JPH04313701A - Polyhedral convex type prism and laser beam projecting device - Google Patents

Polyhedral convex type prism and laser beam projecting device

Info

Publication number
JPH04313701A
JPH04313701A JP4469991A JP4469991A JPH04313701A JP H04313701 A JPH04313701 A JP H04313701A JP 4469991 A JP4469991 A JP 4469991A JP 4469991 A JP4469991 A JP 4469991A JP H04313701 A JPH04313701 A JP H04313701A
Authority
JP
Japan
Prior art keywords
convex
light
optical axis
prism
convex ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4469991A
Other languages
Japanese (ja)
Other versions
JP2617040B2 (en
Inventor
Masataka Murahara
正隆 村原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP3044699A priority Critical patent/JP2617040B2/en
Publication of JPH04313701A publication Critical patent/JPH04313701A/en
Application granted granted Critical
Publication of JP2617040B2 publication Critical patent/JP2617040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain an inexpensive polyhedral convex type prism which can equalize the intensity distribution of light in a light focusing surface, and the laser beam projecting device which uses its lens. CONSTITUTION:In the convex type prism having opposed light incoming/outgoing faces, on one light incoming/outgoing face, a first convex edge face 11A consisting of a band-like center plane 12 being vertical to an optical axis, and plural sets of band-like inclined planes 14, 16 which are symmetrical to the center plane and whose inclination becomes large successively on both its sides is formed, and on the other light incoming/outgoing face, a second convex edge face 11B consisting of a band-like center plane 12 which extends out in the direction intersecting or thogonally with the band-like plane of a first convex edge face 11A, and is vertical to the optical axis, and plural sets of band-like inclined planes which are symmetrical to the center plane and whose inclination becomes large successively on both its sides is formed. The face angle of the inclined plane for forming a first and a second convex edge faces 11A, 11B is set so that parallel rays which are made incident on one light incoming/outgoing face are emitted from the other light incoming/outgoing face, and subjected to face focusing on the optical axis in a rectangular shape matched with a superposed area in the optical axis direction of two band-like center planes 12, 12.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はエキシマレーザ等のレー
ザ光を利用してパターンCVDやエッチングを行う際、
照射レーザ光の強さを均一化する上で有効な多面凸型プ
リズム及びこの多面凸型プリズムを用いたレーザ光投影
装置に関する。
[Industrial Application Field] The present invention is applicable to pattern CVD or etching using laser light such as an excimer laser.
The present invention relates to a multifaceted convex prism that is effective in uniformizing the intensity of irradiated laser light, and a laser beam projection device using this multifaceted convex prism.

【0002】0002

【従来の技術】レーザ光のエネルギーを利用して基板上
に回路パターンを形成する方法としてレーザCVDがあ
る。これは図8に示されるように、レーザ光1の前方に
回路パターンに対応する透光部2aの形成されたマスク
2を置き、マスク2の前方に置いた投影レンズ4を介し
て反応セル6内の基板8上にマスク2に形成されている
回路パターンが投影される構造で、セル6内の材料ガス
がレーザ光によって光分解され、発生したラジカルが基
板上8で再結合して膜が形成されるというものである。 そして用いられるレーザ光としてはエキシマレーザがよ
く知られているが、光の強度分布が均一でなく、基板上
に照射されたレーザ光のエネルギー分布に差があるため
、基板上に形成される膜厚が一定でないという問題があ
った。またレーザ光は反応セルの窓6aから入射して基
板8上に照射されるが、この窓6aの近傍においても材
料ガスの光分解反応が生じ、ラジカルが再結合して窓6
aの内側に膜が形成され、この膜のためにレーザ光の透
過効率が悪くなるという問題があった。このため従来で
は図9に示されるようにマスク2の前方に蝿の目レンズ
3を置いてレーザ光を拡散し、照射されるレーザ光のエ
ネルギ分布の均一化を図るようになっていた。
2. Description of the Related Art Laser CVD is a method of forming a circuit pattern on a substrate using the energy of laser light. As shown in FIG. 8, a mask 2 in which a transparent part 2a corresponding to a circuit pattern is formed is placed in front of the laser beam 1, and a reaction cell 6 is passed through a projection lens 4 placed in front of the mask 2. The circuit pattern formed on the mask 2 is projected onto the substrate 8 inside the cell.The material gas inside the cell 6 is photolyzed by laser light, and the generated radicals are recombined on the substrate 8 to form a film. It is said that it is formed. The excimer laser is well known as the laser beam used, but the intensity distribution of the light is not uniform and there are differences in the energy distribution of the laser beam irradiated onto the substrate, so it is difficult to form a film on the substrate. There was a problem that the thickness was not constant. Further, the laser beam enters through the window 6a of the reaction cell and is irradiated onto the substrate 8, but a photodecomposition reaction of the material gas occurs also in the vicinity of this window 6a, and radicals are recombined to form the window 6a.
There was a problem in that a film was formed on the inside of a, and this film deteriorated the transmission efficiency of laser light. For this reason, conventionally, as shown in FIG. 9, a fly's eye lens 3 is placed in front of the mask 2 to diffuse the laser beam, thereby making the energy distribution of the irradiated laser beam uniform.

【0003】0003

【発明の解決しようとする課題】しかし蝿の目レンズは
製造が難しく高価である。さらにまた蝿の目レンズによ
って拡散した光のすべてを集束させることはできず、損
失を考慮して大出力のレーザ装置が必要である。従って
製品コストが高くなるという問題があった。本発明は前
記従来技術の問題点に鑑みなされたもので、その目的は
、蝿の目レンズを用いることなく光集束面における光の
強度分布を均一化することのできる安価な多面凸型プリ
ズム及びこのレンズを用いた新たなレーザ光投影装置を
提供することにある。
However, fly's eye lenses are difficult and expensive to manufacture. Furthermore, it is not possible to focus all of the light diffused by the fly's eye lens, and a high output laser device is required in consideration of loss. Therefore, there was a problem that the product cost increased. The present invention was made in view of the problems of the prior art described above, and its purpose is to provide an inexpensive multifaceted convex prism that can uniformize the intensity distribution of light on a light focusing surface without using a fly's eye lens. The object of the present invention is to provide a new laser beam projection device using this lens.

