汲出室には熱源室を通過するこ
とにより温度が調整さて安定した溶融金属を供給
することができる。
Since the molten metal is indirectly heated by transferring heat through the cylindrical wall of the bottomed cylindrical body, there is no oxidation caused by direct contact with the combustion flame. In addition, by moving the gate plate and adjusting the opening amount of the communication port, the transfer of heat between the heat source chamber and the melting chamber can be adjusted. temperature can be maintained, and the dissolution rate of the introduced solid metal material can be adjusted. Then, the molten metal can be supplied to the hot water extraction chamber, whose temperature is adjusted and stabilized by passing through the heat source chamber.

〔実施例〕〔Example〕

次に図面に従い本考案の一実施例を説明する。
基台上にアルミナを主成分とした耐火物により湯
槽1を形成する。湯槽1内は仕切壁2と仕切壁6
により熱源室4の両側に溶解室3と湯汲出室5が
形成される。7は溶解室3の上方に斜めに形成さ
れた固形金属材料aの投入口である。仕切壁2の
下部には連通口8を設ける。9は仕切壁2の熱源
室4側に該壁面に沿つて上下に摺動することによ
り連通口8の開口量を調節できるようにするゲー
ト板である。ゲート板9は珪酸スルシウム系ボー
ドよりなり、その両側縁が第4図に示したように
連通口8両側に形成されたガイド溝10に摺動自
在に合致している。11はゲート板9をその下端
に吊下している長板状のロツドで、該ロツド炉蓋
12に開設して透孔13より上方に突出しその上
端部には係合ピン14が設けられている。15は
炉端12上に樹立固定した係合板で、該係合板に
多数上下に列設された係合孔に前記係合ピン14
を係合させることでゲート板9の高さ位置が調節
され連通口8の開口量が調節できるようにしてい
る。
Next, an embodiment of the present invention will be described with reference to the drawings.
A hot water tank 1 is formed on a base using a refractory material mainly composed of alumina. Inside the hot water tank 1, there are partition walls 2 and 6.
Thus, a melting chamber 3 and a hot water extraction chamber 5 are formed on both sides of the heat source chamber 4. Reference numeral 7 denotes an inlet for the solid metal material a formed obliquely above the melting chamber 3. A communication port 8 is provided in the lower part of the partition wall 2. Reference numeral 9 denotes a gate plate on the heat source chamber 4 side of the partition wall 2, which allows the opening amount of the communication port 8 to be adjusted by sliding up and down along the wall surface. The gate plate 9 is made of a sulfur silicate board, and both side edges of the gate plate 9 are slidably fitted into guide grooves 10 formed on both sides of the communication port 8, as shown in FIG. Reference numeral 11 designates a long plate-shaped rod from which the gate plate 9 is suspended, and which is opened in the furnace cover 12 and projects upwardly from the through hole 13, with an engaging pin 14 provided at its upper end. There is. Reference numeral 15 denotes an engagement plate fixed on the hearth 12, and the engagement pins 14 are inserted into the engagement holes arranged vertically in the engagement plate.
By engaging the gate plate 9, the height position of the gate plate 9 is adjusted, and the opening amount of the communication port 8 can be adjusted.

