JPH04313379A - Antifouling device - Google Patents

Antifouling device

Info

Publication number
JPH04313379A
JPH04313379A JP7777891A JP7777891A JPH04313379A JP H04313379 A JPH04313379 A JP H04313379A JP 7777891 A JP7777891 A JP 7777891A JP 7777891 A JP7777891 A JP 7777891A JP H04313379 A JPH04313379 A JP H04313379A
Authority
JP
Japan
Prior art keywords
coating layer
electrode material
antifouling
seawater
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7777891A
Other languages
Japanese (ja)
Other versions
JP3385618B2 (en
Inventor
Kazo Takagi
高木 嘉造
Shigeoki Nakamura
成興 中村
Tomomasa Murayama
智正 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Rubber Industry Co Ltd
Original Assignee
Daiki Rubber Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Rubber Industry Co Ltd filed Critical Daiki Rubber Industry Co Ltd
Priority to JP07777891A priority Critical patent/JP3385618B2/en
Publication of JPH04313379A publication Critical patent/JPH04313379A/en
Application granted granted Critical
Publication of JP3385618B2 publication Critical patent/JP3385618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To nearly uniform the electric potential of an anode formed of a coated layer in the respective parts, to equalize the antifouling effect in each part of the coated layer and to prevent danger wherein chlorine is generated by electrolysis of seawater by arranging the electrode material as described below. CONSTITUTION:In an antifouling device for preventing sticking of marine organisms by allowing current to flow between a coated conductive layer 3 provided to a body 1 to be antifouled and the electrode material 4 arranged in the vicinity of the coated layer in order to prevent contamination based on sticking of organisms on a marine structural material, a network, a bandlike or a rodlike material is used as the electrode material 4. This electrode material is arranged in a position wherein the area of the part nearly equal in the distance apart from the surface of the coated layer becomes maximum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、海洋構造物、船舶、海
水輸送用の配管または水路、魚網やいけす網あるいは海
水取水口のスクリーンに、海洋生物が付着して汚染する
ことを防止する防汚装置の改良に関する。
[Industrial Application Field] The present invention is a method for preventing marine organisms from adhering to and contaminating marine structures, ships, piping or waterways for transporting seawater, fishing nets, cage nets, or screens at seawater intake ports. Concerning improvements in soiling equipment.

【0002】0002

【従来の技術】たとえば発電所の冷却水用の海水を輸送
する配管や海水取水口のスクリーン、船の舷側、桟橋、
浮き台、橋脚などの海洋構造物において常に海水に接し
ている部分には、種々の海草やフジツボそのほかの貝の
ような海洋生物が付着し、それによって取水量の減少や
船舶の航行速度低下などの問題が生じる。このため、付
着した海洋生物を定期的に取り除かなければならないが
、これは困難な作業である。
[Prior Art] For example, piping that transports seawater for cooling water in power plants, screens at seawater intake ports, the sides of ships, piers,
Portions of floating structures, bridge piers, and other marine structures that are constantly in contact with seawater are covered with various seaweeds, barnacles, and other marine organisms such as shellfish, which can cause problems such as a decrease in water intake and a slowdown in ship navigation speed. The problem arises. For this reason, attached marine organisms must be removed periodically, which is a difficult task.

【0003】海洋生物の付着のメカニズムは、まず赤潮
菌などの微生物が付着して生物皮膜が形成され、それに
フジツボなどの大型生物の幼生が付着し成長するという
順序に従う。  従って、微生物の付着を防止すること
、および大型生物の幼生が付着し成長するのを防止する
ことが上記の問題の効果的な解決策であり、そのための
技術が種々提案されている。
[0003] The mechanism of adhesion of marine organisms follows the order in which microorganisms such as red tide fungi attach to the surface and a biological film is formed, and then larvae of large organisms such as barnacles attach and grow. Therefore, an effective solution to the above problems is to prevent the attachment of microorganisms and the attachment and growth of larvae of large organisms, and various techniques have been proposed for this purpose.

【0004】その多くは、塩素系イオンまたは銅イオン
を被防汚体の周囲に発生させて、付着しようとする生物
を死滅させることを目的とした装置である。  これら
の技術は、実施の態様によっては重大な海洋汚染につな
がり好ましくない。
Most of these devices are designed to generate chlorine-based ions or copper ions around the object to be decontaminated, thereby killing organisms that attempt to adhere to the object. Depending on the mode of implementation, these techniques may lead to serious marine pollution and are therefore undesirable.

