JPH04312769A - Sealed-type lead secondary battery - Google Patents

Sealed-type lead secondary battery

Info

Publication number
JPH04312769A
JPH04312769A JP3104825A JP10482591A JPH04312769A JP H04312769 A JPH04312769 A JP H04312769A JP 3104825 A JP3104825 A JP 3104825A JP 10482591 A JP10482591 A JP 10482591A JP H04312769 A JPH04312769 A JP H04312769A
Authority
JP
Japan
Prior art keywords
sensor
humidity
concentration
electrolyte
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3104825A
Other languages
Japanese (ja)
Inventor
Eiji Nitta
新田 英次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP3104825A priority Critical patent/JPH04312769A/en
Publication of JPH04312769A publication Critical patent/JPH04312769A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To extend the life of a capacity sensor by detecting the concentration of an electrolyte by a humidity sensor using the relation between the steam concentration and the thermal conduction. CONSTITUTION:A humidity sensor 7 is attached spirally to a cover part 2 while a packing 11 being set between them and installed in a gas-phase space in the middle of a negative electrode 4 and a positive electrode 6 in the upper part of an electrolytic jar 1. To protect the humidity sensitive part of the sensor, the part is covered with a porous body 10 made of plastic. The sensor 7 detects the concentration of the electrolyte using the relation between the thermal conduction and the steam concentration calculated from the steam pressure in an equiliblium with an aquoeous sulfuric acid solution. By humidity detecting principle is changed from the chemical phenomenon to the physical phenomenon, a capacity sensor is prevented from deteriorating and can have a long life.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は充放電状態を検出するセ
ンサーを備えた密閉鉛蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery equipped with a sensor for detecting charging and discharging states.

【0002】0002

【従来の技術とその課題】周知のように鉛蓄電池の充放
電状態は電解液中の硫酸濃度を計測することによって知
ることができる。これは鉛蓄電池の充放電反応に硫酸が
関与しているためで、硫酸の濃度変化(化学反応量)が
電池の容量変化、すなわち充放電電気量に比例して変化
するからである。したがって、硫酸濃度を検出すること
ができれば、その電池がどの程度放電されているか、あ
るいは、あとどの程度放電できるかということを正確に
知ることができる。さらに鉛蓄電池の充放電状態を自動
的に制御したい場合、電解液中の硫酸濃度を電気信号に
変換して充電器にフィード・バックすることのできるセ
ンサーの開発が不可欠である。
BACKGROUND OF THE INVENTION As is well known, the charging and discharging state of a lead-acid battery can be determined by measuring the sulfuric acid concentration in the electrolyte. This is because sulfuric acid is involved in the charging and discharging reactions of lead-acid batteries, and the change in the concentration of sulfuric acid (the amount of chemical reaction) changes in proportion to the change in battery capacity, that is, the amount of electricity charged and discharged. Therefore, if the sulfuric acid concentration can be detected, it is possible to accurately know how much the battery has been discharged or how much more can be discharged. Furthermore, if we want to automatically control the charging and discharging status of lead-acid batteries, it is essential to develop a sensor that can convert the sulfuric acid concentration in the electrolyte into an electrical signal and feed it back to the charger.

【0003】一方、近年鉛蓄電池は流動する電解液をな
くすることによって液洩れや液減りをなくし補水作業の
メンテナンスを必要としない密閉鉛蓄電池に置き代わり
つつある。密閉鉛蓄電池は無保守という優れた特徴を持
っている反面、流動する電解液を持たないので、従来の
液式鉛蓄電池で用いられていた、電解液の浮力や屈折率
の変化を利用した硫酸濃度センサーは使用できなくなっ
た。
On the other hand, in recent years, lead-acid batteries are being replaced by sealed lead-acid batteries, which eliminate fluid leakage and depletion by eliminating a flowing electrolyte, and do not require maintenance such as water replenishment. Sealed lead-acid batteries have the excellent feature of requiring no maintenance, but they do not have a flowing electrolyte, so they can be replaced with sulfuric acid, which takes advantage of the buoyancy and changes in the refractive index of the electrolyte, which was used in conventional lead-acid batteries. The concentration sensor is no longer available.

