JPH0431505A - Construction method of concrete filled continuous wall - Google Patents

Construction method of concrete filled continuous wall

Info

Publication number
JPH0431505A
JPH0431505A JP13544890A JP13544890A JPH0431505A JP H0431505 A JPH0431505 A JP H0431505A JP 13544890 A JP13544890 A JP 13544890A JP 13544890 A JP13544890 A JP 13544890A JP H0431505 A JPH0431505 A JP H0431505A
Authority
JP
Japan
Prior art keywords
steel sheet
sheet piles
sheet pile
concrete
type steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13544890A
Other languages
Japanese (ja)
Other versions
JP2707358B2 (en
Inventor
Masayuki Okimoto
沖本 真之
Tetsuji Sonoda
園田 徹士
Tetsuo Kesen
気仙 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Hazama Ando Corp
Original Assignee
Hazama Gumi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd, Nippon Steel Corp filed Critical Hazama Gumi Ltd
Priority to JP13544890A priority Critical patent/JP2707358B2/en
Publication of JPH0431505A publication Critical patent/JPH0431505A/en
Application granted granted Critical
Publication of JP2707358B2 publication Critical patent/JP2707358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PURPOSE:To promote work efficiency by continuously driving steel sheet piles so that vertical connections of unit steel sheet piles adjacent to each other in the horizontal direction are respectively separated at a stress resisting interval, and placing concrete in internal hollows of them after erecting a continuous driving body. CONSTITUTION:Preceding box type steel sheet piles 20c and succeeding box type steel sheet piles 20d are connected in a state of load resisting connection with internal and external connection plates 24, 23 and bolts 25 at vertical connections 18. While, preceding box type steel sheet piles 20r and succeeding box type steel sheet piles 20s adjacent to each other in the horizontal direction are also connected in a state of load resisting connection at vertical connections 19. In that case, the box type steel sheet piles are so continuously driven that the vertical connections 18 and 19 are respectively separated by a stress resisting interval. Concrete is placed into internal harrows of a steel sheet pile continuous driving body after erecting the steel sheet pile continuous driving body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、土木、建築分野において、土留、基礎、地中
壁、井筒、セルなどの構造体に用いられるコンクリート
充填連続壁構築方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for constructing a concrete-filled continuous wall used for structures such as earth retaining, foundations, underground walls, wells, and cells in the civil engineering and architectural fields.

〔従来の技術〕[Conventional technology]

周知のとおり、鋼矢板には多数の種類があるが、コンク
リート充填連続壁の構築方法には、第10図に示すよう
に#雄同−の嵌合継手Iを有するH型鋼矢板2、第11
図に示すように嵌合スリットを存する離調管継手3を備
え前記H型鋼矢板2と嵌合するH型綱矢14、第12図
に示すように雌雄同一の嵌合継手5を有する角鋼管矢板
6および第13図に示すように嵌合スリットを有する離
調管継手7を備え前記角鋼管矢板6と嵌合する角鋼管矢
板8などのボックス型鋼矢板が用いられ、これらのボッ
クス型鋼矢板は、力学的強度が高く、作業性が優れてお
り、がっ工事も安全に進められ、コンクリート打設も円
滑に実施出来るため、近年大規模な構築において特許こ
多量に使用されるようになった。
As is well known, there are many types of steel sheet piles, but the method for constructing concrete-filled continuous walls includes H-shaped steel sheet piles 2 and 11 having #1 male and female fitting joints I, as shown in Figure 10.
As shown in the figure, a square steel pipe 14 having a detuning pipe fitting 3 having a fitting slit and fitting with the H-shaped steel sheet pile 2, and a square steel pipe having male and female fitting fittings 5 that are the same as shown in Fig. 12. Box-shaped steel sheet piles such as square steel pipe sheet piles 8 which are equipped with sheet piles 6 and detuned pipe joints 7 having fitting slits as shown in FIG. 13 and fit with the square steel pipe sheet piles 6 are used. , has high mechanical strength, excellent workability, allows for safe construction work, and smooth concrete pouring, so it has come to be used extensively in large-scale construction projects in recent years. .