【0005】このような状況にかんがみ、出願人は、被
防汚体に導電性材料で被覆層を設け、この被覆層と接触
しないように海水中に、チタンなどの電極材と照合電極
を配置し、被覆層を陽極、電極材を陰極として直流電圧
を印加し、照合電極と陽極との電位差をある一定値に制
御しながら微弱な電流を流し、被覆層に触れた微生物に
電気的なショックを与えてその付着を防止する装置を提
案した(特願平2−194257号)。
In view of this situation, the applicant provided a coating layer of a conductive material on the antifouling object, and arranged an electrode material such as titanium and a reference electrode in seawater so as not to come into contact with the coating layer. Then, a DC voltage is applied using the coating layer as an anode and the electrode material as a cathode, and a weak current is passed while controlling the potential difference between the reference electrode and the anode to a certain value, giving an electric shock to microorganisms that come into contact with the coating layer. proposed a device that prevents its adhesion by giving it (Japanese Patent Application No. 2-194257).

【0006】この技術の実施に当って、陽極電位を制御
しているにもかかわらず、陽極で塩素が発生する場合が
あることを経験した。  その原因を追及したところ、
測定される陽極の電位は、陰極から陽極への距離によっ
て異なり、陰極に最も近い部分が高く、陰極から遠くな
るに従って低くなることがわかった。
[0006] In implementing this technique, we have experienced that chlorine may be generated at the anode despite controlling the anode potential. When we investigated the cause, we found that
It was found that the measured potential of the anode varies depending on the distance from the cathode to the anode, with the potential closest to the cathode being higher and decreasing farther from the cathode.

【0007】たとえば図4に示した配管の防汚装置であ
って、陰極としてドーナツ状の電極材(4)をフランジ
の間に配置した防汚装置では、図5のグラフに示すよう
に、鋼管中央部の陽極電位が電極材に近い部分のそれに
くらべて卑になる。  鋼管が長尺になるに従い、中央
部の陽極電位は大きく落ち込み、期待する防汚効果が得
られなくなるおそれがででくる。
For example, in the piping antifouling device shown in FIG. 4, in which a doughnut-shaped electrode material (4) is placed between the flanges as a cathode, as shown in the graph of FIG. The anode potential in the central part is less noble than that in the part closer to the electrode material. As the steel pipe becomes longer, the anode potential at the center drops significantly, and there is a risk that the expected antifouling effect will not be obtained.

【0008】橋脚、水路など広範囲にわたって防汚しな
ければならない場合にも、同様な問題が生じる。
[0008] A similar problem occurs when a wide area such as a bridge pier or a waterway must be antifouled.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
の問題を解決して、被覆層各部の陽極電位がほぼ同じで
ある防汚装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide an antifouling device in which the anode potential of each part of the coating layer is approximately the same.

【0010】0010

【課題を解決するための手段】本発明の防汚装置は、一
例を図1および図2に示すように、海水(9)に接触す
る構造物、船舶、配管または網などの防汚を必要とする
部分を被覆した導電性の被覆層(3)、この被覆層と接
触しないように海水中に配置した電極材(4)、照合電
極(5)および直流電源(6)から本質的に構成される
防汚装置において、直流電源は照合電極と陽極との電位
差を一定の範囲に制御する機能を有し、被覆層を陽極、
電極材を陰極とするよう直流電源に接続し電極材(4)
として網状、帯状または棒状のものを使用して、これを
、被覆層(3)の表面からの距離がほぼ同じである部分
の面積が最大となる位置に配置したことを特徴とする。
[Means for Solving the Problems] The antifouling device of the present invention, as shown in FIGS. 1 and 2, requires antifouling of structures, ships, pipes, networks, etc. that come into contact with seawater (9). It essentially consists of a conductive coating layer (3) that covers the area to be covered, an electrode material (4) placed in seawater so as not to come into contact with this coating layer, a reference electrode (5), and a DC power source (6). In the antifouling device, the DC power supply has the function of controlling the potential difference between the reference electrode and the anode within a certain range, and connects the coating layer to the anode,
Connect the electrode material (4) to a DC power source so that the electrode material serves as a cathode.
It is characterized in that a net-like, band-like, or rod-like material is used as the material, and it is arranged at a position where the area of the portion at approximately the same distance from the surface of the covering layer (3) is maximized.