【0004】0004

【課題を解決するための手段】前記目的を達成するため
に、請求項1に係る多面凸型プリズムにおいては、対向
する光入出射面を有する凸型プリズムにおいて、一方の
光入出射面には、光軸に対し垂直に延出する帯状の中央
平面と、この中央平面の両側に中央平面と平行に延出し
、中央平面に対し対称で順次傾斜が大となる複数組の帯
状の傾斜平面とからなる第1の凸稜面が形成され、他方
の光入出射面には、前記第1の凸稜面を形成する各平面
の延出方向と直交する方向に延出し、光軸に対し垂直に
延出する帯状の中央平面と、この中央平面の両側に中央
平面と平行に延出し、中央平面に対し対称で順次傾斜が
大となる複数組の帯状の傾斜平面とからなる第2の凸稜
面が形成され、一方の光入出射面に入射した平行光が他
方の光入出射面から出射して、2つの帯状中央平面の光
軸方向重合領域に整合する矩形形状に光軸上で面集束す
るように、前記第1,第2の凸稜面を形成する傾斜平面
の面角度を設定するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, in a multifaceted convex prism according to claim 1, in a convex prism having opposing light input/output surfaces, one light input/output surface has a , a band-shaped central plane extending perpendicular to the optical axis, and a plurality of sets of band-shaped inclined planes extending parallel to the central plane on both sides of the central plane, symmetrical with respect to the central plane, and having gradually increasing inclinations. A first convex ridge surface is formed, and the other light input/output surface has a first convex ridge surface extending in a direction perpendicular to the extending direction of each plane forming the first convex ridge surface and perpendicular to the optical axis. a second convexity consisting of a strip-shaped central plane extending to the central plane; and a plurality of sets of strip-shaped inclined planes extending parallel to the central plane on both sides of the central plane, symmetrical with respect to the central plane and gradually increasing inclination; A ridge surface is formed, and the parallel light incident on one light input/output surface is emitted from the other light input/output surface, forming a rectangular shape on the optical axis that matches the overlapping region of the two band-shaped central planes in the optical axis direction. The surface angles of the inclined planes forming the first and second convex ridge surfaces are set so that the surfaces converge.

【0005】また請求項2では、請求項1記載の多面凸
型プリズムにおいて、第1の凸稜面と第2の凸稜面を同
一形状にして、出射光が正方形状に光軸上で略面集束す
るようにしたものである。また請求項3では、前記第1
の凸稜面が表側に形成され、裏側が光軸に対し垂直な平
面とされた凸稜面プリズムと、前記第2の凸稜面が表側
に形成され、裏側が光軸に対し垂直な平面とされた第2
の凸稜面プリズムとを、裏側を互いに付き合わせて一体
化することにより請求項1記載の多面凸型プリズムを構
成するようにしたものである。
According to a second aspect of the present invention, in the polygonal convex prism according to the first aspect, the first convex ridge surface and the second convex ridge surface are made to have the same shape, so that the emitted light has a substantially square shape on the optical axis. It is designed to focus on a plane. Further, in claim 3, the first
a convex ridge prism in which the convex ridge surface is formed on the front side and the back side is a plane perpendicular to the optical axis; and the second convex ridge surface is formed on the front side, and the back side is a plane perpendicular to the optical axis. The second
The polygonal convex prism according to claim 1 is constructed by integrating the convex ridge prisms with their back sides facing each other.

【0006】また請求項4では、請求項3記載の多面凸
型プリズムにおいて、第1の凸稜面プリズムと第2の凸
稜面プリズムとを同一形状にして、出射光が正方形状に
光軸上で略面集束するようにしたものである。また請求
項5に係る多面凸型プリズムにおいては、対向する光入
出射面を有する凸レンズにおいて、一方の光入出射面に
は光軸に対し垂直な平面を形成し、他方の光入出射面に
は、光軸に対し垂直な円形の中央平面と、この中央平面
の周りに中央平面と同芯で順次傾斜が大となる複数のリ
ング状のテーパ面とからなる凸稜面を形成し、一方の光
入出射面に入射した平行光が他方の光入出射面から出射
して、前記円形中央平面に整合する円形状に光軸上で面
集束するように、前記凸稜面を形成するテーパ面の面角
度を設定するようにしたものである。
According to a fourth aspect of the present invention, in the polygonal convex prism according to the third aspect, the first convex ridge prism and the second convex ridge prism are made to have the same shape, so that the emitted light has a square optical axis. It is designed to focus approximately on a surface at the top. Furthermore, in the polygonal convex prism according to claim 5, in a convex lens having opposing light input/output surfaces, one light input/output surface is formed with a plane perpendicular to the optical axis, and the other light input/output surface is formed with a plane perpendicular to the optical axis. forms a convex ridge surface consisting of a circular central plane perpendicular to the optical axis and a plurality of ring-shaped tapered surfaces concentric with the central plane and gradually increasing inclination around this central plane; A taper forming the convex ridge surface such that parallel light incident on the light input/output surface of the light exit surface exits from the other light input/output surface and is focused on the optical axis into a circular shape that matches the circular central plane. This allows you to set the surface angle of the surface.

【0007】また請求項6に係るレーザ光投影装置にお
いては、レーザ光の光路上に、前記請求項1〜5のいず
れかに記載の多面凸型プリズムを配置し、多面凸型プリ
ズムからの出射光の集束面に被投影パターンの形成され
たマスクを配置するとともに、マスク前方に被投影パタ
ーンを縮小投影する拡大側テレセントリック型投影レン
ズを配置するようにしたものである。
Further, in the laser beam projection device according to claim 6, the polygonal convex prism according to any one of the aforementioned aspects 1 to 5 is disposed on the optical path of the laser beam, and the output from the polygonal convex prism is A mask on which a pattern to be projected is formed is placed on the convergence plane of the emitted light, and an enlargement-side telecentric projection lens for reducing and projecting the pattern to be projected is placed in front of the mask.

【0008】また請求項7では、請求項6に係るレーザ
光投影装置において、それぞれの焦点を共焦点とし、出
射光を縦方向に拡散する縦拡散シリンドリカル凹レンズ
、出射光を横方向に拡散する横拡散シリンドリカル凹レ
ンズ、及び出射光を平行にするコリメータレンズからな
るビームエクスパンダー光学系を介してレーザ光を多面
凸型プリズムに導くようにしたものである。
According to a seventh aspect of the present invention, in the laser beam projection apparatus according to the sixth aspect, each focal point is a confocal lens, a vertically diffusing cylindrical concave lens that diffuses the emitted light in the vertical direction, and a lateral concave lens that diffuses the emitted light in the horizontal direction. Laser light is guided to a polygonal convex prism through a beam expander optical system consisting of a diffusing cylindrical concave lens and a collimator lens that makes the emitted light parallel.

【0009】[0009]

【作用】請求項1〜5では、光束は多面凸型プリズムに
入射する際に光入射面を構成する稜面毎の光束に分散さ
れ、多面凸型プリズムから出射する際には分散された光
束それぞれが光出射面を構成する稜面毎の光束に分散さ
れ、かつ分散した光束全てが光軸上の集束面に集束する
。そして請求項1〜4では、第1の凸稜面の帯状中央平
面と第2の凸稜面の帯状中央平面とが光軸方向に重合す
る矩形状に面集束する。また請求項5では、円形中央平
面に整合する円形状に面集束する。
[Operation] According to claims 1 to 5, when the light beam enters the polygonal convex prism, it is dispersed into a luminous flux for each ridge surface constituting the light incident surface, and when it exits from the polygonal convex prism, it is a dispersed luminous flux. Each of the light beams is dispersed into light beams for each ridge surface constituting the light exit surface, and all the dispersed light beams are converged on a convergence surface on the optical axis. In the first to fourth aspects of the present invention, the belt-shaped central plane of the first convex ridge surface and the belt-shaped central plane of the second convex ridge surface are surface-focused into a rectangular shape that overlaps in the optical axis direction. Further, in a fifth aspect of the present invention, the surface is focused into a circular shape that matches the circular central plane.