【0004】そこで、電解液に直接触れなくてもよい方
法が検討され硫酸水溶液の硫酸濃度とその飽和水蒸気圧
が対応関係にあることを利用して、その飽和水蒸気圧を
湿度センサーで検出し、その湿度の値から逆に硫酸濃度
を知るという方法が提案されている(JECS,vol
.129 ,p.2409〜2412,′82)。これ
は湿度センサを撥水性の微多孔膜で被覆して電解液中に
置くことにより密閉系を構成し飽和水蒸気圧を捕らえよ
うとするものであり、発水性微多孔膜を境界とする小さ
い密閉系を構成すので水蒸気圧が平衡に達するのが速く
、そのため応答も速い。しかしその反面、高い温度で使
用していると硫酸が微多孔膜の内部に侵入し、センサー
の感湿部に付着して特性を変化させるという欠点があっ
た。
[0004] Therefore, a method that does not require direct contact with the electrolytic solution was considered, and by utilizing the fact that the sulfuric acid concentration of a sulfuric acid aqueous solution and its saturated water vapor pressure correspond, the saturated water vapor pressure was detected with a humidity sensor. A method has been proposed in which the sulfuric acid concentration can be determined from the humidity value (JECS, vol.
.. 129, p. 2409-2412,'82). This system attempts to capture the saturated water vapor pressure by forming a closed system by covering the humidity sensor with a water-repellent microporous membrane and placing it in an electrolyte. Because it forms a system, the water vapor pressure reaches equilibrium quickly, and therefore the response is also fast. On the other hand, however, when used at high temperatures, sulfuric acid penetrates into the microporous membrane and adheres to the moisture-sensitive part of the sensor, changing its characteristics.

【0005】この問題を解決するために直接電解液に触
れさせないよう電槽上部の気相空間部に湿度センサーを
設けて気相空間部の飽和水蒸気圧を湿度として検出する
という提案がある(特願平2−238516号)。
In order to solve this problem, there is a proposal to install a humidity sensor in the gas phase space at the top of the container so that it does not come into direct contact with the electrolyte, and to detect the saturated water vapor pressure in the gas phase space as humidity. Ganhei 2-238516).

【0006】しかし、従来用いていた湿度センサーは近
接した二つの電極の間に水分を可逆的に脱吸着する薄膜
層を設け、水分の吸着量に応じて変化する電気抵抗を計
測して湿度に変換するものであった。ところがこの薄膜
の電気抵抗は硫酸などのイオン性物質の付着によって可
逆性を失い劣化してしまうなどの問題があった。
However, conventionally used humidity sensors have a thin film layer that reversibly adsorbs moisture between two adjacent electrodes, and measure the electrical resistance that changes depending on the amount of moisture adsorbed. It was meant to be converted. However, the electrical resistance of this thin film has problems such as loss of reversibility and deterioration due to adhesion of ionic substances such as sulfuric acid.

【0007】[0007]

【課題を解決するための手段】本発明密閉鉛蓄電池容量
センサーは、硫酸水溶液と平衡状態にある水蒸気圧を電
槽の気相空間部に設けた水蒸気濃度と熱伝導の関係を利
用した湿度センサーにより電解液濃度を検出するもので
ある。すなわち、従来のイオン化という化学的現象の利
用から熱伝導という物理現象の利用へと湿度の検出原理
を変えることにより従来の劣化を除去した寿命の長い密
閉鉛蓄電池容量センサーを提供するものである。
[Means for Solving the Problems] The sealed lead-acid battery capacity sensor of the present invention is a humidity sensor that utilizes the relationship between water vapor concentration and heat conduction, which is provided in the gas phase space of a battery container to maintain water vapor pressure in equilibrium with an aqueous sulfuric acid solution. The electrolyte concentration is detected by In other words, by changing the humidity detection principle from the conventional chemical phenomenon of ionization to the physical phenomenon of heat conduction, the present invention provides a long-life sealed lead-acid battery capacity sensor that eliminates conventional deterioration.