【0011】本発明の防汚装置は、被防汚体の種類およ
び周囲の環境条件に応じて適切に構成すればよい。  
被覆層は被防汚体に直接設けてもよいし、被防汚体が絶
縁を必要とするならば両者の間に絶縁層(8)を設けて
もよい。
The antifouling device of the present invention may be appropriately configured depending on the type of object to be antifouled and the surrounding environmental conditions.
The coating layer may be provided directly on the object to be antifouled, or if the object to be antifouled requires insulation, an insulating layer (8) may be provided between the two.

【0012】また、コンクリート水路、橋脚、船など、
被防汚体に直接被覆層を設けることが困難なものに対し
ては、適当な給電体上に被覆層を形成し、それらを被防
汚体の表面に配置してもよい。
[0012] Also, concrete waterways, bridge piers, ships, etc.
For objects for which it is difficult to directly provide a coating layer on the object to be antifouled, the coating layer may be formed on a suitable power supply and placed on the surface of the object to be antifouled.

【0013】被覆層についていえば、海水の流れが速い
ところなど摩耗の心配があるときは、導電性ゴムシート
をライニングしたものが好ましいし、海水の流れがほと
んどないところであれば、導電性塗料の塗膜で足りるで
あろう。  網のような被防汚体には、熱可塑性樹脂の
粉末と導電性物質の粉末とからなる組成物を使用した粉
体ライニング法で被覆層を形成するとよい。
Regarding the coating layer, if there is a concern about abrasion, such as in areas with fast seawater flow, it is preferable to use a conductive rubber sheet lining, and if there is little seawater flow, a conductive coating layer is preferable. A coating will suffice. A coating layer may be formed on an antifouling object such as a net by a powder lining method using a composition consisting of thermoplastic resin powder and conductive substance powder.

【0014】電極材には、チタン基材に貴金属をメッキ
したものや、貴金属の酸化物をコーティングしたもの、
あるいは銀鉛合金や炭素系材料のものが適している。 
 電極材と被覆層とが直接接触しないように両者を配置
する必要があり、これには電極材を絶縁材のチューブや
シートなどで部分的に被覆しておくとよい。
[0014] Electrode materials include titanium base materials plated with noble metals, noble metal oxide coatings,
Alternatively, silver-lead alloys or carbon-based materials are suitable.
It is necessary to arrange the electrode material and the coating layer so that they do not come into direct contact with each other, and for this purpose, it is preferable to partially cover the electrode material with an insulating material tube or sheet.

【0015】電極材は、電極材を被覆層表面からの距離
がほぼ同じである部分の面積が最大となる位置に配置す
るとは、換言すれば、被覆層表面から電極材までの距離
が被覆層のどの部分からも所定の範囲に入っているとい
うことを意味する。  具体的には、被覆層の陽極電位
が全面にわたって0.8〜1.5V(対SCE)、好ま
しくは1.0〜1.2V(対SCE)の範囲にコントロ
ールされることである。以下、いくつかの防汚装置を例
にとって、電極材の配置を具体的に説明する。
[0015] Placing the electrode material at a position where the area of the part where the distance from the surface of the covering layer is approximately the same is maximized means that the distance from the surface of the covering layer to the electrode material is the same as that of the covering layer. This means that any part of the throat is within the specified range. Specifically, the anode potential of the coating layer is controlled over the entire surface within a range of 0.8 to 1.5 V (vs. SCE), preferably 1.0 to 1.2 V (vs. SCE). Hereinafter, the arrangement of electrode materials will be specifically explained using several antifouling devices as examples.