【0010】請求項6では、レーザ光は多面凸型プリズ
ムによって複数の光束に分散され、かつマスクの配置さ
れた集束面上に集束する。そしてこの集束面上のマスク
を透過した光束は分散して拡大側テレセントリック型投
影レンズに入射し、この投影レンズから分散した状態で
出射して光軸上所定位置(結像面)に面集束する。また
請求項7では、レーザ光がビームエクスパンダー光学系
で拡散された後、多面凸型プリズムに入射する。
According to a sixth aspect of the present invention, the laser beam is dispersed into a plurality of light beams by a polygonal convex prism, and is focused on a converging surface on which a mask is arranged. The light beam that passes through the mask on the focusing surface is dispersed and enters the telecentric projection lens on the magnification side, exits from this projection lens in a dispersed state, and is focused on a predetermined position (image forming plane) on the optical axis. . Further, in a seventh aspect of the present invention, the laser beam is diffused by the beam expander optical system and then enters the polygonal convex prism.

【0011】[0011]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。図1及び図2は本発明に係る多面凸型プリズムの
第1の実施例を示すもので、図1は多面凸型プリズムの
斜視図、図2は多面凸型プリズムから出射した光が集束
する様子を説明する説明図である。
Embodiments Next, embodiments of the present invention will be described based on the drawings. 1 and 2 show a first embodiment of the polygonal convex prism according to the present invention. FIG. 1 is a perspective view of the polygonal convex prism, and FIG. 2 shows the convergence of light emitted from the polygonal convex prism. FIG. 2 is an explanatory diagram illustrating the situation.

【0012】これらの図において、多面凸型プリズム1
0は全体が正方形状で、対向する一対の光入出射面11
A,11Bを有している。そして一方の光入出射面は、
光軸Lに垂直なたんざく形状(帯状)の第1の平面12
aと、この第1の平面の両側に隣接し、第1の平面12
aに対し傾斜する対称な一組の第2の平面14a,14
aと、第2の平面14a,14aの外側に隣接し、第1
の平面12aに対し第2の平面よりもさらに傾斜する対
称なたんざく形状の一組の第3の平面16a,16aの
あわせて5個の平面から構成された凸稜面11Aとされ
ている。また他方の光入出射面は、凸稜面11Aと傾斜
平面の面角度がわずかに異なり、凸稜面11Aを光軸L
回りに90度回転した形状に近い凸稜面11Bとされて
いる。即ち、凸稜面11Bも凸稜面11Aと同様、たん
ざく形状の第1の平面12bの両側に、順次傾斜が大と
なる第2の平面14b,14b、第3の平面16b,1
6bが対称に形成された形状となっている。
In these figures, a polygonal convex prism 1
0 has a square shape as a whole, and has a pair of opposing light input/output surfaces 11.
A, 11B. And one light input/output surface is
A tanzaku-shaped (band-shaped) first plane 12 perpendicular to the optical axis L
a, and a first plane 12 adjacent to both sides of this first plane
a pair of symmetrical second planes 14a, 14 inclined with respect to a;
a, adjacent to the outside of the second planes 14a, 14a, and the first plane
The convex ridge surface 11A is made up of a total of five planes, including a pair of symmetric third planes 16a, 16a in a tanzag shape that are more inclined than the second plane with respect to the plane 12a. In addition, the other light input/output surface has a slightly different surface angle between the convex ridge surface 11A and the inclined plane, and the convex ridge surface 11A is aligned with the optical axis L.
The convex ridge surface 11B is similar to a shape rotated by 90 degrees. That is, like the convex ridge surface 11A, the convex ridge surface 11B also has second planes 14b, 14b, and third planes 16b, 16b, which have increasing inclinations on both sides of the tanzaku-shaped first plane 12b.
6b has a symmetrical shape.

【0013】そして第1の凸稜面11Aを構成する傾斜
平面14a,14a,16a,16a及び第2の凸稜面
11Bを構成する傾斜平面14b,14b,16b,1
6bは、光軸Lに平行に入射した光をレンズ前方の光軸
上の所定位置に、第1の凸稜面11A側の中央平面12
aと第2の凸稜面11B側の中央平面12bが光軸L方
向に重なってできる正方形Aに集束させる面角度に設定
されている。即ち、光軸Lと平行に第1の凸稜面11A
からレンズ10に入射した光束は、入射する際に凸稜面
11Aを構成する5個の平面(12a,14a,14a
,16a,16)に対応した横断面たんざく形状の5個
の光束に分散される。そしてそれぞれの光束は第2の凸
稜面11Bから出射する際に、凸稜面11Bを構成する
5個の平面(12b,14b,14b,16b,16b
)に対応した5個の光束、即ち全部で25個の光束に分
散されるが、この25個の光束全てが、第1の凸稜面1
1Aの中央平面12aと第2の凸稜面11Bの中央平面
12bの双方を透過した光束の横断面である正方形Aに
面集束するように、レーザ光の波長、プリズム材料の屈
折率(レーザ光の波長の関数),プリズムの厚さ(プリ
ズム内のレーザ光通過距離)を考慮して、第1の凸稜面
11A及び第2の凸稜面11Bをそれぞれ構成する8個
の傾斜平面(14a,14a,16a,16a,14a
,14b,16b,16b)の面角度が設定されている
。そしてこの正方形状に面集束した光束は、光が多面凸
型プリズム10を透過することによって25個の横断面
正方形状の光束に分散された後、それぞれの分散光束す
べてが再び1つに集束された光であるため、集束面にお
ける光は強弱ムラのない、即ち強度分布の平滑化された
光となっている。なお前記した実施例では、多面凸型プ
リズム10からの出射光が正方形状に面集束するように
なっているが、帯状平面の数や帯の巾や傾斜平面の中央
平面に対する傾斜角を変えることにより、レンズに入射
する光束の横断面形状に関係なく、任意の縦横比の光束
を形成することができる。
The inclined planes 14a, 14a, 16a, 16a forming the first convex ridge surface 11A and the inclined planes 14b, 14b, 16b, 1 forming the second convex ridge surface 11B.
6b directs the light incident parallel to the optical axis L to a predetermined position on the optical axis in front of the lens.
A and the central plane 12b on the second convex ridge surface 11B side overlap in the direction of the optical axis L, and the surface angle is set to converge the light into a square A. That is, the first convex ridge surface 11A is parallel to the optical axis L.
The light flux that has entered the lens 10 from the 5 planes (12a, 14a, 14a
, 16a, 16), and is dispersed into five light beams having a tanzaku cross section. Then, when each light beam exits from the second convex ridge surface 11B, the five planes (12b, 14b, 14b, 16b, 16b
), that is, a total of 25 light fluxes, and all of these 25 light fluxes are distributed on the first convex ridge surface 1.
The wavelength of the laser beam, the refractive index of the prism material (laser beam Considering the thickness of the prism (the laser beam passage distance within the prism), the eight inclined planes (14a , 14a, 16a, 16a, 14a
, 14b, 16b, 16b) are set. This squarely focused light beam is dispersed into 25 light beams each having a square cross section by passing through the polygonal convex prism 10, and then all of the dispersed light beams are again focused into one beam. Therefore, the light on the focusing surface has no unevenness in intensity, that is, the light has a smoothed intensity distribution. In the embodiment described above, the light emitted from the polygonal convex prism 10 is focused into a square surface, but it is possible to change the number of strip planes, the width of the strip, and the angle of inclination of the inclined plane with respect to the central plane. Accordingly, a light beam having an arbitrary aspect ratio can be formed regardless of the cross-sectional shape of the light beam incident on the lens.