【0008】[0008]

【実施例】次に上記湿度センサの原理を図によって説明
する。図1はサーミスタを用いた湿度センサの測定回路
図であり、電源Eより電流を流しジュール熱により約2
00℃に自己加熱した2 個のサーミスタR1 、R2
 をブリッジ回路の辺に組み込み、R1 は外気に触れ
られるように孔のあいた金属ケース中に組み込まれ、R
2 は同じ形状かつ寸法の孔のない金属ケースの中に乾
燥空気と共に封入される。R3 ,R4 はブリッジを
構成する抵抗、R5 は電流を制限するための抵抗、R
6 はブリッジ回路より出力電圧を取り出すための抵抗
である。R1 を乾燥空気中に置いたとき、出力端子A
,B間に出力電圧を生じないようブリッジのバランスを
とる。次にR1 を湿度を測定したい大気に曝すと、そ
の大気と乾燥空気の熱伝導率の差からR1 がより冷却
され、A,B間に出力電圧を生じる。湿度と出力電圧の
関係を図2に示す。この出力電圧の値を湿度に変換し硫
酸濃度を得て電池の充放電状態を検知するものである。
[Embodiment] Next, the principle of the above humidity sensor will be explained with reference to the drawings. Figure 1 is a measurement circuit diagram of a humidity sensor using a thermistor. Electric current is applied from power source E, and Joule heat generates approximately 2
Two thermistors R1 and R2 self-heated to 00℃
is installed on the side of the bridge circuit, R1 is installed in a metal case with a hole so that it can be exposed to the outside air, and R
2 are enclosed together with dry air in a holeless metal case of the same shape and size. R3 and R4 are the resistors that form the bridge, R5 is the resistor that limits the current, and R
6 is a resistor for taking out the output voltage from the bridge circuit. When R1 is placed in dry air, output terminal A
, B, balance the bridge so that no output voltage is generated between them. Next, when R1 is exposed to the atmosphere whose humidity is to be measured, R1 is further cooled due to the difference in thermal conductivity between the atmosphere and dry air, and an output voltage is generated between A and B. Figure 2 shows the relationship between humidity and output voltage. This output voltage value is converted into humidity to obtain the sulfuric acid concentration and to detect the charge/discharge state of the battery.

【0009】図3は、本発明電池に湿度センサーを装着
した状態を示す断面模式図である。1は電池の電槽、2
は電槽の蓋、3は負極板、4は負極端子、5はマット状
のガラスセパレータ、6は正極端子、7は湿度センサー
の本体で、電槽蓋部に設けた開口部にパッキン11を介
して螺着する構造になっている。9は電槽内の気相空間
で、ここにセンサーは感湿部が極板群や電解液に直接接
触しないよう、プラスチックス製多孔体10でカバーし
て配置される。8はセンサーの出力を取り出すための導
線である。
FIG. 3 is a schematic cross-sectional view showing a state in which a humidity sensor is attached to the battery of the present invention. 1 is the battery case, 2
is the lid of the battery container, 3 is the negative electrode plate, 4 is the negative terminal, 5 is the matte glass separator, 6 is the positive terminal, 7 is the body of the humidity sensor, and the packing 11 is inserted into the opening provided in the lid of the battery container. It has a structure that screws on through it. Reference numeral 9 denotes a gas phase space within the battery case, in which the sensor is placed covered with a porous plastic body 10 so that the moisture sensing part does not come into direct contact with the electrode plate group or the electrolyte. 8 is a conducting wire for taking out the output of the sensor.

【0010】0010

【発明の効果】本発明の密閉鉛蓄電池は、湿度センサー
として水蒸気濃度と熱伝導の関係という物理現象を利用
しているため応答が速く、加湿・除湿サイクルでヒステ
リシスがなく、劣化しにくく、電池の寿命末期までセン
サーの交換を必要としない。
Effects of the Invention: The sealed lead-acid battery of the present invention utilizes the physical phenomenon of the relationship between water vapor concentration and heat conduction as a humidity sensor, so it responds quickly, has no hysteresis during humidification/dehumidification cycles, and is resistant to deterioration. There is no need to replace the sensor until the end of its life.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】サーミスタを用いた湿度センサの測定回路図で
ある。
FIG. 1 is a measurement circuit diagram of a humidity sensor using a thermistor.

【図2】相対湿度と出力電圧の関係を示した図である。FIG. 2 is a diagram showing the relationship between relative humidity and output voltage.

【図3】本発明密閉鉛電池の湿度センサの配置を示す断
面模式図である。
FIG. 3 is a schematic cross-sectional view showing the arrangement of humidity sensors in the sealed lead battery of the present invention.

【符号の説明】[Explanation of symbols]

1  電槽 2  蓋 7  湿度センサー 8  センサーの出力取出導線 1 Battery case 2 Lid 7 Humidity sensor 8 Sensor output lead wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電槽上部の気相空間部に設けた湿度セ
ンサーによって電解液濃度と平衡する湿度を検出し、該
湿度の値から充放電状態を検出する密閉鉛蓄電池にあっ
て、該湿度の検出に水蒸気濃度と熱伝導の関係を利用し
た湿度センサーを備えることを特徴とする密閉鉛蓄電池
Claim 1: A sealed lead-acid battery that detects the humidity that is in equilibrium with the electrolyte concentration using a humidity sensor provided in the gas phase space above the battery case, and detects the charging/discharging state from the humidity value. A sealed lead-acid battery characterized by being equipped with a humidity sensor that uses the relationship between water vapor concentration and heat conduction to detect.
JP3104825A 1991-04-09 1991-04-09 Sealed-type lead secondary battery Pending JPH04312769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104825A JPH04312769A (en) 1991-04-09 1991-04-09 Sealed-type lead secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104825A JPH04312769A (en) 1991-04-09 1991-04-09 Sealed-type lead secondary battery

Publications (1)

Publication Number Publication Date
JPH04312769A true JPH04312769A (en) 1992-11-04

Family

ID=14391173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104825A Pending JPH04312769A (en) 1991-04-09 1991-04-09 Sealed-type lead secondary battery

Country Status (1)

Country Link
JP (1) JPH04312769A (en)

Similar Documents

Publication Publication Date Title
CN100437104C (en) Gas sensor, gas detector, and self-testing and self-correcting method therefor
JP5914694B2 (en) battery
JP3705994B2 (en) Hydrogen sensor, battery overcharge / overdischarge detection device, and fuel cell hydrogen leak detection device
US5144249A (en) Oxygen sensor
CN115472941A (en) Single lithium battery implanted hydrogen detection device and method
US3258415A (en) Oxygen analyzer and oxygen-depolarized cell therefor
US4414093A (en) Multifunctional reference electrode
US3657639A (en) Method and apparatus for measuring the state of charge of a battery using a reference battery
JPH04312769A (en) Sealed-type lead secondary battery
JPH0131586B2 (en)
JPS6319774A (en) Sealed lead-acid battery
JPS6335402Y2 (en)
JPH05166545A (en) Sealed lead-acid battery
JPS6247173Y2 (en)
JPH07272747A (en) Lead storage battery with capacitance indicator
JPH0582176A (en) Sealed lead-acid battery
JPS60112266A (en) Specific gravity sensor for lead storage battery
JPH04118870A (en) Sealed type lead storage battery
JP2000003734A (en) Temperature sensor mounting structure for battery pack, and charging method for the battery pack
JP3532109B2 (en) Battery mounting method and mounting device
JP2001176544A (en) Sodium sulfur secondary battery and method of determining depth of discharging and residual capacity
JPH0633650Y2 (en) Lead acid battery
JP2634498B2 (en) Carbon dioxide detection sensor
JPS5812993B2 (en) Lead acid battery with electrolyte status indicator
JPS58201269A (en) Storage battery with temperature sensor