【0016】図1および図2に示すように、被防汚体(
1)が配管である防汚装置では、棒状の電極材(4)を
絶縁材のチューブで被覆し所定の間隔でチューブを切り
欠いて電極材を部分的に露出させたものを、配管の長手
方向と平行に被覆層(3)の表面に配置するとよい。   配管の口径が大きいときは、1本の管の内面に上記
のような電極材を2本以上、等間隔に配置してもよい。
As shown in FIGS. 1 and 2, the antifouling body (
In an antifouling device where 1) is a pipe, a rod-shaped electrode material (4) is covered with an insulating tube, and the tube is cut out at a predetermined interval to partially expose the electrode material. It is preferable to arrange it on the surface of the covering layer (3) parallel to the direction. When the diameter of the pipe is large, two or more electrode materials as described above may be arranged at equal intervals on the inner surface of one pipe.

【0017】被防汚体(1)が橋脚で被覆層(3)が平
面的である場合は、被覆層に対向させて網状の電極材(
4)を配置すればよい。
When the antifouling body (1) is a bridge pier and the covering layer (3) is flat, a net-like electrode material (
4) should be placed.

【0018】被防汚体(1)が船のような、幅が狭くて
前後に長い被覆層(3)を設けた防汚装置であれば、帯
状の電極材(4)を長手方向に沿って配置すればよい。
If the antifouling object (1) is an antifouling device such as a ship, which has a narrow width and a long covering layer (3) at the front and back, the strip-shaped electrode material (4) is attached along the longitudinal direction. Just place it.

【0019】[0019]

【作用】電極材の形状を、被覆層の形状を考慮して、網
状、帯状または棒状からえらび、電極材と被覆層表面の
各部との距離がほぼ同じになるように電極材を配置する
ことにより、被覆層の陽極電位が均一になった。  こ
れにより、被覆層各部の防汚効果が同等になった。
[Operation] Select the shape of the electrode material from among net, band, or rod shapes in consideration of the shape of the coating layer, and arrange the electrode material so that the distance between the electrode material and each part of the surface of the coating layer is approximately the same. As a result, the anodic potential of the coating layer became uniform. As a result, the antifouling effect of each part of the coating layer became equal.

【0020】[0020]

【実施例】両端にフランジを有する鋼管(口径「100
A」、長さ1m)を、10本用意した。  それぞれの
内面に、クロロプレンゴム100重量部にカーボンブラ
ック30重量部、グラファイト40重量部および加硫剤
等を常法に従い配合し、混練して押し出した導電性ゴム
シートをライニングして、導電性の被覆層を設けた。加
硫後のシートの厚さは5mm。鋼管のフランジ面や外周
面など、導電性シートのライニングのないすべての部分
を、絶縁材で被覆した。
[Example] Steel pipe with flanges at both ends (caliber “100”)
A", length 1m), 10 pieces were prepared. The inner surface of each is lined with a conductive rubber sheet prepared by mixing 100 parts by weight of chloroprene rubber, 30 parts by weight of carbon black, 40 parts by weight of graphite, a vulcanizing agent, etc., and kneading and extruding the mixture in a conventional manner. A covering layer was provided. The thickness of the sheet after vulcanization is 5 mm. All parts of the steel pipe that are not lined with conductive sheets, such as the flange surface and outer circumferential surface, are covered with an insulating material.

【0021】各被覆層鋼管の中央部に孔をあけ、そこに
、絶縁材で側面および後端を被覆し後端の絶縁材に小孔
をあけた円柱状の銀からなる照合電極を、先端が管内部
にわずか突き出るように挿入し、固定した。
A hole is made in the center of each coated steel pipe, and a reference electrode made of cylindrical silver whose side surfaces and rear end are covered with an insulating material and a small hole is made in the insulating material at the rear end is attached to the tip. It was inserted and fixed so that it protruded slightly into the tube.

【0022】直径1.0mm、長さ90cmのチタン製
の棒に白金をメッキして電極材とし、絶縁材で被覆した
A titanium rod with a diameter of 1.0 mm and a length of 90 cm was plated with platinum to serve as an electrode material, and covered with an insulating material.

【0023】上記の棒体を、図1および図2に示すよう
に、各鋼管の被覆層(3)に側面の半分が隠れる程度に
埋め込んだ。  鋼管の内側に突き出ている棒体の絶縁
材(7)を10cmずつ10cm間隔で切除して、電極
材(4)を露出させた。  棒状電極材を折り曲げてフ
ランジ部のゴムの中に埋め込み、フランジ部で外部に接
続できるようにした。
As shown in FIGS. 1 and 2, the above-mentioned rod was embedded in the coating layer (3) of each steel pipe to such an extent that half of the side surface was hidden. The rod insulating material (7) protruding inside the steel pipe was cut out at 10 cm intervals to expose the electrode material (4). The rod-shaped electrode material was bent and embedded in the rubber of the flange so that it could be connected to the outside at the flange.

