JPH04312801A - Manufacture of refractory block - Google Patents

Manufacture of refractory block

Info

Publication number
JPH04312801A
JPH04312801A JP3105083A JP10508391A JPH04312801A JP H04312801 A JPH04312801 A JP H04312801A JP 3105083 A JP3105083 A JP 3105083A JP 10508391 A JP10508391 A JP 10508391A JP H04312801 A JPH04312801 A JP H04312801A
Authority
JP
Japan
Prior art keywords
vibration
pressure
refractory
blocks
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3105083A
Other languages
Japanese (ja)
Inventor
Yukihisa Matsuo
幸久 松尾
Hisao Aibe
相部 久男
Akira Kojima
昭 小島
Masanori Kobayashi
正則 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP3105083A priority Critical patent/JPH04312801A/en
Publication of JPH04312801A publication Critical patent/JPH04312801A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable refractory blocks with denseness to be manufactured by applying vibration force and press force to a monolithic refractory substance poured into a mold. CONSTITUTION:In a manufacture of refractory blocks through pressure dehydration vibration molding characterized such that a mold 2 having a film 8 with a plurality of drainage ports 7 and a filtration paper or a hole is provided on a vibration table 1, and a monolithic refractory substance 3 is poured therein so as to be pressure-dehydrated by a pressure plate 4, vibration is simultaneously applied thereon in order that pressure sufficiently spreads in the inner part thereof during pressurization. Such time is limited to be in the range of from 30min. to the time when the monolithic refractory substance material cures. By keeping the continuous vibration during pressurization, frictional forces and cohesive forces are weakened, with the result that pressure can sufficiently be spread in the inner part thereof.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は樋ブロック、樋先ブロッ
ク、取鍋湯当りブロック、 取鍋羽口ブロック、TD堰
ブロック、TD羽口ブロックなどの用途の耐火ブロック
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing refractory blocks for uses such as gutter blocks, gutter tip blocks, ladle hot water blocks, ladle tuyere blocks, TD weir blocks, and TD tuyere blocks.

【0002】0002

【従来の技術】従来、 不定形耐火物で製造される耐火
ブロックの緻密化を図る方法として、特公昭56−43
009号公報で開示された 「耐火ブロックの減圧振動
製造方法」、並びに特開昭55−137900号公報で
開示された「耐火ブロックの製造方法」がある。
[Prior Art] Conventionally, as a method for densifying refractory blocks manufactured from monolithic refractories, the Japanese Patent Publication No. 56-43
There is a ``method for producing a refractory block by reduced pressure vibration'' disclosed in Japanese Patent No. 009, and a ``method for producing a refractory block'' disclosed in JP-A-55-137900.

【0003】0003

【発明が解決しようとする課題】ところが、前者につい
てはその製造上、即ち減圧により無論混和時、混練時及
び鋳込み時に巻込まれたエアーを系外に脱気することは
可能であるが、元々これらの巻込みエアーは通常の振動
成形後に於いては僅か2%程度しか残留しておらず、減
圧による脱気量は最高でもこの量以下である為、緻密化
の方法としては不充分と言わざるを得ない。ましてやこ
の巻込みエアーの多くは密封気孔であり、緻密化の本来
の目的、即ち耐食性向上、耐スラグ浸潤性抑制の点から
は効果の程は小さいと考えられる。後者については、た
しかにこの方法により脱水、脱気が図られるため緻密化
するが、例示された条件では、本発明者の実験ではその
効果は不充分であった。本発明の解決すべき課題は、更
なる緻密性を有した耐火ブロックの製造方法を見出すこ
とである。
[Problem to be Solved by the Invention] However, regarding the former, it is possible to evacuate the air drawn in during mixing, kneading, and casting to the outside of the system by reducing pressure; Only about 2% of the trapped air remains after normal vibration molding, and the amount of air removed by depressurization is at most less than this amount, so it cannot be said to be an adequate method for densification. I don't get it. Moreover, most of this air is sealed pores, and it is considered that the effect is small from the point of view of the original purpose of densification, that is, improving corrosion resistance and suppressing slag infiltration resistance. Regarding the latter, it is true that this method achieves dehydration and deaeration, resulting in densification, but under the exemplified conditions, the inventor's experiments showed that the effect was insufficient. The problem to be solved by the present invention is to find a method for producing a refractory block with even higher density.

【0004】0004

【課題を解決するための手段】本発明の耐火ブロックの
製造方法は、その製造方法に於いて型枠内に流し込んだ
不定形耐火物に振動力及び加圧力を30分から上記材料
が硬化するまでの時間付加せしめたことを特徴とする。
[Means for Solving the Problems] The method for manufacturing a refractory block of the present invention includes applying vibration force and pressurizing force to a monolithic refractory poured into a formwork for 30 minutes until the material hardens. The feature is that the time is added.