一方、16は熱源室4に設けられた有底筒体
で、該有板底筒体16の上端開口部にバーナ17
が設けられその燃焼火炎を有底筒体16の中心に
垂下した噴射管18中に噴射させ該噴射管18は
先端が開口していて燃焼火炎はこの有底筒体16
内を析り返しその燃焼排ガスを排ガス管19に導
くものである。該排ガス管19の先端は炉壁を第
3図に示したように貫通する通孔22を介し溶解
室3上の空間に連通している。なお熱源室4と湯
汲出室5とを仕切する仕切壁6の下部には連通口
20が設けられ該熱源室4と湯汲出室5とを連通
させている。また21は熱源室4中に垂下させる
温度計の差込口を示す。
On the other hand, reference numeral 16 denotes a cylinder with a bottom provided in the heat source chamber 4, and a burner 17 is installed at the upper end opening of the cylinder with a plate bottom 16.
is provided, and the combustion flame is injected into an injection pipe 18 hanging down from the center of the bottomed cylinder 16.
The combustion exhaust gas is guided to the exhaust gas pipe 19. The tip of the exhaust gas pipe 19 communicates with the space above the melting chamber 3 through a through hole 22 that penetrates the furnace wall as shown in FIG. Note that a communication port 20 is provided at the lower part of a partition wall 6 that partitions the heat source chamber 4 and the hot water extraction chamber 5, so that the heat source chamber 4 and the hot water extraction chamber 5 are communicated with each other. Further, 21 indicates an insertion port for a thermometer suspended into the heat source chamber 4.

このように構成した溶解炉では、熱源室4内に
元湯となる溶融金属を外部からの熱或いはバーナ
17による加熱より予め作つておき、投入口7よ
りアルミニウムインゴツト等の固形金属材料aを
溶解室3内に投入する。溶解室3内には連通口8
を通じて熱源室4内の高温度の溶融金属が流入し
ているために融解室3内の固形金属材料aはその
溶融金属中に浸漬しその熱を受けて溶解する。こ
の場合熱源室4中の溶融金属の熱は仕切壁2を介
して該溶解室3内へ透過するほか連通口8を通し
て溶解室3内へ伝達される。従つて連通口8の開
口量ゲート板9を上下させ適宜調整することによ
り該溶解室3内の固形金属材料aの溶解速度を任
意に制御することができる。この場合開口量が大
きすぎると熱伝達速度が速すぎるので材料投入時
に熱源室4内の溶融金属まで冷却されることがあ
り、反対に開口量が小さすぎて熱伝達が遅すぎる
と溶解室3内の固形金属材料aの溶解速度が遅く
なり生産性を悪くするおそれがある。このために
ゲート板9によつて連通口8の開口量をこれらの
ことを勘案して適宜調節する。なお、熱源室4内
の溶融金属には有底筒体16の全周囲から熱が伝
達されバーナ17での燃料の燃焼熱を該有底筒体
16の筒壁を伝達して溶融金属に損失なく高効率
で伝達できる。また前記排ガス管19から排出さ
れた燃焼排ガスは溶解室3上の空間を満たし溶融
金属表面からの熱放出を抑える。また投入口にあ
る固形金属材料aをこの燃焼排ガスの残熱によつ
て予熱することができる。また、ゲート板9は仕
切壁2の熱源室4側に設けているので溶解室3側
に投入される固形金属材料aに接触して該ゲート
板9の上下動が困難になるようなおそれがない。
In the melting furnace configured in this manner, molten metal as a source water is prepared in advance in the heat source chamber 4 by heat from the outside or heated by the burner 17, and a solid metal material a such as an aluminum ingot is poured into the melting furnace from the input port 7. It is put into the dissolution chamber 3. There is a communication port 8 in the dissolution chamber 3.
Since the high-temperature molten metal in the heat source chamber 4 is flowing through the melting chamber 3, the solid metal material a in the melting chamber 3 is immersed in the molten metal and melted by receiving the heat. In this case, the heat of the molten metal in the heat source chamber 4 passes through the partition wall 2 into the melting chamber 3 and is also transmitted into the melting chamber 3 through the communication port 8. Therefore, by appropriately adjusting the opening amount of the communication port 8 by moving the gate plate 9 up and down, the dissolution rate of the solid metal material a in the dissolution chamber 3 can be arbitrarily controlled. In this case, if the opening amount is too large, the heat transfer rate will be too fast, and even the molten metal in the heat source chamber 4 may be cooled down when the material is introduced.On the other hand, if the opening amount is too small and the heat transfer is too slow, the heat transfer rate will be too fast. There is a possibility that the dissolution rate of the solid metal material (a) in the container will be slow, resulting in poor productivity. For this purpose, the opening amount of the communication port 8 is adjusted appropriately by the gate plate 9 in consideration of these matters. Note that heat is transferred to the molten metal in the heat source chamber 4 from the entire circumference of the bottomed cylinder 16, and the combustion heat of the fuel in the burner 17 is transferred to the cylindrical wall of the bottomed cylinder 16 and is lost to the molten metal. can be transmitted with high efficiency. Further, the combustion exhaust gas discharged from the exhaust gas pipe 19 fills the space above the melting chamber 3 to suppress heat release from the surface of the molten metal. Moreover, the solid metal material a at the input port can be preheated by the residual heat of this combustion exhaust gas. Furthermore, since the gate plate 9 is provided on the heat source chamber 4 side of the partition wall 2, there is a risk that it will come into contact with the solid metal material a introduced into the melting chamber 3 side, making it difficult to move the gate plate 9 up and down. do not have.

〔考案の効果〕[Effect of idea]

以上実施例について説明したように本考案の溶
解炉は、熱源室にて溶融金属に浸漬させた有底筒
体の筒壁を熱伝達させることによりバーナの燃焼
火炎に直接接触させることなく溶融金属を間接加
熱でき、このため酸化、メタルロス、水素ガス吸
収等を防止できる。また、熱源室を隔てて融解室
とは反対側に湯汲出室を形成しているので、固形
金属材料を溶解室にたとえ一時に多量に投入した
としても溶解室と熱源室との連通口の開口量をゲ
ート板の可動により調整することによつて両室間
の熱量移動を調整でき熱源室における溶融金属の
温度および溶解室における金属材料の溶解速度が
簡単に調節でき湯汲出室からは常に所要温度に調
節された溶融金属を汲出すことができる。従つて
本考案によれば溶融金属の品質および温度保持を
容易ならしめ操業をも容易ならしめる実用上有益
な効果がある。
As explained in the embodiments above, the melting furnace of the present invention transfers heat to the cylindrical wall of the bottomed cylindrical body immersed in molten metal in the heat source chamber, thereby eliminating the need to bring the molten metal into direct contact with the combustion flame of the burner. can be heated indirectly, thus preventing oxidation, metal loss, hydrogen gas absorption, etc. In addition, since the hot water extraction chamber is formed on the opposite side of the melting chamber across the heat source chamber, even if a large amount of solid metal material is introduced into the melting chamber at once, the communication port between the melting chamber and the heat source chamber will be closed. By adjusting the opening amount by moving the gate plate, the amount of heat transferred between the two chambers can be adjusted, and the temperature of the molten metal in the heat source chamber and the melting rate of the metal material in the melting chamber can be easily adjusted. Molten metal adjusted to the required temperature can be pumped out. Therefore, the present invention has the practical advantage of making it easier to maintain the quality and temperature of molten metal and to make operations easier.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の溶解炉の一実施例を示したもの
で、第1図は平面図、第2図はそのX−X線断面
図、第3図はY−Y線断面図、第4図は第2図の
Z−Z線断面図、第5図および第6図は従来の溶
解炉の縦断面図である。 a……金属材料、1……湯槽、2,6……仕切
壁、3……溶解室、4……熱源室、5……湯汲出
室、8,20……連通口、9……ゲート板、16
……有底筒体、17……バーナ。
The drawings show an embodiment of the melting furnace of the present invention, and FIG. 1 is a plan view, FIG. 2 is a sectional view taken along the line X-X, FIG. 3 is a sectional view taken along the Y-Y line, and FIG. 4 is a sectional view taken along the line Y-Y. is a sectional view taken along the Z-Z line in FIG. 2, and FIGS. 5 and 6 are longitudinal sectional views of a conventional melting furnace. a... Metal material, 1... Hot water tank, 2, 6... Partition wall, 3... Melting chamber, 4... Heat source room, 5... Hot water extraction room, 8, 20... Communication port, 9... Gate Board, 16
...Bottomed cylinder, 17...Burner.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱源室4の両側に溶解室3と湯汲出室5が形成
されるように湯槽1内を仕切壁2,6により仕切
し、該仕切壁2,6には溶融金属が流通し得る連
通口8,20を夫々設け、熱源室4には耐火性の
有底筒体16をその上端開口部が溶融金属の湯面
より突出するように該熱源室4の溶融金属中に直
立状態に浸漬させて支持すると共に該上端開口部
に該有底筒体16内へ燃焼火災を吹き込むバーナ
17を設け、溶解室3には固形金属材料aを投入
できる投入口7を設け、溶解室3と熱源室4とを
仕切する前記仕切壁2の熱源室4側にはその連通
口8の開口量を調整できるゲート板9を設けてな
ることを特徴とした溶解炉。
The interior of the hot water tank 1 is partitioned by partition walls 2 and 6 so that a melting chamber 3 and a hot water extraction chamber 5 are formed on both sides of the heat source chamber 4, and the partition walls 2 and 6 are provided with communication ports 8 through which molten metal can flow. . A burner 17 for supporting and blowing combustion fire into the bottomed cylindrical body 16 is provided in the upper end opening, and the melting chamber 3 is provided with an input port 7 into which solid metal material a can be introduced, and the melting chamber 3 and heat source chamber 4 are provided. A melting furnace characterized in that a gate plate 9 is provided on the heat source chamber 4 side of the partition wall 2 that partitions the melting furnace.
JP1986002138U 1986-01-10 1986-01-10 Expired JPH0431515Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986002138U JPH0431515Y2 (en) 1986-01-10 1986-01-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986002138U JPH0431515Y2 (en) 1986-01-10 1986-01-10