【0014】図3は本発明に係る多面凸型プリズムの第
2の実施例を示すもので、2個の多面凸型プリズム22
A,22Bを密着させて多面凸型プリズム20として一
体化したものである。多面凸型プリズム22A(22B
)は、表側が前記第1の実施例の凸稜面11A(11B
)と同一形状、即ち、第1の平面12a(12b)と、
傾斜した第2の平面14a,14a(14b,14b)
と、傾斜した第3の平面16a,16a(16b,16
b)とから構成された凸稜面11C(11D)とされ、
裏側が光軸Lと垂直な平面11Eとされている。そして
第1の平面12a,12bを光軸方向に直交して重なる
ようにして、裏側どうしを密着したものである。この第
2の実施例では、多面凸型プリズム22A(22B)は
片面だけを凸稜面加工すればよいため、それだけ加工が
容易で、前記第1の実施例に示す多面凸型プリズム10
よりも製造が容易である。しかし密着面を透過する際の
光の表面及び裏面の反射による損失があるため、多面凸
型プリズム10に比べて光の強度が低下するという欠点
がある。
FIG. 3 shows a second embodiment of the polygonal convex prism according to the present invention, in which two polygonal convex prisms 22
A and 22B are brought into close contact with each other and integrated as a polygonal convex prism 20. Multifaceted convex prism 22A (22B
), the front side is the convex ridge surface 11A (11B) of the first embodiment.
), that is, the first plane 12a (12b),
Slanted second planes 14a, 14a (14b, 14b)
and the inclined third planes 16a, 16a (16b, 16
b) A convex ridge surface 11C (11D) composed of
The back side is a plane 11E perpendicular to the optical axis L. Then, the first planes 12a and 12b are overlapped perpendicularly to the optical axis direction, and the back sides are brought into close contact with each other. In this second embodiment, since the polygonal convex prism 22A (22B) only needs to be processed into a convex ridge on one side, the processing is that much easier, and the polygonal convex prism 10 shown in the first embodiment is
It is easier to manufacture than However, since there is loss due to reflection of the light from the front and back surfaces when passing through the contact surface, there is a drawback that the intensity of the light is lower than that of the polygonal convex prism 10.

【0015】なお前記第1,第2の実施例における多面
凸型プリズム10(20)では、出射光を光軸L上に面
集束させるためにプリズムの光入射面側と光出射面側の
傾斜平面の面角度がわずかに異なっていたが、光入出射
面11A,11B(11C,11D)を全く同一形状と
するようにしても、出射光を光軸上に略面集束させるこ
とができる。
In the polygonal convex prism 10 (20) in the first and second embodiments, in order to surface-focus the emitted light onto the optical axis L, the light incident surface side and the light exit surface side of the prism are inclined. Although the surface angles of the planes were slightly different, even if the light input/output surfaces 11A, 11B (11C, 11D) have exactly the same shape, the emitted light can be substantially focused on the optical axis.

【0016】図4及び図5は本発明に係る多面凸型プリ
ズムの第3の実施例を示すもので、図4は多面凸型プリ
ズムの斜視図、図5は多面レンズから出射した光が集束
する様子を説明する説明図である。この多面凸型プリズ
ム30は全体が円錐台形状で、一方の光入出射面は光軸
Lに垂直な平面11Fとされ、他方の光入出射面は、光
軸Lに垂直な円形中央平面32と、この円形中央平面3
2の回りに形成され、外側のもの程、円形中央平面32
に対して大きく傾斜しているリング状テーパ面34,3
6,38とから構成された凸稜面11Gとされている。 そしてテーパ面34,36,38の面角度は、テーパ面
34,36,38からの出射光が光軸L上で中央平面3
2と同一の円形Bに面集束するように設定されている。
FIGS. 4 and 5 show a third embodiment of the polygonal convex prism according to the present invention. FIG. 4 is a perspective view of the polygonal convex prism, and FIG. 5 shows the convergence of light emitted from the polygonal lens. FIG. This polygonal convex prism 30 has a truncated cone shape as a whole, and one light input/output surface is a plane 11F perpendicular to the optical axis L, and the other light input/output surface is a circular central plane 32 perpendicular to the optical axis L. And this circular central plane 3
2, and the outer one is a circular central plane 32
A ring-shaped tapered surface 34, 3 that is greatly inclined with respect to
The convex ridge surface 11G is composed of 6 and 38. The surface angles of the tapered surfaces 34, 36, and 38 are such that the light emitted from the tapered surfaces 34, 36, and 38 is aligned with the central plane 3 on the optical axis L.
It is set so that the surface converges on the same circle B as 2.

【0017】即ち、平面31側から光軸Lと平行に多面
凸型プリズム30に入射した光は、プリズム内をそのま
ま直進するが、プリズム30から出射する際に、中央平
面32とテーパ面34,36,38に対応した光束に分
散され、これらの分散光の全てが平面11F及び中央平
面32の双方を透過した光の横断面である円形Bに集束
する。そしてテーパ面34,36,38は無限大の数の
平面が周方向に連続して形成された構造と同義であるた
め、円形Bに集束した光束は、多面凸型プリズム30を
透過することよって無限大数の光束に分散された後、再
び1つに集束された光である。このため、集束面での光
は前記第1の実施例で得られるよりもさらに強弱ムラの
ない、即ち強度分布のさらに平滑化された光となってい
る。
That is, light that enters the polygonal convex prism 30 from the plane 31 side parallel to the optical axis L travels straight through the prism, but when exiting from the prism 30, it passes through the central plane 32, the tapered surface 34, 36 and 38, and all of these dispersed lights are focused into a circle B, which is a cross section of the light that has passed through both the plane 11F and the central plane 32. Since the tapered surfaces 34, 36, and 38 are synonymous with a structure in which an infinite number of planes are continuously formed in the circumferential direction, the light beam focused in the circle B is transmitted through the polygonal convex prism 30. This is light that is dispersed into an infinite number of light beams and then refocused into one light beam. Therefore, the light on the converging surface has even more uniform intensity than that obtained in the first embodiment, that is, the light has a smoother intensity distribution.