【0005】[0005]

【作用】不定形耐火物で製造される耐火ブロックに於い
て緻密化する方法を述べる為には、先ずその組織の状態
に論を発しなければならない。 通常耐火ブロックを製
造する際には水系の不定形耐火物を使用し、棒状バイブ
レーター若しくはユーラスバイブレーターにより振動成
形されるが、このため、成形直後の組織は材料、水、巻
込みエアーで構成されることは言うまでもないが、この
混和時、混練時及び鋳込み時の導入される巻込みエアー
は計算上約2%であることから、緻密化を阻害する主因
としては流動性付与のため混練時に添付される必要不可
欠な余剰水に他ならないと言える。余剰水の部分が耐火
ブロックの乾燥後に於いて開放気孔として残り、使用時
にスラッグ浸潤を助長させ、耐食性及び耐構造スポール
性を大巾に劣化させる一因になることを考慮すると、余
剰水の減量が緻密化の手法として最も効果的であること
は自明の理である。従って、前述した特開昭55−13
7906号公報で開示された「耐火物の製造方法」、 
即ち単的に言うと加圧脱水振動成形による耐火ブロック
の製造方法は、不定形耐火物が余剰水を含む為、パスカ
ルの原理(密封した容器の中で静止している流体の1点
の圧力をある大きさだけ増すと、流体内の全ての点の圧
力は同じだけ増すという法則)の点から非常に有効な手
段と考えられる。 この為この公報で例示された実施例
(加圧+振動)時間は3分、に基づき種々検討した結果
、加圧された一軸方向に於いて品質のバラツキ、即ち中
間部程締まり難いという事実が明らかとなった。パスカ
ルの原理に従えば、圧力媒体としての水の圧縮性は約4
.23×10−5cm2/kgと極めて僅かである為、
瞬間的に系内は等圧となり従って品質のバラツキは全く
と言っていい程生じない筈であるが、事実は異なった結
果であった。このことは、ある一定以上の水が系外に流
出すると粒界の一部が他の粒子と接触するため、これ以
降のステージではパスカルの原理が成立しないことを示
唆するものと考えられる。従ってこの事実は、系外への
水の流出はそれに伴い内部へ圧力伝播が益々低下するこ
とを意味しており、この知見に基づけば、更なる緻密化
の方法としては内部摩擦力の低下、更には凝集力の低下
を図れば良く、この考え方に基づき種々検討した結果、
本発明を完成するに至ったものである。
[Operation] In order to describe the method of densifying a refractory block made of monolithic refractories, it is first necessary to discuss the state of its structure. Normally, when manufacturing fireproof blocks, water-based monolithic refractories are used and vibration-molded using a rod-shaped vibrator or Uras vibrator, so the structure immediately after forming is composed of material, water, and entrained air. Needless to say, the amount of entrained air introduced during mixing, kneading, and casting is calculated to be about 2%, so the main reason for inhibiting densification is the air added during kneading to impart fluidity. It can be said that this is nothing but essential surplus water. Considering that excess water remains as open pores after drying of the refractory block, promoting slag infiltration during use and contributing to a significant deterioration of corrosion resistance and structural spall resistance, it is necessary to reduce the amount of excess water. It is self-evident that this is the most effective method for densification. Therefore, the above-mentioned JP-A-55-13
"Method for manufacturing refractories" disclosed in Publication No. 7906,
In other words, simply speaking, the manufacturing method of refractory blocks by pressurized dehydration vibration molding is based on Pascal's principle (the pressure at one point of a fluid at rest in a sealed container) because the monolithic refractory contains excess water. This is considered to be a very effective method in view of the law that states that if the pressure is increased by a certain amount, the pressure at all points within the fluid increases by the same amount. For this reason, as a result of various studies based on the example (pressurization + vibration) time exemplified in this publication of 3 minutes, we found that there was variation in quality in the uniaxial direction of pressurization, that is, the fact that it was difficult to tighten the middle part. It became clear. According to Pascal's principle, the compressibility of water as a pressure medium is approximately 4
.. Because it is extremely small at 23 x 10-5 cm2/kg,
The pressure within the system instantly became equal, so there should be virtually no variation in quality, but the actual results were different. This is considered to suggest that Pascal's principle does not hold in subsequent stages because when a certain amount of water flows out of the system, some of the grain boundaries come into contact with other particles. Therefore, this fact means that as water flows out of the system, the pressure propagation to the inside is further reduced.Based on this knowledge, the methods of further densification are to reduce the internal frictional force, Furthermore, it would be better to reduce the cohesive force, and as a result of various studies based on this idea,
This has led to the completion of the present invention.