Publications (2)

Publication Number Publication Date
JPS62115093U JPS62115093U (en) 1987-07-22
JPH0431515Y2 true JPH0431515Y2 (en) 1992-07-29

Family

ID=30780693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986002138U Expired JPH0431515Y2 (en) 1986-01-10 1986-01-10

Country Status (1)

Country Link
JP (1) JPH0431515Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4512814Y1 (en) * 1965-08-03 1970-06-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4512814Y1 (en) * 1965-08-03 1970-06-03

Also Published As

Publication number Publication date
JPS62115093U (en) 1987-07-22

Similar Documents

Publication Publication Date Title
JP2000130948A (en) Molten holding furnace for aluminum ingot, or the like
JPS609550A (en) Calcining and holding furnace for casting
JPS63282484A (en) Non-ferrous metal melting furnace
CN205066438U (en) Impregnated aluminum alloy melting stove
JPH0431515Y2 (en)
CN108826971A (en) Novel energy-conserving Hearth Furnace melting furnace
PL124677B1 (en) Furnace for smelting metals and their alloys
JPS63501975A (en) Melting furnace and reheating furnace
JPS6160261A (en) Ladle heating device
US4712774A (en) Device for the melting of light metals
JPH0332959Y2 (en)
US2860449A (en) Continuous glass melting furnace
CN104249148B (en) A kind of differential pre-heating mean of channel-type tundish
WO2024111648A1 (en) Aluminum furnace and method for producing molten aluminum
CN2407315Y (en) Nonferrous thermo-insulation melting furnace
JPS6034014Y2 (en) Furnace zone partition wall
JPH0359389A (en) Melting of metal
JPS6139274Y2 (en)
JPS58145336A (en) Preheating method of tundish for horizontal and continuous casting
JPS6219673B2 (en)
JPS6219903Y2 (en)
JPH0354119Y2 (en)
JPH01234334A (en) Glass melting furnace
JPH05116951A (en) Glass melting furnace
KR200340978Y1 (en) Nonferrous metal solution crucible furnace