【0018】また円柱状のプリズム材を軸回りに回転さ
せた状態でコーナ部を研削及び研磨してテーパ面を形成
できるので、テーパ面34,36,38を加工する方が
、前記第1の実施例における傾斜平面を加工する場合よ
りも易しく、本実施例の多面凸型プリズム30の方が製
造が容易である。なお図5では、平面11F側に光が入
射するように多面凸型プリズム30が配置されているが
、凸稜面11G側を光入射側となるように配置してもよ
い。
Further, since the tapered surfaces can be formed by grinding and polishing the corner portions of the cylindrical prism material while it is rotated around the axis, it is better to process the tapered surfaces 34, 36, and 38 in accordance with the first method. It is easier to manufacture the multifaceted convex prism 30 of this example than the case of machining the inclined plane in the example. In FIG. 5, the polygonal convex prism 30 is arranged so that light is incident on the plane 11F side, but it may be arranged so that the convex ridge surface 11G side is the light incident side.

【0019】図6は本発明に係るレーザ光投影装置の実
施例を示すもので、第1の実施例に示す多面凸型プリズ
ムを用いた装置である。符号40はビームエクスパンダ
ー光学系で、共焦点fをもち、光を縦方向に拡散する縦
拡散シリンドリカルレンズ42と、光を横方向に拡散す
る横拡散シリンドリカルレンズ44と、光を平行光にす
るコリメータレンズ46とから構成されている。このビ
ームエクスパンダー光学系40の前方には多面凸型プリ
ズム10が配置され、多面凸型プリズム10の集束面位
置には、透光部によって回路パターン52の形成された
マスク50が配置され、マスク50の前方には回路パタ
ーン52を前方に縮小投影する拡大側テレセントリック
型投影レンズ60が配置されている。
FIG. 6 shows an embodiment of a laser beam projection apparatus according to the present invention, which uses the polygonal convex prism shown in the first embodiment. Reference numeral 40 denotes a beam expander optical system, which has a confocal f and includes a vertical diffusion cylindrical lens 42 that diffuses light in the vertical direction, a horizontal diffusion cylindrical lens 44 that diffuses the light in the horizontal direction, and converts the light into parallel light. It is composed of a collimator lens 46. A polygonal convex prism 10 is disposed in front of the beam expander optical system 40, and a mask 50 on which a circuit pattern 52 is formed by a transparent portion is disposed at the focusing surface of the polygonal convex prism 10. An enlargement-side telecentric projection lens 60 is arranged in front of the circuit pattern 50 to project the circuit pattern 52 forward in a reduced size.

【0020】そして光束横断面が横長矩形状のエキシマ
レーザ光は、ビームエクスパンダー光学系40を通過す
ることによって縦横方向に拡大されて正方形状の平行光
束L1となり、多面凸型プリズム10を通過することに
よって25個の光束に分散され、かつマスク50上に正
方形状に面集束する。そしてマスクの回路パターン52
を透過した分散された光束L2は投影レンズ60によっ
て前方所定位置(結像面位置)に投影されて回路パター
ンが縮小投影される。この投影された位置では、投影レ
ンズから出射した光束全てが集束して、最もレーザ光の
エネルギが高められた位置である。さらにこの結像面に
おけるレーザ光は、多面凸型プリズム10において25
個の光に分散後、集束されたものであるため、照射レー
ザ光の強度分布は投影面(結像面)において均質となっ
ている。
The excimer laser beam having a horizontally long rectangular beam cross section is expanded in the vertical and horizontal directions by passing through the beam expander optical system 40 to become a square parallel beam L1, which passes through the polygonal convex prism 10. As a result, the light beam is dispersed into 25 light beams and focused onto the mask 50 in a square shape. And the mask circuit pattern 52
The dispersed light beam L2 that has passed through is projected onto a predetermined position in front (image forming plane position) by the projection lens 60, and the circuit pattern is projected in a reduced size. This projected position is the position where all the light beams emitted from the projection lens are focused and the energy of the laser beam is maximized. Further, the laser beam on this image forming plane is transmitted to the polygonal convex prism 10 at 25
Since the laser beam is dispersed into individual beams and then focused, the intensity distribution of the irradiated laser beam is homogeneous on the projection plane (imaging plane).

【0021】なお図6に示すレーザ光投影装置では、ビ
ームエクスパンダー光学系40によってレーザ光の光束
を正方形状に拡大するようになっているが、多面凸型プ
リズム10をレーザ光の光束の横断面形状に整合する大
きさに形成するようにすれば、エクスパンダー光学系4
0を用いずに直接レーザ光を凸型多面プリズム10に入
射させることができる。
In the laser beam projector shown in FIG. 6, the beam expander optical system 40 expands the beam of the laser beam into a square shape, but the polygonal convex prism 10 is used to cross the beam of the laser beam. If it is formed to a size that matches the surface shape, the expander optical system 4
Laser light can be made to directly enter the convex polygonal prism 10 without using zero.

【0022】図7は図6に示す装置をパターンCVDに
利用した場合の反応セル内の光路を示す断面図である。 この図において、符号70は投影レンズ60の前方に配
置された反応セルで、反応セル70の開口部にはシール
された合成石英ガラス製の窓72が設けられている。反
応セル70内には反応ガス(材料ガス)が封入されてお
り、投影レンズ60による投影位置には基板74が配置
されている。符号71a,71bは反応ガスの流入口及
び流出口である。
FIG. 7 is a sectional view showing the optical path inside the reaction cell when the apparatus shown in FIG. 6 is used for pattern CVD. In this figure, reference numeral 70 denotes a reaction cell placed in front of the projection lens 60, and the opening of the reaction cell 70 is provided with a sealed window 72 made of synthetic quartz glass. A reaction gas (material gas) is sealed in the reaction cell 70, and a substrate 74 is placed at the projection position by the projection lens 60. Reference numerals 71a and 71b are an inlet and an outlet for reactant gas.