【0006】具体的実施態様としては、図1に示す様に
振動テーブル1の上に図2に示す複数個の排水口7及び
濾紙または孔を持ったフィルム8を有した型枠2を設け
この中に不定形耐火物3を流し込み加圧板4にて加圧脱
水することを特徴とする加圧脱水振動成形による耐火ブ
ロックの製造方法に於いて、その加圧中圧力が内部に充
分に伝播する様同時に振動を加えておく事であり、その
時間は30分から不定形耐火物材料が硬化する迄の時間
とするが良い。加圧中この間振動を継続することにより
摩擦力及び凝集力を弱め内部へ圧力を充分に伝播するこ
とが可能となる。しかしながら、30分未満の場合は脱
水は生じるものの効果は小さく、また硬化後の振動は材
料はすでに揺動力を失っている為それ以上の効果が認め
難く、更には振動により組織を破壊する場合もあり得る
ので好ましくない。使用する不定形耐火物については、
その可使時間が脱水を要するのに充分な時間を有してお
れば良く、それ以外の制限はない。振動条件としては、
前記の振動時間の他には何等制限はないが、振動数は1
000〜30000rpmの範囲が一般的であり、この
範囲内で材料特性に合わせ適宜決定すれば良い。
In a specific embodiment, as shown in FIG. 1, a formwork 2 having a plurality of drainage holes 7 and a filter paper or a film 8 having holes as shown in FIG. 2 is provided on a vibrating table 1. In a method for manufacturing a refractory block by pressurized dehydration vibration molding, which is characterized by pouring an unshaped refractory 3 inside and dehydrating it under pressure with a pressure plate 4, the pressure during the pressurization is sufficiently propagated inside. Vibration should be applied at the same time as the refractory material, and the duration should be between 30 minutes and until the monolithic refractory material hardens. By continuing to vibrate during this period of pressurization, the frictional force and cohesive force are weakened, making it possible to sufficiently propagate the pressure inside. However, if the time is less than 30 minutes, dehydration will occur but the effect will be small, and vibration after curing will have no further effect since the material has already lost its rocking force, and furthermore, the vibration may destroy the tissue. It's possible, so I don't like it. Regarding the monolithic refractories used,
There are no other restrictions as long as the pot life is long enough to require dehydration. The vibration conditions are as follows:
There are no restrictions other than the vibration time mentioned above, but the frequency is 1.
The range is generally from 000 to 30,000 rpm, and it may be determined as appropriate within this range depending on the material properties.

【0007】[0007]

【実施例】本実施例に於いては表1に示す高アルミナ質
材料及びアルミナマグネシア質材料の2材質を試験に供
した。表1の試料を図1に示す200×200×200
mmの型枠2に詰め表2に示す条件で成形した。本実施
例と対比するため加圧板4を用いず且つ排水口を有しな
い型枠を用いて同表に示す通常の振動成形条件で成形し
これを比較例1とし、加圧脱水振動成形ではあるが、加
圧中本実施例の様な揺動性を充分に付与しない(振動を
十分に与えない)条件で成形したものも比較例2とし、
これらの条件で製造した本実施例及び比較例の耐火ブロ
ックを110℃で24時間乾燥し、夫々の物理的特性を
調査した結果を同表に示す。この結果から明らかな様に
、本発明の製造方法で得た耐火ブロックは、例えば見掛
気孔率で対比すると比較例1に比し約4%の低下が比較
例2に比し約2%の低下が認められ、この結果、本発明
による製造方法により、大巾な緻密性の向上を図った耐
火ブロックの製造が可能になると云える。
[Example] In this example, two materials, a high alumina material and an alumina-magnesia material shown in Table 1, were used for testing. The sample in Table 1 is shown in Figure 1 with a size of 200 x 200 x 200
It was packed into a mold 2 with a diameter of 2 mm and molded under the conditions shown in Table 2. In order to compare with this example, molding was performed under the normal vibration molding conditions shown in the same table using a mold without a pressure plate 4 and without a drainage port, and this was referred to as Comparative Example 1. However, Comparative Example 2 also includes one molded under conditions that do not give sufficient rocking properties (do not give sufficient vibration) as in this example during pressurization.
The refractory blocks of this example and comparative example manufactured under these conditions were dried at 110° C. for 24 hours, and the physical properties of each were investigated. The results are shown in the same table. As is clear from these results, when comparing the apparent porosity of the refractory block obtained by the manufacturing method of the present invention, for example, the decrease in apparent porosity is about 4% compared to Comparative Example 1, but about 2% compared to Comparative Example 2. As a result, it can be said that the manufacturing method according to the present invention makes it possible to manufacture a refractory block with significantly improved compactness.

【0008】[0008]

【表1A】[Table 1A]

【0009】[0009]

【表1B】[Table 1B]

【0010】0010

【表2】[Table 2]

【0011】[0011]

【発明の効果】本発明を以てすれば高緻密性の耐火ブロ
ックを製造することが可能となり、例えば樋ブロック、
樋先ブロック、取鍋湯当りブロック、取鍋羽口ブロック
、TD堰ブロック、TD羽口ブロックなどの用途に適し
ている。
[Effect of the invention] With the present invention, it is possible to manufacture highly dense fireproof blocks, such as gutter blocks,
Suitable for uses such as gutter tip block, ladle hot water block, ladle tuyere block, TD weir block, TD tuyere block, etc.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明で開示した製造ブロックの製造方法の概
要を示した図、
FIG. 1 is a diagram showing an overview of the method for manufacturing a manufacturing block disclosed in the present invention,

【図2】型枠の切断面を示した図である。FIG. 2 is a diagram showing a cut surface of the formwork.

【符号の説明】[Explanation of symbols]

1  振動テーブル、 2  型枠、 3  不定形耐火物、 4  加圧板、 5  ユーラスバイブレーター、 6  バネ、 7  排水口、 8  濾紙若しくは孔を有したフィルム。 1. Vibration table, 2 Formwork, 3. Monolithic refractories, 4 Pressure plate, 5. Eurus vibrator, 6 Spring, 7 Drain port, 8. Filter paper or film with holes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  型枠内に流し込んだ不定形耐火物を振
動により成形する耐火ブロックの製造方法に於いて上記
材料に振動及び加圧時間が30分から材料が硬化するま
での時間、振動力及び加圧力を加えることにより上記材
料中の余剰水を型枠に設けた複数個の孔を通し排出し緻
密化せしめることを特徴とする耐火ブロックの製造方法
Claim 1: In a method for producing a refractory block in which a monolithic refractory poured into a mold is molded by vibration, the vibration and pressure applied to the material is controlled from 30 minutes to the time it takes for the material to harden, the vibration force and A method for producing a fireproof block, characterized in that by applying pressure, excess water in the material is discharged through a plurality of holes provided in the formwork to densify it.
JP3105083A 1991-04-11 1991-04-11 Manufacture of refractory block Withdrawn JPH04312801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3105083A JPH04312801A (en) 1991-04-11 1991-04-11 Manufacture of refractory block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3105083A JPH04312801A (en) 1991-04-11 1991-04-11 Manufacture of refractory block

Publications (1)

Publication Number Publication Date
JPH04312801A true JPH04312801A (en) 1992-11-04

Family

ID=14398033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3105083A Withdrawn JPH04312801A (en) 1991-04-11 1991-04-11 Manufacture of refractory block

Country Status (1)

Country Link
JP (1) JPH04312801A (en)

Similar Documents

Publication Publication Date Title
JP2001226165A (en) Pottery gypsum mix for producing gypsum mold
JPH0366446A (en) Casting method of molten iron and filter for molten iron
DE59409582D1 (en) METHOD FOR PRODUCING CERAMIC GREEN BODIES BY DOUBLE-LAYER COMPRESSION
JPH04312801A (en) Manufacture of refractory block
JPH11291213A (en) Method for forming castable refractory block
JP3477012B2 (en) On-site construction method for irregular shaped refractories for ladle lining
JP2001278672A (en) Method for manufacturing ceramic material
US2632209A (en) Treatment of plaster molds
JP2518574B2 (en) Pressure casting mold
JPH08244018A (en) Mold of hydraulic inorganic molded article
JPS606203B2 (en) Casting method for non-plastic powder
JP3122250B2 (en) Casting method of ceramic powder
JPH0523807B2 (en)
JP3224645B2 (en) Ceramics molding method
JPH04265283A (en) Method for press-molding castable refractory
JPH11285782A (en) Ceramic filter and method for filtration of molten metal
JP2003236817A (en) Molding method by pressure slit casting
JP2022144734A (en) Slurry casting molding evaluation method and evaluation device
JPH07256616A (en) Ceramic casting mold and its production
JPS6324802B2 (en)
JPH0122123B2 (en)
JPS6158874A (en) Manufacture of ceramic with penetrated pore
JPS5945053A (en) Deflocculating method of castable refractories for casting
JPH06190809A (en) Slip casting mold
JPS61217208A (en) Manufacture of ceramics

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711