而して、該ボックス型鋼矢板を用いてコンクリート充填
連続壁を構築するには、単位鋼矢板を噛み合わせて打設
して鋼矢板連設体を構成し、その鋼矢板連設体の内腔の
土壌を掘削したのち、該内腔にコンクリートを打設する
方法や、第14図に示すように、あらかじめ地盤9に所
定寸法の掘削溝10を泥水掘削法等の手段により穿設し
ておき、別に所定寸法に組み立てておいた鋼矢板連設体
11を、クレーン車12を用いて前記掘削溝10に建込
む方法を繰返して、所望の横方向長さの所望のボックス
型鋼矢板連投体を構築したのち、鋼矢板連設体の内腔に
コンクリートを打設するか、もしくは鋼矢板連設体の内
腔および鋼矢板連設体と掘削溝壁面との間にコンクリー
トを打設するか、あ・るいは前記掘削溝10中の泥水に
固化剤を投入し固化する泥水固化方法が一般に採用され
ている。
Therefore, in order to construct a concrete-filled continuous wall using the box-type steel sheet piles, unit steel sheet piles are interlocked and cast to form a continuous steel sheet pile body, and the inner cavity of the continuous steel sheet pile body is After excavating the soil, concrete is poured into the cavity, or as shown in FIG. By repeating the method of erecting the steel sheet pile continuous body 11, which has been separately assembled to a predetermined size, into the excavation groove 10 using the crane truck 12, a desired box-shaped steel sheet pile continuous body with a desired lateral length is obtained. After construction, either concrete is poured into the inner cavity of the steel sheet pile structure, or concrete is poured between the inner cavity of the steel sheet pile structure and between the steel sheet pile structure and the excavation trench wall. Alternatively, a muddy water solidification method is generally employed in which a solidifying agent is introduced into the muddy water in the excavated trench 10 and the muddy water is solidified.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

さて、前記ボックス型鋼矢板は生産技術や搬送および建
込みに際しての諸条件から長さに制限があるため、長大
な建込み深さが要求される用途では、単位鋼矢板を接続
部が所望強度を有するように溶接あるいはボルト結合な
どの手段で接続することが必要になる。
Now, the length of the box-type steel sheet piles is limited due to production technology, transportation, and erection conditions, so in applications that require a long erection depth, the connecting parts of the unit steel sheet piles must have the desired strength. It is necessary to connect by means such as welding or bolting to make the connection.

さて、前記溶接接続は、単位ボックス型鋼矢板の寸法が
大きく、かつ品質的に高度な溶接技術が必要な上に、溶
接設備や治工具等設備費が嵩むことから費用が高くなり
、また現地溶接では環境や天候などの諸問題も加わり施
工費の高騰は避けがたいと云う課題がある。
Now, the above-mentioned welding connection is expensive because the dimensions of the unit box-type steel sheet pile are large and high quality welding technology is required, and the cost of equipment such as welding equipment and jigs increases, and the cost is also high due to on-site welding. However, with the addition of environmental and weather issues, there is an unavoidable increase in construction costs.

また、ボルト結合では、単位ボックス型鋼矢板の接続個
所にあらかじめ多数の貫通孔を事前に穿設せねばならな
い上に、多数の接続用板やボルトの準備を要し、さらに
ボルト締めに多くの人手を必要とするため、施工費が高
くなると云う課題がある。
Furthermore, bolted connections require many through-holes to be drilled in advance at the connecting points of the unit box-type steel sheet piles, require the preparation of many connection plates and bolts, and require a large amount of labor to tighten the bolts. The problem is that construction costs are high because of the need for

即ち、第15図はH型鋼矢板2にかかる従来のボルト接
続部分の概略断面図、第16図は該H型鋼矢板2の鉛直
方向接続部にかかる部分概略側面図であるが、図に示す
とおり、通常フランジ2aに所定数の貫通孔(図示せず
)を穿設し、外側接続板13.内側接続板14.ボルト
15で該フランジ2aを挟持し、先行H型鋼矢板20a
と後行H型鋼矢W20bとを接続する手段を採用する。
That is, FIG. 15 is a schematic cross-sectional view of the conventional bolt connection part of the H-type steel sheet pile 2, and FIG. 16 is a partial schematic side view of the vertical connection part of the H-type steel sheet pile 2. , a predetermined number of through holes (not shown) are usually bored in the flange 2a, and the outer connecting plate 13. Inner connection plate 14. Clamping the flange 2a with the bolts 15, the preceding H-shaped steel sheet pile 20a
and the trailing H-shaped steel arrow W20b.

また、第17図は角鋼管矢板6にかかる従来のボルト接
続部分の概略断面図、第18図は該角鋼管矢板6の鉛直
方向接続部にかかる部分概略側面図であるが、H型鋼矢
板2と全く同様にフランジ6aに所定数の貫通孔(図示
せず)を穿設し、外側接続板16.内側接続板17.ボ
ルト15で該フランジ6aを挟持し、先行角鋼管矢板6
0aと後行角鋼管矢板60bとを接続する手段を採用す
る。
Further, FIG. 17 is a schematic cross-sectional view of a conventional bolt connection part of the square steel pipe sheet pile 6, and FIG. 18 is a partial schematic side view of the vertical connection part of the square steel pipe sheet pile 6. A predetermined number of through holes (not shown) are bored in the flange 6a in exactly the same manner as in the outer connecting plate 16. Inner connection plate 17. The flange 6a is held between the bolts 15 and the leading square steel pipe sheet pile 6 is
0a and the trailing square steel pipe sheet pile 60b are connected.

このように、ボックス型鋼矢板連設体を筋材とするコン
クリート充填連続壁構築方法において、単位鋼矢板を接
続するため、第15図〜第18図において詳細に説明し
たとおり、ボルト接続法では事前に多くの孔穿設加工や
多数の接続板、ボルトなどの準備を必要とし、接続作業
に多大な人手を要し、また、溶接接続法においても前述
のとおり高額な接続作業費が必要であり、そのためコン
クリート充填連続壁構築費が嵩み、工期も長くなると云
う課題があった。
In this way, in the concrete-filled continuous wall construction method using box-type steel sheet piles as reinforcement, in order to connect unit steel sheet piles, as explained in detail in Figures 15 to 18, the bolt connection method requires This requires a large number of holes to be drilled and the preparation of a large number of connecting plates and bolts, which requires a large amount of manpower for the connection work, and the welding connection method also requires high connection work costs as mentioned above. As a result, the cost of constructing concrete-filled continuous walls increased and the construction period became longer.

前述のような従来の単位鋼矢板の接続手段は、接続部分
も地盤から受ける曲げや剪断力に対抗し、充分な耐力を
備えることが、鋼矢板として必須の条件と考えられて来
たためで、そのためには、入念な接続は避けがたいとさ
れ、高額な工費が費やされてきた。
The conventional means of connecting unit steel sheet piles as described above is because it has been considered an essential condition for steel sheet piles that the connecting parts have sufficient strength to withstand the bending and shearing forces received from the ground. For this purpose, careful connections were considered unavoidable, and expensive construction costs were incurred.

本発明者等は、コンクリート充填連続壁構築における主
要な工程を占める筋材としての鋼矢板連設体の構成にお
いて、従来の鋼矢板接続が非常に複雑で、費用が嵩み工
期も長くかかることから、基本的に鋼矢板接続を研究し
た結果、強度に不安が無く、工期も著しく短く、経済的
な鋼矢板接続が可能な本発明方法を発明した。
The present inventors discovered that in the construction of steel sheet piles as reinforcing materials, which are a major step in the construction of concrete-filled continuous walls, conventional steel sheet pile connections are extremely complex, costly, and take a long construction period. As a result of basically researching the connection of steel sheet piles, we have invented the method of the present invention, which allows for economical connection of steel sheet piles without worrying about strength and with a significantly short construction period.

本発明の目的は、コンクリート充填連続壁構築方法にお
いて、前記単位ボックス型鋼矢板相互の接続を簡易化し
、作業能率を高め、経済的な構築を可能とするのみなら
ず、構築した連続壁の力学的な強度および信軌性が極め
て高い方法を従供することにある。
The purpose of the present invention is to simplify the connection between the unit box-type steel sheet piles in a concrete-filled continuous wall construction method, improve work efficiency, and enable economical construction, as well as improve the mechanical performance of the constructed continuous wall. The objective is to provide a method with extremely high strength and reliability.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明のコンクリート充填
連続壁構築方法においては、ボックス型鋼矢板連設体を
筋材とするコンクリート充填連続壁構築方法において、
前記ボックス型鋼矢板の単位鋼矢板相互の鉛直方向接続
部を耐荷重接続とし、横方向に隣り合う単位鋼矢板の鉛
直方向接続部がそれぞれ耐応力間隔離隔するように鋼矢
板を連設し、該鋼矢板連設体の建込み後に、鋼矢板連設
体の内腔にコンクリートを打設する。
In order to achieve the above object, the method for constructing a continuous concrete-filled wall of the present invention includes the following steps:
The vertical connecting portions of the unit steel sheet piles of the box type steel sheet piles are load-bearing connections, and the steel sheet piles are connected in a row so that the vertical connecting portions of horizontally adjacent unit steel sheet piles are spaced apart from each other by stress-resistant intervals, and After the steel sheet pile structure is erected, concrete is poured into the inner cavity of the steel sheet pile structure.

〔作 用〕[For production]

ボックス型鋼矢板連設体を筋材とするコンクリート充填
連続壁構築方法において、ボックス型鋼矢板の単位鋼矢
板相互の鉛直方向接続部を、先行鋼矢板の重量を支える
だけの簡易な耐荷重接続とするので、ボルト接続手段に
おいては穿設加工数に加えて接続板やボルトの数量が従
来の接続に比して2〜3割と非常に少なくて済み、接続
に要する人手も従来の172〜1/4にすることが出来
る。
In a concrete-filled continuous wall construction method using box-type steel sheet piles as reinforcements, the vertical connections between the unit steel sheet piles of the box-type steel sheet piles are simple load-bearing connections that can only support the weight of the preceding steel sheet piles. Therefore, in addition to the number of holes to be drilled, the number of connection plates and bolts required for the bolt connection method is 20 to 30% less than that of conventional connections, and the number of manpower required for connection is 172 to 1/3 that of conventional connections. It can be made to 4.