【0023】投影レンズ60から出射したレーザ光は基
板74上に集束して、マスクに形成されている回路パタ
ーン52を基板表面に投影し、反応ガスがレーザ光によ
って光分解され、発生したラジカルが再結合して基板7
4上に膜を形成する。特に窓72を透過する際のレーザ
光は25本の光束に分散され、かつ互いの光束がほとん
ど重合しない状態となっているので、セル70内の窓7
2の近傍位置におけるレーザ光のエネルギは密度は低く
、反応ガスを光分解するに十分なエネルギ密度とはなっ
ていない。従って従来のように反応セルの窓の近傍で反
応が生じて窓が曇り、レーザ光の透過率が低下するとい
う不具合がなく、高効率のレーザCVDを達成できる。 また基板上に集束するレーザ光のエネルギは平滑化され
るので、均一厚さの膜を形成することができ、加工精度
の高い製品を安価に供給することができる。
The laser beam emitted from the projection lens 60 is focused on the substrate 74 and projects the circuit pattern 52 formed on the mask onto the substrate surface, and the reactive gas is photolyzed by the laser beam, and the generated radicals are Recombine substrate 7
Form a film on 4. In particular, the laser beam when passing through the window 72 is dispersed into 25 beams, and since the beams hardly overlap with each other, the window 72 inside the cell 70
The energy density of the laser beam at a position near point 2 is low, and the energy density is not sufficient to photolyze the reaction gas. Therefore, highly efficient laser CVD can be achieved without the problem of the reaction occurring near the window of the reaction cell, causing the window to become cloudy and reducing the transmittance of laser light, which is the case in the prior art. Furthermore, since the energy of the laser beam focused on the substrate is smoothed, a film with a uniform thickness can be formed, and products with high processing precision can be supplied at low cost.

【0024】なお前記実施例では、本発明をパターンC
VDに適用した実施例について説明したが、次の様な種
々の技術に適用できる。即ち、1990年春及び秋の応
用物理学会においては、半導体を製造する際のリソグラ
フィー工程におけるレジストの形成を省略し、ArFエ
キシマレーザを用いてレジストなしで直接Siにエッチ
ングする技術について報告しているが、本発明はこのレ
ーザ利用のSiのレジストエッチングにも適用できる。 また、同学会において、NF3ガスとフッ素に耐性を持
たせた超高分子量PMMAレジストを用いてArFエキ
シマレーザを照射し、露光と現像を同時に行い、半導体
回路製造工程中のリソグラフィー工程の簡略化が提案さ
れているが、本発明はこのリソグラフィー用レジストの
ドライ現像にも適用できる。同じく1990年春、秋の
応用物理学会において、KrFエキシマレーザによる結
晶性SiCの回路パターンエッチングについて報告して
いるが、本発明はこのSiCの回路パターンエッチング
についても適用できる。同じく1990年春の応用物理
学会において、エキシマレーザ光を利用した高分子材料
(例えば、テフロン)の表面改質について報告している
が、本発明はエキシマレーザの照射による高分子材料の
表面の改質にも利用することができる。
[0024] In the above embodiment, the present invention was applied to pattern C.
Although the embodiment applied to VD has been described, it can be applied to various technologies such as those described below. In other words, at the 1990 Spring and Fall 1990 Japan Society of Applied Physics conferences, researchers reported on a technology that omitted resist formation in the lithography process when manufacturing semiconductors and directly etched Si using an ArF excimer laser without a resist. The present invention can also be applied to Si resist etching using this laser. In addition, at the same conference, an ultra-high molecular weight PMMA resist with resistance to NF3 gas and fluorine was used to irradiate ArF excimer laser, and exposure and development were performed simultaneously, simplifying the lithography process in the semiconductor circuit manufacturing process. Although proposed, the present invention can also be applied to dry development of this lithography resist. Similarly, at the Japan Society of Applied Physics held in the spring and fall of 1990, a report was made on circuit pattern etching of crystalline SiC using a KrF excimer laser, and the present invention can also be applied to this SiC circuit pattern etching. Similarly, at the Japan Society of Applied Physics Conference in the spring of 1990, there was a report on surface modification of polymeric materials (e.g. Teflon) using excimer laser light, but the present invention focuses on surface modification of polymeric materials by excimer laser irradiation. It can also be used for

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
に係る多面凸型プリズムによれば、光束は多面凸型プリ
ズムに入射する際に光入射面を構成する稜面毎の光束に
分散され、さらに多面凸型プリズムから出射する際には
分散光それぞれが光出射面を構成する稜面毎の光束に分
散されるとともに、分散された光束全てが光軸上の集束
面に集束するので、集束面において強度分布の平滑化さ
れたエネルギ密度の高い光が得られる。
Effects of the Invention As is clear from the above description, according to the polygonal convex prism according to the present invention, when the light beam enters the polygonal convex prism, it is dispersed into a luminous flux for each ridge surface that constitutes the light incidence surface. Furthermore, when the light is emitted from the multifaceted convex prism, each of the dispersed lights is dispersed into a light beam for each ridge surface that constitutes the light exit surface, and all the dispersed light beams are converged on the converging surface on the optical axis. , light with a smooth intensity distribution and high energy density can be obtained at the focusing surface.

【0026】また本発明に係るレーザ光投影装置によれ
ば、レーザ光は多面凸型プリズムによって複数の光束に
分散され、かつ被投影パターンの形成されたマスク上に
集束し、さらにマスクを透過した光束は分散状態で拡大
側テレセントリック型投影レンズに入射し、投影レンズ
から分散した状態で出射して光軸上所定位置(結像面)
に面集束し、ここに被投影パターンを投影するので、光
の強弱ムラのない投影パターンが得られる。またレーザ
光をビームエクスパンダー光学系を用いて所定の形状に
拡大するようにすれば、凸型多面レンズを加工のし易い
適切な大きさとすることができるので、装置をコスト的
に安価にできる。そして投影レンズ前方に反応セルを置
いて窓からレーザ光を入射するようにした場合には、レ
ーザ光は多数の光束に分散された状態で窓を透過するの
で、窓近傍のレーザ光のエネルギは低く、窓近傍で反応
ガスが反応することに伴う従来の問題が解消される。ま
た結像面に対応する位置に配置された基板近傍で最もレ
ーザ光のエネルギー密度が高くなるため、多光子吸収分
解が起こり、照射レーザの波長に吸収を持たない材料ガ
スをも光分解させることができる。
Further, according to the laser beam projection device according to the present invention, the laser beam is dispersed into a plurality of light beams by the polygonal convex prism, focused on the mask on which the pattern to be projected is formed, and further transmitted through the mask. The light flux enters the magnifying telecentric projection lens in a dispersed state, and exits from the projection lens in a dispersed state to a predetermined position on the optical axis (imaging plane).
Since the light is focused on the surface and the projected pattern is projected thereon, a projected pattern without unevenness in light intensity can be obtained. Furthermore, by expanding the laser beam into a predetermined shape using a beam expander optical system, the convex polygonal lens can be made into an appropriate size that is easy to process, making the device less expensive. . If a reaction cell is placed in front of the projection lens and the laser beam is incident through the window, the laser beam will pass through the window while being dispersed into many beams, so the energy of the laser beam near the window will be reduced. This eliminates the conventional problems associated with reactant gases reacting near the window. In addition, since the energy density of the laser beam is highest near the substrate located at the position corresponding to the imaging plane, multiphoton absorption decomposition occurs, and material gases that do not have absorption at the wavelength of the irradiated laser are also photodecomposed. Can be done.

【0027】一般にレーザの出力パターンはガウス分布
であり、そのためレーザ光の中心部のエネルギー密度が
最も高く、きれいなレーザ加工が難しいが、この請求項
1〜5に示す多面凸型プリズム(円錐台型レンズ)をパ
ターン転写に用いればエネルギー密度が均質となるため
、CO2レーザやYAGレーザによる熱的加工に用いて
もきれいな加工面を出すことができる。また請求項5記
載の多面凸型プリズムをパターン転写に用いる場合には
、集束面が円形であるため、投影レンズの瞳に入った光
を効果的に使うことができる。
Generally, the output pattern of a laser is a Gaussian distribution, and therefore the energy density is highest at the center of the laser beam, making it difficult to perform clean laser processing. If a lens) is used for pattern transfer, the energy density becomes homogeneous, so even if it is used for thermal processing with a CO2 laser or YAG laser, a clean processed surface can be obtained. Furthermore, when the polygonal convex prism according to the fifth aspect of the present invention is used for pattern transfer, since the convergence surface is circular, the light that has entered the pupil of the projection lens can be effectively used.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る多面凸型プリズムの一実施例の斜
視図
FIG. 1 is a perspective view of an embodiment of a multifaceted convex prism according to the present invention.

【図2】多面凸型プリズムから出射した光が集束する様
子を説明する説明図
[Figure 2] An explanatory diagram illustrating how light emitted from a polygonal convex prism is focused.

【図3】本発明に係る多面凸型プリズムの第2の実施例
の斜視図
FIG. 3 is a perspective view of a second embodiment of a polygonal convex prism according to the present invention.

【図4】本発明に係る多面凸型プリズムの第3の実施例
の斜視図
FIG. 4 is a perspective view of a third embodiment of a polygonal convex prism according to the present invention.

【図5】多面凸型プリズムから出射した光が集束する様
子を説明する説明図
[Figure 5] An explanatory diagram illustrating how light emitted from a polygonal convex prism is focused.

【図6】本発明に係るレーザ光投影装置の一実施例を示
す図
FIG. 6 is a diagram showing an embodiment of a laser beam projection device according to the present invention.

【図7】投影レンズを出射したレーザ光の反応セル内で
の集束の様子を説明する断面図
[Fig. 7] A cross-sectional view illustrating how the laser light emitted from the projection lens is focused within the reaction cell.

【図8】従来のレーザ光投影装置の全体構造を示す図[Figure 8] Diagram showing the overall structure of a conventional laser beam projection device


図9】従来の改良されたレーザ光投影装置の全体構造を
示す図
[
FIG. 9 is a diagram showing the overall structure of a conventional improved laser beam projection device

【符号の説明】[Explanation of symbols]

10,20,30  多面凸型プリズム11A,11B
,11C,11D  光入出射面である凸稜面 12a,12b  中央平面 14a,14b,16a,16b  傾斜平面32  
円形中央平面 34,36,38  テーパ面 40  ビームエクスパンダー光学系 42  縦拡散シリンドリカルレンズ 44  横拡散シリンドリカルレンズ 46  コリメータレンズ 50  マスク 52  被投影パターンである回路パターン60  テ
レセントリック型投影レンズf  共焦点
10, 20, 30 Multifaceted convex prism 11A, 11B
, 11C, 11D Convex ridge surfaces 12a, 12b which are light input/output surfaces Central planes 14a, 14b, 16a, 16b Inclined plane 32
Circular central plane 34, 36, 38 Tapered surface 40 Beam expander optical system 42 Vertical diffusing cylindrical lens 44 Laterally diffusing cylindrical lens 46 Collimator lens 50 Mask 52 Circuit pattern 60 as a pattern to be projected Telecentric projection lens f Confocal

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  対向する光入出射面を有する凸型プリ
ズムにおいて、一方の光入出射面には、光軸に対し垂直
な帯状の中央平面と、この中央平面の両側に中央平面に
対し対称で順次傾斜が大となる複数組の帯状の傾斜平面
とからなる第1の凸稜面が形成され、他方の光入出射面
には、前記第1の凸稜面を形成する各平面の延出方向と
直交する方向に延出し、光軸に対し垂直な帯状の中央平
面と、この中央平面の両側に中央平面に対し対称で順次
傾斜が大となる複数組の帯状の傾斜平面とからなる第2
の凸稜面が形成され、一方の光入出射面に入射した平行
光が他方の光入出射面から出射して、2つの帯状中央平
面の光軸方向重合領域に整合する矩形状に光軸上で面集
束するように、前記第1,第2の凸稜面を形成する傾斜
平面の面角度が設定されたことを特徴とする多面凸型プ
リズム。
Claim 1: In a convex prism having opposing light input/output surfaces, one light input/output surface has a strip-shaped central plane perpendicular to the optical axis, and a strip-shaped central plane perpendicular to the optical axis; A first convex ridge surface is formed by a plurality of sets of band-shaped inclined planes whose inclinations become larger in sequence, and the other light input/output surface has an extension of each plane forming the first convex ridge surface. It consists of a strip-shaped central plane that extends in a direction perpendicular to the exit direction and is perpendicular to the optical axis, and a plurality of sets of strip-shaped inclined planes on both sides of this central plane, which are symmetrical with respect to the central plane and have gradually increasing inclinations. Second
A convex ridge surface is formed, and the parallel light incident on one light input/output surface is emitted from the other light input/output surface, and the optical axis is aligned in a rectangular shape that aligns with the overlapping region in the optical axis direction of the two strip-shaped central planes. A multifaceted convex prism, characterized in that the surface angles of the inclined planes forming the first and second convex ridge surfaces are set so that the surfaces converge at the top.
【請求項2】  前記第1の凸稜面と第2の凸稜面は同
一形状とされて、出射光が正方形状に光軸上で略面集束
することを特徴とする請求項1記載の多面凸型プリズム
2. The first convex ridge surface and the second convex ridge surface have the same shape, and the emitted light is substantially focused on the optical axis in a square shape. Multifaceted convex prism.
【請求項3】  前記多面凸型プリズムは、前記第1の
凸稜面が表側に形成され、裏側が光軸に対し垂直な平面
とされた第1の凸稜面プリズムと、前記第2の凸稜面が
表側に形成され、裏側が光軸に対し垂直な平面とされた
第2の凸稜面プリズムが、裏側を互いに付き合わせて一
体化されたことを特徴とする請求項1記載の多面凸型プ
リズム。
3. The polygonal convex prism includes a first convex ridge prism in which the first convex ridge surface is formed on the front side and a back side is a plane perpendicular to the optical axis; 2. The second convex ridge prism having a convex ridge surface formed on the front side and a back side having a plane perpendicular to the optical axis is integrated with the back sides facing each other. Multifaceted convex prism.
【請求項4】  前記第1の凸稜面プリズムと第2の凸
稜面プリズムは同一形状とされて、出射光が正方形状に
光軸上で略面集束することを特徴とする請求項3記載の
多面凸型プリズム。
4. The first convex ridge prism and the second convex ridge prism have the same shape, and the emitted light is substantially focused on the optical axis in a square shape. The polyhedral convex prism described.
【請求項5】  対向する光入出射面を有する凸型プリ
ズムにおいて、一方の光入出射面には光軸に対し垂直な
平面が形成され、他方の光入出射面には、光軸に対し垂
直な円形の中央平面と、この中央平面の周りに中央平面
と同芯で順次傾斜が大となる複数のリング状のテーパ面
とからなる凸稜面が形成され、一方の光入出射面に入射
した平行光が他方の光入出射面から出射して、前記円形
中央平面に整合する円形状に光軸上で面集束するように
、前記凸稜面を形成するテーパ面の面角度が設定された
ことを特徴とする多面凸型プリズム。
5. In a convex prism having opposing light input and output surfaces, one light input and output surface has a plane perpendicular to the optical axis, and the other light input and output surface has a plane perpendicular to the optical axis. A convex ridge surface consisting of a vertical circular central plane and a plurality of ring-shaped tapered surfaces that are concentric with the central plane and gradually increase in slope is formed around this central plane. The surface angle of the tapered surface forming the convex ridge surface is set so that the incident parallel light exits from the other light input/output surface and is focused on the optical axis into a circular shape that matches the circular central plane. A multifaceted convex prism.
【請求項6】  レーザ光の光路上に、請求項1〜5の
いずれかに記載の多面凸型プリズムを配置し、多面凸型
プリズムからの出射光の集束面に被投影パターンの形成
されたマスクを配置するとともに、マスク前方に被投影
パターンを縮小投影する拡大側テレセントリック型投影
レンズを配置したことを特徴とするレーザ光投影装置。
6. The polygonal convex prism according to any one of claims 1 to 5 is arranged on the optical path of the laser beam, and a projected pattern is formed on the converging surface of the light emitted from the polygonal convex prism. A laser beam projection device characterized in that a mask is disposed, and an enlargement side telecentric projection lens for projecting a reduced projection pattern in front of the mask is disposed.
【請求項7】  それぞれの焦点を共焦点とし、出射光
を縦方向に拡散する縦拡散シリンドリカル凹レンズ、出
射光を横方向に拡散する横拡散シリンドリカル凹レンズ
、及び出射光を平行にするコリメータレンズからなるビ
ームエクスパンダー光学系を介して前記多面凸型プリズ
ムにレーザ光を導くことを特徴とする請求項6記載のレ
ーザ光投影装置。
7. Each focal point is confocal, and it consists of a vertically diffusing cylindrical concave lens that diffuses the emitted light in the vertical direction, a horizontally diffusing cylindrical concave lens that diffuses the emitted light in the horizontal direction, and a collimator lens that makes the emitted light parallel. 7. The laser beam projection apparatus according to claim 6, wherein the laser beam is guided to the polygonal convex prism via a beam expander optical system.
JP3044699A 1991-03-11 1991-03-11 Polyhedral prism Expired - Fee Related JP2617040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3044699A JP2617040B2 (en) 1991-03-11 1991-03-11 Polyhedral prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044699A JP2617040B2 (en) 1991-03-11 1991-03-11 Polyhedral prism

Publications (2)

Publication Number Publication Date
JPH04313701A true JPH04313701A (en) 1992-11-05
JP2617040B2 JP2617040B2 (en) 1997-06-04

Family

ID=12698667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044699A Expired - Fee Related JP2617040B2 (en) 1991-03-11 1991-03-11 Polyhedral prism

Country Status (1)

Country Link
JP (1) JP2617040B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248310A (en) * 2007-03-30 2008-10-16 Mitsubishi Heavy Ind Ltd Apparatus for improving residual stress in tubular body
WO2014085896A1 (en) * 2012-12-07 2014-06-12 Robert Bosch Gmbh Multiple beam shaping illumination system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280581A (en) * 1975-12-26 1977-07-06 Kubota Ltd Dust discharging apparatus in electric dust collector
JPS5280851A (en) * 1975-12-23 1977-07-06 Plessey Handel Investment Ag Optical system for producing optical beam having uniform intensity distribution
JPS57154201A (en) * 1980-11-26 1982-09-24 Kernforschungsanlage Juelich Method of lighting one surface at brightness as evenly as possible using parallel light flux and laser diagnosing apparatus
JPH01283510A (en) * 1988-05-11 1989-11-15 Sony Corp Optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280851A (en) * 1975-12-23 1977-07-06 Plessey Handel Investment Ag Optical system for producing optical beam having uniform intensity distribution
JPS5280581A (en) * 1975-12-26 1977-07-06 Kubota Ltd Dust discharging apparatus in electric dust collector
JPS57154201A (en) * 1980-11-26 1982-09-24 Kernforschungsanlage Juelich Method of lighting one surface at brightness as evenly as possible using parallel light flux and laser diagnosing apparatus
JPH01283510A (en) * 1988-05-11 1989-11-15 Sony Corp Optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248310A (en) * 2007-03-30 2008-10-16 Mitsubishi Heavy Ind Ltd Apparatus for improving residual stress in tubular body
WO2014085896A1 (en) * 2012-12-07 2014-06-12 Robert Bosch Gmbh Multiple beam shaping illumination system
US10018326B2 (en) 2012-12-07 2018-07-10 Robert Bosch Gmbh Multiple beam shaping illumination system

Also Published As

Publication number Publication date
JP2617040B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US4769750A (en) Illumination optical system
JP4329266B2 (en) Illumination apparatus, exposure method and apparatus, and device manufacturing method
EP3491450B1 (en) Laser line illumination
US7210820B2 (en) Methods and apparatuses for homogenizing light
US5453814A (en) Illumination source and method for microlithography
JP3005203B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
US4683524A (en) Illumination apparatus
JPH02295692A (en) Laser processing device
JPS5969979A (en) Laser light source device
KR101168251B1 (en) Optical system and corresponding optical element
KR20070057074A (en) Device for homogenizing light and arrangement for illuminating or focussing with said device
US20090026388A1 (en) Illumination Homogenizer
JPH04313701A (en) Polyhedral convex type prism and laser beam projecting device
KR100201996B1 (en) Liquid crystal display projector
JP2002057081A (en) Illumination optical apparatus, exposure apparatus and exposure method
JPS6332555A (en) Exposing device
JPS63114186A (en) Lighting apparatus
JP3482236B2 (en) Method for manufacturing multi-prism array and multi-mirror array
JP2001147402A (en) Beam uniformizing device
JPH11352420A (en) Homogenizer device with beam rotating function and laser beam machining device using it
JP3479197B2 (en) Laser device
JPS639186A (en) Illuminating optical device
US20070279612A1 (en) Light mixing device, in particular for a microlithographic projection exposure apparatus
JPH0727994A (en) Beam distribution uniformizing device
JPH07104563B2 (en) Illumination optical device for exposure equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees