JPH0431513A - Dredging method of earth and device thereof - Google Patents

Dredging method of earth and device thereof

Info

Publication number
JPH0431513A
JPH0431513A JP13889890A JP13889890A JPH0431513A JP H0431513 A JPH0431513 A JP H0431513A JP 13889890 A JP13889890 A JP 13889890A JP 13889890 A JP13889890 A JP 13889890A JP H0431513 A JPH0431513 A JP H0431513A
Authority
JP
Japan
Prior art keywords
pipe
water
float
earth
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13889890A
Other languages
Japanese (ja)
Inventor
Senji Oigawa
大井川 宣治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13889890A priority Critical patent/JPH0431513A/en
Publication of JPH0431513A publication Critical patent/JPH0431513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Revetment (AREA)

Abstract

PURPOSE:To make it possible to save labors in a series of works by making use of a surface position of the inside of a dam and a head of the outside of the dam as power source, absorbing earth and the like together with water based on the theory of siphonage, and discharging them to a lower position of the outside of the dam through a transferring pipe. CONSTITUTION:A transferring pipe 1 capable of expansion is supported by floats 2 or variable floats 3 to place it under the water surface 34. When an earth absorbing pipe 32 is fitted to a hole 11 of a vertical transferring pipe by up-and-down motion thereof, water flows into the pipe from the side. The pressure of a lower nozzle is reduced by the inflow to control a suction amount of earth and the like 33. A curved section of a transferring pipe 10 is supported by a current variable float 3', and the inside space of the float 3' and an air connection pipe 5 to connect with the outside air are maintained by a float 30 capable of up-and-down motion. In addition, the transferring pipe 1 has a slight down-slope, the clogging of the inside of a pipe is prevented by vibration from an electromagnetic vibrator 13, and energy is added in the forward direction to facilitate a long-distance conveyance.

Description

【発明の詳細な説明】 イ、産業上の利用分野 この発明は、主にダム内の土砂類を浚渫し搬送する方法
と付帯装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention mainly relates to a method and ancillary equipment for dredging and transporting earth and sand within a dam.

口、従来の技術 現在、貯水ダムなどに堆積した土砂を浚渫する方法は、
浚渫船により機械的に行う方法、即ち■グラブ船、■パ
ケット船、■ポンプ船、■デイツパー船などによる方法
、また水力による自然排出方法としては、■ダム底より
の排出方法。■ダムの中段よりの排出方法などであるが
、浚渫船の方法は立地条件による制約を受け、また浚渫
量と設備の大型化にも限界があり、大量の堆積量に対応
できないのが現状である。また自然排出方法は、構成上
ダムの堰提周辺のみに有効な局所的な浚渫方法であり、
最も必要とされる上流領域に流れ込んだ堆積土砂は全く
排出できない欠点がある。
Conventional technology Currently, the method of dredging sediment accumulated in water storage dams, etc. is as follows.
Mechanical methods using dredgers, such as ■grab ships, ■packet ships, ■pump ships, and ■day par boats, and natural drainage methods using water power include: ■discharging from the dam bottom. ■There is a method of discharging water from the middle of the dam, but the method using a dredger is limited by location conditions, and there are also limits to the amount of dredging and the size of the equipment, so it is currently unable to handle large amounts of sediment. . In addition, the natural drainage method is a local dredging method that is effective only around the weir of the dam due to its structure.
The drawback is that the accumulated sediment that has flowed into the upstream area where it is most needed cannot be discharged at all.

ハ1発明が解決しようとする問題点 我が国の大多数のタムは、予想以上に早く土砂の堆積が
進み貯水能力を大きく減少している。その実情は公的機
関からも発表されているが、現状の浚渫船及び自然排出
方法では、いずれもコストを安く大量に処理する事はで
きない。また山間部で浚渫した土砂を適地まで搬出しな
ければならす、この搬出方法も大きな課題であり、問題
解決か強く要望されていた。
C1 Problems that the invention aims to solve Most of the toms in our country are accumulating earth and sand faster than expected, greatly reducing their water storage capacity. The actual situation has been announced by public institutions, but with the current dredging and natural discharge methods, it is not possible to dispose of large quantities at a low cost. In addition, the method of transporting dredged earth and sand from mountainous areas to the appropriate location was a major issue, and there was a strong demand for a solution to this problem.