さらに、横方向に隣り合う単位鋼矢板の鉛直方向接続部
がそれぞれ耐応力間隔離隔するように鋼矢板を連設し、
該鋼矢板連設体建込み後、コンクリートを連設体内腔に
打設することにより、該鉛直方向接続部に発生する曲げ
モーメントおよび剪断力を前記連設体内腔部に充填され
たコンクリートの耐剪断力によって、充分に対抗せしめ
ることが可能なので力学的強度に対する不安は全くない
Further, the steel sheet piles are arranged in a row so that the vertical connection parts of the unit steel sheet piles that are adjacent in the horizontal direction are spaced apart from each other by a stress-resistant distance,
After the steel sheet pile structure is erected, by pouring concrete into the continuous body cavity, the bending moment and shear force generated at the vertical connection part can be absorbed by the concrete filled in the continuous body cavity. Since the shearing force can be sufficiently counteracted, there is no need to worry about mechanical strength.

〔実施例〕〔Example〕

以下、図に従って本発明方法を詳細に説明する。 Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

第1図は本発明の方法により構築したコンクリート充填
連続壁の概略側面図で、第2図はその概略平面図である
FIG. 1 is a schematic side view of a concrete-filled continuous wall constructed by the method of the present invention, and FIG. 2 is a schematic plan view thereof.

さて、単位鋼矢板すなわち先行ボックス型鋼矢板20c
と後行ボックス型鋼矢板20dとは、鉛直方向接続部1
8において後に詳述するように耐荷重接続され、横方向
に隣り合う単位鋼矢板すなわち先行ボックス型鋼矢板2
0rと後行ボックス型鋼矢板20sは鉛直方向接続部1
9において同様に耐荷重接続されている。
Now, the unit steel sheet pile, that is, the preceding box type steel sheet pile 20c
and the trailing box-type steel sheet pile 20d are the vertical connection portion 1
8, unit steel sheet piles 2 that are load-bearingly connected and adjacent in the lateral direction, that is, leading box-type steel sheet piles 2, as will be described in detail later.
0r and the trailing box type steel sheet pile 20s are vertical connection parts 1
Similarly, load-bearing connections are made at 9.

しかして、それぞれの前記鉛直方向接続部18および1
9が、のちに詳述するように、それぞれ耐応力間隔りだ
け離隔するように前記ボックス型鋼矢板は連設されてい
る。
Thus, each of the vertical connections 18 and 1
As will be described later in detail, the box-shaped steel sheet piles are arranged in a row so as to be spaced apart from each other by a stress-resistant interval.

第2図において、符号21は筋材としてのボックス型鋼
矢板連設体を示し、符号22は前記連設体21の内腔に
打設されたコンクリートを示す。
In FIG. 2, reference numeral 21 indicates a box-type steel sheet pile structure as a reinforcing material, and reference numeral 22 indicates concrete poured into the inner cavity of the continuous structure 21.

つぎに、第3図は本発明にががるH型鋼矢板2に関する
ボルト結合部分の概略断面図、第4図は該H型鋼矢板2
の鉛直方向接続部18にががる部分概略側面図である。
Next, FIG. 3 is a schematic cross-sectional view of the bolted joint portion of the H-type steel sheet pile 2 according to the present invention, and FIG. 4 is a schematic sectional view of the H-type steel sheet pile 2.
FIG. 3 is a partial schematic side view of the vertical connecting portion 18 of the FIG.

さて、図に示すとおり、外側接続板23.内側接続Fi
24.ボルト25により先行H型鋼矢板20cと後行H
型鋼矢板20dとを接続するが、本発明では、前記外側
接続板23.内側接続板24、ボルト25による強度設
計を先行H型鋼矢板20cの重量を支えるだけの強度と
する。
Now, as shown in the figure, the outer connecting plate 23. Inside connection Fi
24. The leading H type steel sheet pile 20c and the trailing H are connected by bolts 25.
In the present invention, the outer connecting plate 23. is connected to the shaped steel sheet pile 20d. The strength of the inner connecting plate 24 and bolts 25 is designed to be strong enough to support the weight of the preceding H-shaped steel sheet pile 20c.

もっとも、先行H型鋼矢板20cの下端に別の先行H型
鋼矢板が吊持されている場合は、その重量を加夏するこ
とは云うまでもない。
However, if another preceding H-shaped steel sheet pile is suspended from the lower end of the preceding H-shaped steel sheet pile 20c, it goes without saying that its weight must be increased.

従来の方法では、前述のように地盤による曲げや剪断力
に充分耐えるように第15図〜第18図で説明したとお
り頑丈な接続を必要としていたが、本発明では、接続板
の寸法も小さく、ボルト数も著しく少なくて済む。
The conventional method required a sturdy connection as explained in FIGS. 15 to 18 to sufficiently withstand the bending and shearing forces caused by the ground as described above, but in the present invention, the dimensions of the connecting plate are also small. , the number of bolts can be significantly reduced.

そこで、第3図の例と第15図の従来例を比較しても明
らかなように、ボルト数のみを比較しても本発明では1
/4で済む、これは、貫通孔穿設加工も1/4で済むこ
とを意味し、本発明と従来法とでは加工と施工のコスト
差が極めて多大であることが歴然としている。
Therefore, as is clear from comparing the example of FIG. 3 and the conventional example of FIG. 15, even if only the number of bolts is compared, the present invention has a
This means that the amount of through-hole drilling required is only 1/4, and it is clear that the difference in processing and construction costs between the present invention and the conventional method is extremely large.

つぎに、第5図は本発明における角鋼管矢板6のボルト
結合部分の概略断面図、第6図は該角鋼管矢板6の鉛直
方向接続部にががる部分概略側面図であるが、前記H型
鋼矢板2と全く同様に外側接続板26.内側接続板27
.ボルト28により先行角鋼管矢板60cと後行角鋼管
矢板60dとを鉛直方向接続部29において接続した状
況を示している。この場合も、前記H型鋼矢板2の場合
と同様に、ボルト数および貫通孔穿設加工の比較でも、
本発明では従来例の174で済み、コスト差は極めて多
大である。
Next, FIG. 5 is a schematic cross-sectional view of the bolted joint portion of the square steel pipe sheet pile 6 according to the present invention, and FIG. 6 is a partial schematic side view of the vertical connection portion of the square steel pipe sheet pile 6. Just like the H-type steel sheet pile 2, the outer connecting plate 26. Inner connection plate 27
.. A situation is shown in which the leading square steel pipe sheet pile 60c and the trailing square steel pipe sheet pile 60d are connected at the vertical connection portion 29 by bolts 28. In this case, as in the case of the H-shaped steel sheet pile 2, the number of bolts and the through-hole drilling process are compared.
In the present invention, only 174 of the conventional example is sufficient, and the cost difference is extremely large.

しかして、本発明では前記ボルト接続に限定すること無
く、先・後行ボックス型鋼矢板相互の接続は吊持が可能
で荷重に耐えるがぎり、掻く少数の接続板とボルトを用
いるほが、溶接接続では荷重に耐えるだけの限度におい
て少数個所を点溶接するだけで充分である。このような
簡易な接続としては、その他に蕩綱板を用いて相互の鋼
矢板を溶着する方法、接続板を用いて接着する方法など
があり、これらの接続法を本発明では耐荷重接続と定義
する。
However, in the present invention, the connection between the leading and trailing box-type steel sheet piles is not limited to the bolt connection, but as long as the connection between the leading and trailing box-type steel sheet piles can be suspended and withstand the load, it is better to use a small number of connecting plates and bolts, or by welding. For connections, spot welding at a few points is sufficient to withstand the load. Other such simple connections include a method of welding mutual steel sheet piles using steel sheets, and a method of gluing them together using a connecting plate. Define.

つぎに、第7図は、本発明における耐応力間隔りを説明
するための部分概略斜視図で、横方向に隣り合う単位鋼
矢板20e、20fの鉛直方向接続部30.31をそれ
ぞれ耐応力間隔したけ離隔するように連設した場合を示
しており、理解を容易にするため、前記単位鋼矢板20
eに曲げ力が作用し、該単位鋼矢板20eが前記鉛直方
向接続部30.31で外れた状況を仮定して図示してい
る。
Next, FIG. 7 is a partial schematic perspective view for explaining the stress-resistant spacing in the present invention. The figure shows a case in which the unit steel sheet piles 20
The illustration is based on the assumption that a bending force is applied to e and the unit steel sheet pile 20e comes off at the vertical connection portion 30.31.

しかと2で、第7図では、説明の都合上、充填コンクリ
ートを図示していない。
However, in FIG. 7, filling concrete is not shown for convenience of explanation.

第8図は、剪断面(2面)におりる単位長さ当たりの剪
断耐力Pに関する応力線図で、該剪断耐力Pは下記(1
)式で示す通りである。
Figure 8 is a stress diagram regarding the shear strength P per unit length on the shear plane (two planes), and the shear strength P is as follows (1
) as shown in the formula.

P=τcr x h              ・−
−−・−(1)ただし、τer: 1 cd当たりのコ
ンクリートの面外剪断耐力(−船釣には3.0kg/d
)h:ウェブ高さ(1) そこで、コンクリートの捩じり剪断耐力Tc、、は、下
記(2)式で求めることができる。
P=τcr x h ・−
−−・−(1) However, τer: Out-of-plane shear strength of concrete per 1 cd (-3.0 kg/d for boat fishing
) h: Web height (1) Therefore, the torsional shear strength Tc of concrete can be determined by the following equation (2).

Tc、= P −Lt/6      −・−・・(2
)第9図は、ウェブ高さhが400m++の単位鋼矢板
について、耐応力間隔りと前記コンクリートの捩じり剪
断耐力T e rの関係を求めたグラフで、横軸は耐応
力間隔L(m)、縦軸はコンクリートの捩じり剪断耐力
’rc、(t−m)を示す。
Tc, = P − Lt/6 −・−・・(2
) Figure 9 is a graph showing the relationship between the stress-resistant interval and the torsional shear strength T e r of the concrete for a unit steel sheet pile with a web height h of 400 m++, and the horizontal axis is the stress-resistant interval L ( m), the vertical axis indicates the torsional shear strength 'rc, (t-m) of the concrete.

さて、このように横方向に隣り合う単位鋼矢板20e、
20fの鉛直方向接続部30.31をそれぞれ耐応力間
隔■、だけ隔離するように連設すると、該鉛直方向接続
部30..31に発生する曲げモーメントおよび剪断力
は、前記鋼矢板連設体内腔部に充填されたコンクリート
の耐剪断力T−によって、充分に対抗せしめることが可
能になる。
Now, in this way, the unit steel sheet piles 20e that are adjacent in the horizontal direction,
20f of vertical connecting portions 30.31 are arranged in series so as to be separated by a stress-resistant interval . .. The bending moment and shearing force generated in the steel sheet piles 31 can be sufficiently counteracted by the shearing force T- of the concrete filled in the interior of the steel sheet pile connected body.

つまり 鋼矢板の曲げ耐力M、、<コンクリートの捩じり剪断耐
力Tcr鋼矢板の剪断耐力Ssr<コンクリートの押し
抜き剪断耐力別、の領域において、前記耐応力間隔りを
設定すれば良い。
In other words, the stress resistance intervals may be set in the range of bending strength M of steel sheet piles, <torsion shear strength Tcr of concrete, shear strength Ssr of steel sheet piles, <pushing shear strength of concrete.

つまり、耐応力間隔りは鋼矢板の本体の耐力とコンクリ
ートの剪断耐力によって決まるので、選定した鋼矢板お
よびコンクリートの種別寸法に応じて耐応力間隔りを適
宜設計する。
In other words, the stress-resistant spacing is determined by the yield strength of the main body of the steel sheet pile and the shear strength of the concrete, so the stress-resistant spacing is appropriately designed depending on the type and dimensions of the selected steel sheet pile and concrete.

しかして、前記H型鋼矢板2や角鋼管矢板6は、継手と
して直線鋼矢板の継手を利用しているため、継手効率が
最大で50%までとれるため、耐応力間隔りの設定自由
度が高い利点がある。
However, since the H-type steel sheet pile 2 and the square steel pipe sheet pile 6 use straight steel sheet pile joints as joints, the joint efficiency can be up to 50%, so there is a high degree of freedom in setting stress-resistant intervals. There are advantages.

本発明者らは、断面寸法400X400■で、長さ6.
000〜16.000閣のH型鋼矢板を用い、深度45
,000mの閉鎖連続地中壁を構築するにあたり、該単
位鋼矢板相互の鉛直方向接続部をボルトを用い耐荷重接
続とし、ついで耐応力間隔りを3,000mに設定し連
設体を構成したのち、高炉セメント系のコンクリートを
充填し所望の目的を達成した。
The inventors have a cross-sectional dimension of 400 x 400 mm and a length of 6.
Using H-type steel sheet piles of 000 to 16,000, depth 45
In constructing a closed continuous underground wall of ,000 m, the vertical connection between the unit steel sheet piles was made a load-bearing connection using bolts, and the stress-resistant interval was then set to 3,000 m to form a continuous body. Later, it was filled with blast furnace cement concrete to achieve the desired purpose.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように構成されているので、以下に記
載するような効果を奏する。
Since this invention is configured as described above, it produces the effects described below.

筋材としての単位ボックス型鋼矢板相互の接続を極めて
簡易化することができるので、作業能率が高く、コンク
リート充填連続壁を短期間に、かつ経済的に構築するこ
とを可能とするのみならず、構築した連続壁の力学的な
強度および信転性が非常に高く、土木、建築分野におけ
るその実用効果は極めて多大である。
Since it is possible to extremely simplify the connection of unit box-type steel sheet piles as reinforcing materials, work efficiency is high, and it not only makes it possible to construct concrete-filled continuous walls in a short period of time and economically. The mechanical strength and reliability of the constructed continuous wall are extremely high, and its practical effects in the civil engineering and architectural fields are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により構築したコンクリート充填
連続壁の概略側面図、第2図はその概略平面図、第3図
は本発明において用いられるH型鋼矢板のボルト結合部
分の概略断面図、第4図はその概略側面図、第5図は本
発明において用いられる角鋼管矢板のボルト結合部分の
概略断面図、第6図はその概略側面図、第7図は本発明
における耐応力間隔を説明するための部分概略斜視図、
第8図は剪断耐力Pに関する応力線図、第9図は耐応力
間隔りと前記コンクリートの捩じり剪断耐力T。の関係
を求めたグラフ、第10図ないし第13図はそれぞれ異
なったボックス型鋼矢板の概略断面図、第14図は泥水
掘削法を利用して鋼矢板□を建込む状況を示す説明図、
第15図は従来のH型鋼矢板のボルト結合部分を示す概
略断面図、第16図はその概略側面図、第17図は従来
の角鋼管矢板のボルト結合部分を示す概略断面図、第1
8図はその概略側面図である。 1・・・嵌合継手、2・・・H型鋼矢板、2a・・・フ
ランジ、3・・・離調管継手、4・・・H型鋼矢板、5
・・・嵌合継手、6・・・角鋼管矢板、6a・・・フラ
ンジ、7・・・離調管継手、8・・・角鋼管矢板、9・
・・地盤、10・・・掘削溝、II・・・鋼矢板連設体
、12・−・クレーン車、13・・・外側接続板、14
・・・内側接続板、15・・・ボルト、16・・・外側
接続板、17・・・内側接続板、18・・・鉛直方向接
続部、19・・・鉛直方向接続部、20a・・・後行H
型鋼矢板、20b・・・先行H型鋼矢板、20c・・・
先行ボックス型鋼矢板(H型鋼矢板)、20d・・・後
行ボックス型鋼矢板(H型鋼矢板)、20r・・・先行
ボックス型鋼矢板、20s・・・後行ボックス型鋼矢板
、21・・・ボックス型鋼矢板遠投体、22・・・コン
クリート、23・・・外信接続板、24・・・内側接続
板、25・・・ボルト、26・・・外側接続板、27・
・・内側接続板、28・・・ボルト、29・・・鉛直方
向接続部、30・・・鉛直方向接続部、31・・・鉛直
方向接続部、60a・・・先行角鋼管矢板、60b・・
・後行角鋼管矢板、60c・・・先行角鋼管矢板、60
d・・・後行角鋼管矢板。 2 (20C) 2(20d) 2(20c  20d) 第5図 6 (60c 、 60d ) 第6図 Tcr(t−m) L(m) 第10図 / 2−/ 第11図 第15図 2(20a、20b) 第16図 2(20a) 第17図 6(60a 60b)
Fig. 1 is a schematic side view of a concrete-filled continuous wall constructed by the method of the present invention, Fig. 2 is a schematic plan view thereof, and Fig. 3 is a schematic sectional view of the bolted joint part of the H-shaped steel sheet pile used in the present invention. Fig. 4 is a schematic side view thereof, Fig. 5 is a schematic sectional view of the bolted joint part of the square steel pipe sheet pile used in the present invention, Fig. 6 is a schematic side view thereof, and Fig. 7 is the stress-resistant interval in the present invention. Partial schematic perspective view for explanation,
FIG. 8 is a stress diagram regarding the shear strength P, and FIG. 9 is a stress diagram showing the stress interval and the torsional shear strength T of the concrete. Figures 10 to 13 are schematic cross-sectional views of different box-type steel sheet piles, Figure 14 is an explanatory diagram showing the situation in which steel sheet piles □ are erected using the muddy water excavation method,
Fig. 15 is a schematic sectional view showing the bolted joint part of a conventional H-shaped steel sheet pile, Fig. 16 is a schematic side view thereof, Fig. 17 is a schematic sectional view showing the bolted joint part of a conventional square steel pipe sheet pile,
FIG. 8 is a schematic side view thereof. 1... Fitting joint, 2... H type steel sheet pile, 2a... Flange, 3... Detuned pipe joint, 4... H type steel sheet pile, 5
... Fitting joint, 6... Square steel pipe sheet pile, 6a... Flange, 7... Detuning pipe joint, 8... Square steel pipe sheet pile, 9.
... Ground, 10 ... Excavation groove, II ... Steel sheet pile connected body, 12 ... Crane truck, 13 ... Outside connection plate, 14
...Inner connection plate, 15...Bolt, 16...Outer connection plate, 17...Inner connection plate, 18...Vertical connection part, 19...Vertical connection part, 20a...・ Trailing H
Type steel sheet pile, 20b... Leading H type steel sheet pile, 20c...
Leading box type steel sheet pile (H type steel sheet pile), 20d... Trailing box type steel sheet pile (H type steel sheet pile), 20r... Leading box type steel sheet pile, 20s... Trailing box type steel sheet pile, 21... Box type steel Sheet pile long throw body, 22... Concrete, 23... Foreign connection plate, 24... Inner connection plate, 25... Bolt, 26... Outer connection plate, 27.
...Inner connection plate, 28...Bolt, 29...Vertical direction connection part, 30...Vertical direction connection part, 31...Vertical direction connection part, 60a... Leading square steel pipe sheet pile, 60b.・
- Trailing square steel pipe sheet pile, 60c... Leading square steel pipe sheet pile, 60
d... Trailing square steel pipe sheet pile. 2 (20C) 2 (20d) 2 (20c 20d) Fig. 5 6 (60c, 60d) Fig. 6 Tcr (t-m) L (m) Fig. 10/ 2-/ Fig. 11 Fig. 15 Fig. 2 ( 20a, 20b) Fig. 16 2 (20a) Fig. 17 6 (60a 60b)

Claims (1)

【特許請求の範囲】[Claims] ボックス型鋼矢板連設体を筋材とするコンクリート充填
連続壁構築方法において、前記ボックス型鋼矢板の単位
鋼矢板相互の鉛直方向接続部を耐荷重接続とし、横方向
に隣り合う単位鋼矢板の鉛直方向接続部がそれぞれ耐応
力間隔離隔するように鋼矢板を連設し、該鋼矢板連設体
の建込み後に、鋼矢板連設体の内腔にコンクリートを打
設するコンクリート充填連続壁構築方法。
In a concrete-filled continuous wall construction method using box-type steel sheet piles as reinforcing materials, the vertical connections between the unit steel sheet piles of the box-type steel sheet piles are load-bearing connections, and the vertical connection between the horizontally adjacent unit steel sheet piles A method for constructing a concrete-filled continuous wall, which comprises: installing steel sheet piles in a row so that the connecting parts are spaced apart from each other by stress-resistant distances; and, after the steel sheet piles are erected, concrete is poured into the inner cavity of the steel sheet piles.
JP13544890A 1990-05-28 1990-05-28 Concrete filled continuous wall construction method Expired - Lifetime JP2707358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13544890A JP2707358B2 (en) 1990-05-28 1990-05-28 Concrete filled continuous wall construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13544890A JP2707358B2 (en) 1990-05-28 1990-05-28 Concrete filled continuous wall construction method

Publications (2)

Publication Number Publication Date
JPH0431505A true JPH0431505A (en) 1992-02-03
JP2707358B2 JP2707358B2 (en) 1998-01-28

Family

ID=15151953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13544890A Expired - Lifetime JP2707358B2 (en) 1990-05-28 1990-05-28 Concrete filled continuous wall construction method

Country Status (1)

Country Link
JP (1) JP2707358B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117726A (en) * 2005-09-29 2007-05-17 Nisshin Rubber Kk Shoe insole
JP2013194368A (en) * 2012-03-16 2013-09-30 Technos Kk Method for correcting inclination of core material element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117726A (en) * 2005-09-29 2007-05-17 Nisshin Rubber Kk Shoe insole
JP2013194368A (en) * 2012-03-16 2013-09-30 Technos Kk Method for correcting inclination of core material element

Also Published As

Publication number Publication date
JP2707358B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US20060185279A1 (en) Foundations for constructions
US4405260A (en) Method of constructing underpass across railway and highway without affecting normal traffic thereof
CN102286982A (en) Deep foundation pit precast building enclosure for constructing in low environment
CN111197318B (en) Foundation for a tower of a wind turbine
CN112554206A (en) PC plate beam shared by foundation pit support structure and basement outer wall and installation method thereof
JPH0431505A (en) Construction method of concrete filled continuous wall
KR200386881Y1 (en) A pile head reinforcement structure of precast concrete pile
JPS6137692Y2 (en)
JPH08333742A (en) Double sheet-pile structure
JP2002242210A (en) Earth retaining wall and construction method therefor
KR20220065461A (en) WIRE STRUCTURE FOR STAGGERED LAPPING IN SLURRY WALL, SLURRY WALL and CONSTRUCTION METHOD FOR THE SAME
JPS63280153A (en) Underground inverted lining method
RU2465401C1 (en) Method to erect underground structures by &#34;wall in soil&#34; method and wall in soil erected by this method
JP4134215B2 (en) Horizontal frame structure and underground soil retaining support method using it
JPH0377323B2 (en)
CN114059555B (en) Construction method of arc-shaped foundation pit supporting system based on anchoring structure
CN220599801U (en) Shaft supporting structure suitable for shaft development machine
JPH04237714A (en) Concrete reinforcing steel member
CN115467321B (en) Two-wall-in-one multi-cavity type steel reinforced concrete composite structure and construction method thereof
CN213709603U (en) Assembled foundation for corrugated steel structure and arch corrugated steel building structure
JPS6026724A (en) Integration work of steel-framed building structure and composite underground beam
JP2660874B2 (en) How to build a continuous underground wall
JPH01310012A (en) Construction of deep base pile
JPH06117052A (en) Precast horizontal central pillar
JP2002212930A (en) Wall body structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13