【0024】各鋼管をフランジ接合して試験用の配管と
し、直流電源(6)の陽極端子、陰極端子および照合電
極端子は、各鋼管に設けた接続端子、電極材、照合電極
(5)と、それぞれ接続ケーブルで配線した。
Each steel pipe is flange-jointed to form a test pipe, and the anode terminal, cathode terminal, and reference electrode terminal of the DC power supply (6) are connected to the connection terminal, electrode material, and reference electrode (5) provided on each steel pipe. , each wired with a connecting cable.

【0025】この配管に、海水を0.5m/secの流
速で流した。  鋼管1本あたり10〜30mAの直流
電流を通電し、導電性の被覆層と照合電極との電位差が
SCE換算値で約1.2Vとなるように制御しつつ、配
管の防汚を行なった。
[0025] Seawater was flowed through this pipe at a flow rate of 0.5 m/sec. The piping was antifouled by passing a direct current of 10 to 30 mA per steel pipe and controlling the potential difference between the conductive coating layer and the reference electrode to be approximately 1.2 V in SCE conversion.

【0026】上記の配管内部を照合電極が自由に移動で
きるように挿入し、配管の一端から他端まで照合電極を
移動させて陽極電位を測定した。  その結果をSCE
換算値で表示し、図3に示す。  このデータから、上
記の防汚装置において、被覆層の陽極電位が、1.1〜
1.2V(対SCE)の範囲に制御されていることがわ
かる。
A reference electrode was inserted into the above piping so that it could move freely, and the anode potential was measured by moving the reference electrode from one end of the pipe to the other. SCE the result
It is expressed as a converted value and shown in Figure 3. From this data, in the above antifouling device, the anode potential of the coating layer is 1.1 to
It can be seen that the voltage is controlled within a range of 1.2V (vs. SCE).

【0027】[0027]

【発明の効果】本発明の防汚装置は、被覆層の全面にわ
たってほぼ同等の防汚効果を有する。このため、必要以
上に電流を流さずにすみ、部分的に被覆層の陽極電位が
高くなって海水が電解され、塩素が発生する心配もない
Effects of the Invention The antifouling device of the present invention has substantially the same antifouling effect over the entire surface of the coating layer. Therefore, it is not necessary to apply more current than necessary, and there is no need to worry about the anode potential of the coating layer becoming high in some areas, electrolyzing the seawater, and generating chlorine.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の防汚装置を、配管に適用した例を
説明するための断面図。
FIG. 1 is a sectional view for explaining an example in which the antifouling device of the present invention is applied to piping.

【図2】  図1のA−A方向の断面図。FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1.

【図3】  図1に示した本発明の防汚装置について、
被覆層の電位分布を測定した結果を示すグラフ。
[Figure 3] Regarding the antifouling device of the present invention shown in Figure 1,
A graph showing the results of measuring the potential distribution of the coating layer.

【図4】  配管に適用した従来の防汚装置を説明する
ための断面図。
FIG. 4 is a sectional view for explaining a conventional antifouling device applied to piping.

【図5】  図4に示した従来の防汚装置について、被
覆層の電位分布を測定した結果を示すグラフ。
5 is a graph showing the results of measuring the potential distribution of the coating layer for the conventional antifouling device shown in FIG. 4. FIG.