二0問題を解決するための手段 従来、湖底の土砂類は、内燃機関また電気による動力ポ
ンプによって浚渫されている。本発明の方法は、主に水
の持つ位置のエネルギーと大気圧を利用するものであり
、湖底の土砂を湖面と排水位置との落差によって生じる
水流を利用し、パイプラインを通して搬送する、従って
搬送能力は落差に比例する。また湖底の堆積土砂を大気
圧を利用して吸引する場合、吸引力は最大(約IKg/
cm 2 )であり、土砂の比重2.7g/cm’とし
ても吸引力は充分であるが、湖面上に設けられる水平の
長い区間に関しては、圧力差が無い事と管内抵抗等によ
り流速が低下するため、必要に応じて土砂流動体にジェ
ット水流、または僅かな下り勾配を付けた搬送管に、電
磁振動等の推進力を外部エネルギーとして与える。
20 Means for Solving the Problem Conventionally, sediment on the lake bed has been dredged by internal combustion engines or electrically powered pumps. The method of the present invention mainly utilizes the potential energy and atmospheric pressure of water, and uses the water flow generated by the head difference between the lake surface and the drainage position to transport sediment on the lake bed through a pipeline, thus transporting it. Capacity is proportional to head. In addition, when suctioning sediment on the lake bed using atmospheric pressure, the suction power is maximum (approximately IKg/
cm 2 ), and the suction power is sufficient even with the specific gravity of the earth and sand being 2.7 g/cm', but in long horizontal sections above the lake surface, the flow velocity decreases due to the lack of pressure difference and the resistance inside the pipe. To do this, if necessary, a driving force such as electromagnetic vibration is applied to the sediment fluid as a jet water stream or to a conveying pipe with a slight downward slope as external energy.

ホ9作用 湖底に堆積している土砂また石類(以下−様に土砂類と
いう)を、主にダム内の水面位置とダム外の落差を動力
源として利用し、またサイホンの原理を基に水と共に土
砂類を吸い上げ、搬送管を通してダム外の低位置に放出
する。土砂の流動と停止操作は、主に水流可変フロート
(中空箱体)により曲管部分を湖面に浮上また沈めて行
い、また排出される土砂類の選別は流動体の持つ自らの
エネルギーをもって、円筒篩に回転と衝撃を与え目詰り
を防止しながら自動的に処理する。
9 Action The earth and sand and stones (hereinafter referred to as earth and sand) deposited on the lake bottom are mainly used as a power source between the water surface position inside the dam and the head outside the dam, and also based on the principle of a siphon. It sucks up sediment along with water and releases it to a low location outside the dam through a conveyor pipe. The flow and stop of the sediment is mainly carried out by floating and submerging the curved pipe section on the surface of the lake using a variable water flow float (hollow box body), and the sorting of the discharged sediment is carried out using the own energy of the fluid. Automatically processes the sieve by applying rotation and impact to prevent clogging.

従って、動力源と操作を主に水の位置エネルギーと大気
圧の作用により行い、浚渫、搬送、選別など一連の作業
を省力化したものであり、落差があれば山間部のダムか
ら平地までの長距離搬送も可能である。
Therefore, the power source and operation are mainly based on the potential energy of water and the action of atmospheric pressure, which saves labor in a series of operations such as dredging, transportation, and sorting. Long-distance transportation is also possible.

(尚、用語のなかで水流を調節する可変フロートを「水
流可変フロート」と云い、浮力のみを可変するフロート
を「可変フロート」と云うが、構造と作用は同じであり
用途が違うだけである。〉へ 実施例 第1図は本方法の実施を示す構成図である。伸縮可能な
搬送管1はフロート2また可変フロート3によって支え
られ水面34下に設置されているが、これは冬期間の作
業に於ての凍結氷防止、また船の航路妨害と環境美観の
保持のための方法であり、湖上または湖面に浮上させて
も良い、フロート2の全浮力は搬送管の全重量より大き
く、深度調節体24により必要深度を設定する。この可
変フロート3は、内部水量の増減によって浮力を調節す
るもので、搬送管の設定または浮上させて修理を行う時
に利用する。第1図では内部には空気がなく水が満たさ
れているため、パイプラインを主体的に支えているのは
フロート2である。ノペイブラインの吸い込み側は、湖
底に向かって曲けられ、この曲部の外側に空気抜きの孔
31を設けるが、この孔は管内の流動を断続させる重要
な物理的な要素(サイフホン原理)であり、弁を付(す
てもよいが普通は解放されている。また曲げられた垂直
方向の搬送管10の先端部に孔11があり、この垂直搬
送管に添って上下動する土砂吸入管32(ノズル管)が
あり孔35が開けられている。この管の上下動によって
垂直搬送管の孔11と相合したとき側面から水が管内に
流入する。この流入により下部ノズル部の圧力が減少し
土砂類33の吸い込み量を調節できる。この土砂吸入管
32の上下動は可変フロート3により行うが、この可変
フロートに浮力を充分与えると、垂直搬送管に設けであ
るストッパー23まで浮上して、浮力が垂直搬送管10
に作用し、水平搬送管1を軸に管10は横になりながら
浮上する。従って、水平搬送管1にはフレキシブルな回
転構造4を設ける、土砂吸入管32のノズル12は第2
.3図のように、中央部が解放された放射状の形状にな
っており、搬送管の太さと搬送する土砂類の大きさによ
って放射状のノズル径を決める。また形状を流動方向に
向けて広げ、土砂類を絶えず巾広い方向に押し出し挾ま
りにくい構造にするが、ノズル径以上の土石類が中心部
を塞いだ場合、土砂吸入管32は水圧によって押し上げ
られて、垂直搬送管側面の孔11と土砂吸入管32の孔
35が合い側面から水が流入する。従ってノズル部の圧
力が低下し土砂類は離脱し易くなる。また土砂吸入管が
下がると孔がズして側面からの流入が止まり、水流は再
び下部のノズルより流入する。
(In terms of terminology, a variable float that adjusts water flow is called a "variable water flow float," and a float that only changes buoyancy is called a "variable float," but the structure and action are the same, only the purpose is different. 〉Example Fig. 1 is a block diagram showing the implementation of this method.A telescopic conveying pipe 1 is supported by a float 2 or a variable float 3 and is installed below the water surface 34. This is a method to prevent ice from freezing during work, to prevent ships from obstructing navigation routes, and to maintain the beauty of the environment.The float 2 may be floated on or on the surface of the lake.The total buoyancy of the float 2 is greater than the total weight of the conveyor pipe. , the required depth is set using the depth adjuster 24.The variable float 3 adjusts the buoyancy by increasing or decreasing the amount of internal water, and is used when setting up a conveyor pipe or levitating it for repair. Because there is no air and the pipeline is filled with water, float 2 is the main support for the pipeline.The suction side of the nopai brine is bent toward the bottom of the lake, and there is an air vent outside of this bend. This hole is an important physical element that interrupts the flow in the pipe (siphon principle), and it is equipped with a valve (although it is possible to do so, it is usually left open). There is a hole 11 at the tip of the vertical conveyance pipe 10, and there is a sand suction pipe 32 (nozzle pipe) that moves up and down along this vertical conveyance pipe, and a hole 35 is opened.The vertical movement of this pipe causes vertical conveyance. When the water meets the hole 11 of the pipe, water flows into the pipe from the side. This inflow reduces the pressure at the lower nozzle part, and the amount of suction of the sediment 33 can be adjusted. The vertical movement of the sediment suction pipe 32 is controlled by the variable float 3. However, when sufficient buoyancy is applied to this variable float, it floats up to the stopper 23 provided on the vertical conveyance pipe, and the buoyancy is applied to the vertical conveyance pipe 10.
As a result, the tube 10 floats while lying down with the horizontal conveyance tube 1 as its axis. Therefore, the horizontal conveying pipe 1 is provided with a flexible rotating structure 4, and the nozzle 12 of the earth and sand suction pipe 32 is connected to the second
.. As shown in Figure 3, the nozzle has a radial shape with an open center, and the diameter of the radial nozzle is determined by the thickness of the conveying pipe and the size of the earth and sand to be conveyed. In addition, the shape is expanded in the direction of flow, and the structure is made such that the sediment is constantly pushed out in a wider direction, making it difficult to get caught. However, if the center is blocked by debris larger than the nozzle diameter, the sediment suction pipe 32 will be pushed up by water pressure. The hole 11 on the side surface of the vertical conveying pipe matches the hole 35 of the earth and sand suction pipe 32, and water flows in from the side surface. Therefore, the pressure in the nozzle part decreases, making it easier for the earth and sand to separate. Furthermore, when the sediment suction pipe is lowered, the holes become open and the inflow from the sides stops, and the water flow returns from the nozzle at the bottom.

操作方法について述べると、上記、曲管部分の搬送管は
水流可変フロート3′で支えられ、このフロート内部空
間と常時外部空気と連通する空気連通管5が、上下動で
きるフロート30によって保持されてる。また水流可変
フロート3′の底部には水を導入する孔6と、この孔よ
り大きい排水孔7があり、バルブ8付き配水管9につな
がる。
Regarding the operation method, the above-mentioned conveying pipe of the curved pipe portion is supported by a variable water flow float 3', and the air communication pipe 5, which constantly communicates the internal space of this float with the outside air, is held by a float 30 that can move up and down. . Further, at the bottom of the variable water flow float 3', there is a hole 6 for introducing water and a drainage hole 7 larger than this hole, which is connected to a water pipe 9 with a valve 8.

この構造により浮力を自由に設定させる事ができる。即
ち、バルブ8を全開した時は入水よりも排水のほうが大
きく、トータルとして内部の水は減少する。これと同時
に外部より空気連通管5を通して、空気が水流可変フロ
ート内に導入されるため浮力が増大する。また浮力を減
少させる場合はバルブ8を締める。即ち、排水が止まる
ため水導入孔6からの入水が、内部の空気を空気連通管
5より排出して浮力を徐々に減少し、最終的に浮力を失
い搬送管は湖底に沈む、第3図は搬送管1の曲部を、こ
の水流可変フロート3′の浮力調節により水面上に浮上
させた状態図であり、上記のように曲面部に開けられた
孔31より空気を導入し、搬送管内を流れる土砂流をこ
の位置で止めている。また搬送管の降下速度及び上昇速
度は、曲面部の空気孔31の大きさと、水流可変フロー
ト3′設けられた、水導入孔6と水排出孔7の大きさに
より設定でき、上下動はバルブ8の開閉によって操作す
る。また、垂直搬送管10に深度測定計と水中カメラを
付け吸い込み状況を把握しながら浚渫操作を行う。
This structure allows the buoyancy to be set freely. That is, when the valve 8 is fully opened, the amount of water flowing out is greater than the amount of water entering, and the total amount of water inside is reduced. At the same time, air is introduced into the variable water flow float from the outside through the air communication pipe 5, so that the buoyancy increases. Further, when reducing the buoyancy, close the valve 8. That is, since drainage is stopped, water entering from the water introduction hole 6 discharges the internal air from the air communication pipe 5, gradually reducing the buoyancy, and finally loses buoyancy and the conveying pipe sinks to the bottom of the lake, as shown in Fig. 3. is a state diagram in which the curved part of the conveying pipe 1 is floated above the water surface by adjusting the buoyancy of this variable water flow float 3'. Air is introduced through the hole 31 made in the curved part as described above, and the inside of the conveying pipe is This location stops the flow of debris. Further, the descending speed and rising speed of the conveying pipe can be set by the size of the air hole 31 in the curved part and the size of the water inlet hole 6 and water discharge hole 7 provided with the variable water flow float 3', and the vertical movement is controlled by the valve. It is operated by opening and closing 8. Additionally, a depth meter and an underwater camera are attached to the vertical conveyance pipe 10, and the dredging operation is performed while grasping the suction situation.

次に垂直搬送管10の上下、前後左右えの移動について
述べる。上下動は主に上記の水流可変フロート3′の浮
力調節により行うが、必要に応じて他の動力によって調
節してもよい。前後左右の移動は第4図に示すように、
搬送管1に錨25と重り付き可変フロート27を駆動チ
ェーン28で連結し、これを搬送管1外周に設けたチェ
ーン受は体29に左右から掛け、重り付き可変フロート
27の浮力増減により回転と同時に左あるいは右に移動
できる。また大きく動かす場合は外力を与えるか、スク
リューを付けて左右に移動させるが、回転を与える重要
な目的は、搬送管1の内部摩耗を均一化し、管の消耗を
伸ばすためである。錨の構成は第5図に示すように、上
記可変フロートと同じ構造であるが、コンクリート類2
2により重量を与え錨の要素を持つものであるが、内部
空間部のもつ浮力より小さく設定されているため、空気
を流入させ浮力を与えて移動させる。この錨は搬送ライ
ンを安定させるために単独でも利用する。第6図に示す
ように、搬送管1はフロート2と可変フロート3等に付
けられた回転ローラー26上に支えられ、前記の駆動チ
ェーンにより容易に回転するが、他の動力によっても回
転できる構造である。または搬送管に回転体を付けても
効果は同じである。
Next, the movement of the vertical conveyance pipe 10 up and down, front and back, left and right will be described. The vertical movement is mainly performed by adjusting the buoyancy of the variable water flow float 3', but it may be adjusted by other power as necessary. The movement forward, backward, left and right is as shown in Figure 4.
An anchor 25 and a weighted variable float 27 are connected to the conveying pipe 1 by a drive chain 28, and a chain holder provided on the outer periphery of the conveying pipe 1 is hung from the left and right sides of the body 29, and rotation is caused by increasing or decreasing the buoyancy of the weighted variable float 27. You can move left or right at the same time. In addition, when moving a large amount, an external force is applied or a screw is attached to move it from side to side, but the important purpose of applying rotation is to equalize the internal wear of the conveying tube 1 and to slow down the wear and tear of the tube. As shown in Figure 5, the structure of the anchor is the same as that of the variable float mentioned above, but it is made of concrete type 2.
2 gives weight and has an anchor element, but since it is set to be smaller than the buoyancy of the internal space, air flows in and gives buoyancy to move it. This anchor can also be used alone to stabilize the transport line. As shown in FIG. 6, the conveying pipe 1 is supported on rotating rollers 26 attached to the float 2 and variable float 3, etc., and is easily rotated by the drive chain described above, but has a structure that can also be rotated by other power sources. It is. Alternatively, the effect is the same even if a rotating body is attached to the conveying pipe.

次に、管内の流体速度の低下に対する方法として、進行
方向えのエネルギー補給をする。第7図に示すように、
バイパス管15より高圧水14をイ号加するか、管の周
囲より高圧水を与えてもよい。また搬送管を僅か下がり
勾配にし、電磁振動体13により振動を与え管内の詰ま
りを防ぎ、進行方向えのエネルギー付加を行い長距離の
搬送を容易にする。
Next, as a method for reducing the fluid velocity within the pipe, energy is supplied in the direction of movement. As shown in Figure 7,
High pressure water 14 may be added from the bypass pipe 15, or high pressure water may be applied from around the pipe. In addition, the transport pipe is made slightly downwardly sloped, vibration is applied by the electromagnetic vibrator 13 to prevent clogging in the pipe, and energy is added in the direction of travel to facilitate long-distance transport.

上記の構成と操作により搬送される土砂類を、第8図に
示す、ダム外に設けられた土砂選別の回転篩16c:よ
り分別処理する。この篩内には水車用プレート17が設
けられ、土砂流の持つエネルギーにより回すと同時に、
細目、中目、荒目等に分類されて下の砂溜め21に落下
する。また篩の目詰り防止装置を図の上部に示す、1例
として篩の回転力を利用し、円周上のカムm楕18とバ
ネ20と槌19により篩体16に衝撃振動を与え防止す
るもので、外部の動力を使わない省力選別方法と装置で
ある。
The earth and sand transported by the above-described configuration and operation are separated through a rotary sieve 16c for separating earth and sand provided outside the dam, as shown in FIG. A water wheel plate 17 is installed inside this sieve, and at the same time it is turned by the energy of the sediment flow.
The sand is classified into fine, medium, coarse, etc. and falls into the sand pool 21 below. In addition, a device for preventing clogging of the sieve is shown in the upper part of the figure.As an example, the rotational force of the sieve is used to apply shock vibration to the sieve body 16 using a cam m ellipse 18 on the circumference, a spring 20, and a mallet 19 to prevent clogging. This is a labor-saving sorting method and device that does not require external power.

1− 、発明の効果 この浚渫方法の動力源は主に位置エネルギーと大気圧を
利用したものであり、必要に応じて他の動力源を利用し
5てもランニングコストが非常に安くなる。この構成は
大粒の土砂類を浚渫し搬送、選別でき、管径を任意に設
定できるため大規模の浚渫も他の方法に比較して容易で
あり、遠隔地えの搬送も落差があれば大量輸送が可能で
ある。また基本的に構造が簡単なため故障も少なく、保
守、管理などの経費も少なくて済む上、操作性も容易で
現状の堆積土砂に関する要望に対応できる有益性の大き
な浚渫方法とその装置である。
1-. Effects of the Invention The power source of this dredging method mainly uses potential energy and atmospheric pressure, and even if other power sources are used as necessary, the running cost is very low. This configuration can dredge, transport, and sort large grains of earth and sand, and since the pipe diameter can be set arbitrarily, large-scale dredging is easier compared to other methods, and large volumes can be transported from remote areas if there is a head. Transport is possible. In addition, since the structure is basically simple, there are fewer breakdowns, maintenance and management costs are low, and it is easy to operate, making it a very useful dredging method and equipment that can meet the current demands regarding sediment deposits. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の側面概念図、第2図ノズルの底面図、
第3図水流を停止させた状態図、第4図重りによる移動
操作を示す、第5図重の断面略図、第6図可変フロート
で搬送管を保持した断面略図、第7図搬送管内に外部動
力を与える方法を示した側面図、第8図篩部の概念図 1:搬送管、2:フロート、3:可変フロート3′:水
流可変フロート、4:フレキシブル回転部、5:空気連
通管、6:水導入口、7:排水孔、8:バルブ、9:排
水管、10:垂直搬送管、11:垂直搬送管の孔、12
.ノズル、13.電磁振動体、14:高圧水、15:バ
イパス管、16二回転篩、17:水車ブレー■・、18
:カム、19:槌、20:バネ、21:砂溜め、22:
コンクリート、23:ストッパー、24:深度調節体、
25:錨、26:回転ローラ、27:重り付きフロート
、28:駆動チェノ、29:チェン受け、30:フロー
ト、31:空気抜き、32:土砂吸入管、33:土砂類
、34:水面、35.土砂吸入管の孔、 第2図 第4図 / 第7図
Figure 1 is a conceptual side view of the embodiment, Figure 2 is a bottom view of the nozzle,
Figure 3 shows the state when the water flow is stopped, Figure 4 shows the moving operation using a weight, Figure 5 shows a schematic cross-section of the weight, Figure 6 shows a schematic cross-section of the conveyor pipe held by a variable float, and Figure 7 shows the outside inside the conveyor pipe. A side view showing the method of applying power, Figure 8. Conceptual diagram of the sieve section 1: Conveying pipe, 2: Float, 3: Variable float 3': Variable water flow float, 4: Flexible rotating section, 5: Air communication pipe, 6: Water inlet, 7: Drain hole, 8: Valve, 9: Drain pipe, 10: Vertical conveyance pipe, 11: Vertical conveyance pipe hole, 12
.. Nozzle, 13. Electromagnetic vibrator, 14: High pressure water, 15: Bypass pipe, 16 Two-turn sieve, 17: Water wheel brake, 18
:Cam, 19: Hammer, 20: Spring, 21: Sand reservoir, 22:
concrete, 23: stopper, 24: depth adjustment body,
25: Anchor, 26: Rotating roller, 27: Weighted float, 28: Driving chino, 29: Chain holder, 30: Float, 31: Air vent, 32: Earth and sand suction pipe, 33: Earth and sand, 34: Water surface, 35. Sediment suction pipe holes, Figure 2, Figure 4/Figure 7

Claims (7)

【特許請求の範囲】[Claims] (1)水圧差を利用した水流により、水底の土砂類を吸
い込み搬送する管を、フロートまたは浮力可変フロート
により、水面又は水中に保持し、吸い込み口を水底方向
に曲げた曲管の外側に孔を開けこれを中空箱体で保持し
、中空箱体内と大気が常時連通する管を設け、また水導
入孔と該孔より大きな孔を水排出孔として開け排出管に
連結し、この排出管に開閉装置をつけた中空箱体を水流
可変フロートとした土砂搬送管構造に於て、水流可変フ
ロート内の水量調節により浮力を増減し、曲管部分を水
上と水中に上下動し、該曲管部分に於て流れを停止また
流動して行う土砂の浚渫方法。
(1) A pipe that sucks in and transports sediment from the bottom using a water flow that utilizes a water pressure difference is held on the water surface or in the water using a float or a variable buoyancy float, and a hole is formed on the outside of the curved pipe with the suction port bent toward the bottom. Open it and hold it in a hollow box body, provide a pipe that constantly communicates the inside of the hollow box with the atmosphere, open a water inlet hole and a hole larger than the hole as a water discharge hole, connect it to a discharge pipe, and connect it to the discharge pipe. In a sediment transport pipe structure in which a hollow box body with an opening/closing device is used as a variable water flow float, the buoyancy is increased or decreased by adjusting the amount of water in the variable water flow float, and the curved pipe section is moved up and down above and below the water. A method of dredging earth and sand by stopping or flowing the flow in certain areas.
(2)搬送管内に外部より、高圧水を搬送方向に向けて
噴出する、特許請求の範囲第1項の土砂の浚渫方法。
(2) The method for dredging earth and sand according to claim 1, wherein high-pressure water is ejected into the conveying pipe from the outside in the conveying direction.
(3)搬送管を下がり勾配にし、該管に磁気振動体を設
けた特許請求の範囲第1項、第2項の土砂の浚渫装置。
(3) The earth and sand dredging device according to claims 1 and 2, wherein the conveying pipe has a downward slope and a magnetic vibrating body is provided on the pipe.
(4)フロートまたは浮力可変フロートに回転ローラを
付け搬送管を置き、または搬送管側に回転ローラを付け
フロート類で支えた特許請求の範囲第1項、第2項の土
砂の浚渫装置。
(4) The earth and sand dredging device according to claims 1 and 2, in which a float or a variable buoyancy float is equipped with a rotating roller and a conveying pipe is placed thereon, or a rotating roller is attached to the conveying pipe side and supported by floats.
(5)吸い込み管の側面に孔を開け、この管に添って摺
動可能なノズルを付け、該ノズル体の上下動により側面
の孔を開閉する、特許請求の範囲第1項の土砂の浚渫装
置。
(5) Dredging of earth and sand according to claim 1, in which a hole is made in the side surface of the suction pipe, a slidable nozzle is attached along the pipe, and the hole in the side surface is opened and closed by vertical movement of the nozzle body. Device.
(6)ノズルの形状を、吸い込み方向に向かつて放射状
に開いた特許請求の範囲第5項のノズル装置。
(6) The nozzle device according to claim 5, wherein the nozzle is radially opened toward the suction direction.
(7)筒状回転篩の内部に水車用プレートを設け、また
カム機構とバネと槌など回転に連動する衝撃振動機構を
篩に付け、搬送管出口に設けた、特許請求の範囲第1項
の土砂の浚渫装置。
(7) A water wheel plate is provided inside the cylindrical rotary sieve, and an impact vibration mechanism such as a cam mechanism, a spring, and a mallet that is linked to the rotation is attached to the sieve, and the sieve is provided at the outlet of the conveying pipe. Sediment dredging equipment.
JP13889890A 1990-05-29 1990-05-29 Dredging method of earth and device thereof Pending JPH0431513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13889890A JPH0431513A (en) 1990-05-29 1990-05-29 Dredging method of earth and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13889890A JPH0431513A (en) 1990-05-29 1990-05-29 Dredging method of earth and device thereof

Publications (1)

Publication Number Publication Date
JPH0431513A true JPH0431513A (en) 1992-02-03

Family

ID=15232703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13889890A Pending JPH0431513A (en) 1990-05-29 1990-05-29 Dredging method of earth and device thereof

Country Status (1)

Country Link
JP (1) JPH0431513A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176202A (en) * 2015-03-19 2016-10-06 株式会社不動テトラ Method and device for transporting insoluble transport object in ground improvement work or dredging work
JP2017510737A (en) * 2014-03-03 2017-04-13 アセンコ ナムローゼ フェンノートシャップAsenco Nv Batch soil improvement
JP2018024988A (en) * 2016-08-08 2018-02-15 オリエンタル白石株式会社 Excavation method od sediment and excavator
JP2020002602A (en) * 2018-06-27 2020-01-09 古河機械金属株式会社 Dam dredging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510737A (en) * 2014-03-03 2017-04-13 アセンコ ナムローゼ フェンノートシャップAsenco Nv Batch soil improvement
JP2016176202A (en) * 2015-03-19 2016-10-06 株式会社不動テトラ Method and device for transporting insoluble transport object in ground improvement work or dredging work
JP2018024988A (en) * 2016-08-08 2018-02-15 オリエンタル白石株式会社 Excavation method od sediment and excavator
JP2020002602A (en) * 2018-06-27 2020-01-09 古河機械金属株式会社 Dam dredging method

Similar Documents

Publication Publication Date Title
US6817120B2 (en) Deposit discharge system and method of discharging deposit
CN205116250U (en) Sediment removal device of reservoir among hydraulic engineering
WO1998020208A1 (en) Dredging method and dredging apparatus
CN103410185A (en) Siphoning type reservoir desilting and screening device and use method thereof
US4600338A (en) Mud removal process and apparatus
JP2007002437A (en) Transportation system of dredged sediment
US4264105A (en) Siphon dredge mining system
US3693796A (en) Method and apparatus for removal of particles from suspension
JPH0431513A (en) Dredging method of earth and device thereof
JP2004522877A (en) Hydraulic submersible dredging
JP4195214B2 (en) A dredge apparatus using a pipe having an opening at a bent portion
CN201546252U (en) Automatic restorer for ecology at bottom of water
CN209967755U (en) Rotatable inclined plate sedimentation tank
JPH08158397A (en) Method and equipment for removing sludge, etc.
EP0526448B1 (en) Serpent sediment-sluicing system
GB2254890A (en) Raising liquids; dredging apparatus.
JP2003227149A (en) River water reservoir facility outside of river course in flood
JP2005220598A (en) Equipment for cleaning accumulated sediment on bottom of river
JP3999788B2 (en) Long-distance transportation system for dredged soil and its transportation method
CN216259274U (en) Water and soil conservation high-efficiency sand basin
JP3716311B2 (en) Bottom sediment removal method and bottom sediment removal equipment
RU2017882C1 (en) Device for control of flow hydraulic structure
US2500354A (en) Apparatus for controlling silt accumulation
JPH11324008A (en) Removing method for sediment in dam
JPS6367317A (en) Siphon type discharge device for sedimentary earth for dam