【符号の説明】[Explanation of symbols]

1      被防汚体 3      導電性の被覆層 4      電極材 5      照合電極 6      直流電源 7,8  絶縁材 9      海水 1. Antifouling object 3 Conductive coating layer 4 Electrode material 5 Reference electrode 6 DC power supply 7, 8 Insulating material 9 Seawater

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  海水に接触する構造物、船舶、配管ま
たは網などの防汚を必要とする部分を被覆した導電性の
被覆層、この被覆層と接触しないように海水中に配置し
た電極材、照合電極および直流電源から本質的に構成さ
れる防汚装置において、直流電源は照合電極と陽極との
電位差を一定の範囲に制御する機能を有し、被覆層を陽
極、電極材を陰極とするよう直流電源に接続し、電極材
として網状、帯状または棒状のものを使用して、これを
、被覆層表面からの距離がほぼ同じである部分の面積が
最大となる位置に配置したことを特徴とする防汚装置。
Claim 1: A conductive coating layer that covers parts of structures, ships, piping, or networks that come into contact with seawater that require antifouling, and an electrode material placed in seawater so as not to come into contact with the coating layer. In an antifouling device that essentially consists of a reference electrode and a DC power supply, the DC power supply has the function of controlling the potential difference between the reference electrode and the anode within a certain range, and the coating layer is used as the anode and the electrode material is used as the cathode. Connect to a DC power source so that the electrode material is mesh-shaped, band-shaped, or rod-shaped, and place it at a position where the area of the part that is approximately the same distance from the surface of the coating layer is maximized. Features antifouling equipment.
【請求項2】  被覆層が、導電性ゴムもしくは導電性
樹脂のライニング層、または導電性塗料の塗膜である請
求項1の防汚装置。
2. The antifouling device according to claim 1, wherein the coating layer is a lining layer of conductive rubber or conductive resin, or a coating film of conductive paint.
【請求項3】  被覆層が、給電体を備えている請求項
1または2の防汚装置。
3. The antifouling device according to claim 1, wherein the coating layer includes a power supply body.
JP07777891A 1991-04-10 1991-04-10 Antifouling device Expired - Fee Related JP3385618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07777891A JP3385618B2 (en) 1991-04-10 1991-04-10 Antifouling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07777891A JP3385618B2 (en) 1991-04-10 1991-04-10 Antifouling device

Publications (2)

Publication Number Publication Date
JPH04313379A true JPH04313379A (en) 1992-11-05
JP3385618B2 JP3385618B2 (en) 2003-03-10

Family

ID=13643426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07777891A Expired - Fee Related JP3385618B2 (en) 1991-04-10 1991-04-10 Antifouling device

Country Status (1)

Country Link
JP (1) JP3385618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197168B1 (en) 1998-02-26 2001-03-06 Pentel Kabushiki Kaisha Electrochemical stain prevention apparatus of submerged structure and process for producing submerged structure used in this apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197168B1 (en) 1998-02-26 2001-03-06 Pentel Kabushiki Kaisha Electrochemical stain prevention apparatus of submerged structure and process for producing submerged structure used in this apparatus

Also Published As

Publication number Publication date
JP3385618B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
KR930008997B1 (en) Anti-fouling device for afloaters
US5182007A (en) Stain preventing method
EP1000852A1 (en) Apparatus and method for inhibiting fouling of an underwater surface
JPH04313379A (en) Antifouling device
GB1597305A (en) Marine potentiometric antifouling and anticorrosion device
JPH10249357A (en) Antifouling method
JPH04313378A (en) Antifouling device
JP3962846B2 (en) Antifouling method and antifouling device
JP2002282810A (en) Contamination prevention device
JPH04289309A (en) Antifouling method
JP3480270B2 (en) Antifouling device
JP3962823B2 (en) Antifouling method and antifouling device for seawater intake facilities
JP2000008338A (en) Antifouling device for underwater structure
JP4709042B2 (en) Strainer equipment
JP3207718B2 (en) Marine organism adhesion prevention coating
JPH08151617A (en) Constant-current flow type marine organism adherence preventing method and constant-current control device
TW201443287A (en) Submerged part surface structure of carrier with electrocatalytic gas deliberating and biofouling prevention
JPH11244861A (en) Anti-fouling device for underwater structure and electrochemical control method of organism
JPH0752167Y2 (en) Replaceable energizing antifouling cover for offshore structures
JPH1190380A (en) Device and method for electrolytic stainproofing of small-diameter sea water pipe
JP3145390B2 (en) Conductive film for seawater electrolytic antifouling equipment
JP2004339782A (en) Anti-fouling device of structure
JPH03169905A (en) Antipollution device for intake channel
JPH0224913B2 (en)
JP2003013264A (en) Antifouling device for structure and heat exchanger contacting with seawater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees