JPH04312080A - Image information detecting method for photoelectric conversion element - Google Patents

Image information detecting method for photoelectric conversion element

Info

Publication number
JPH04312080A
JPH04312080A JP3078051A JP7805191A JPH04312080A JP H04312080 A JPH04312080 A JP H04312080A JP 3078051 A JP3078051 A JP 3078051A JP 7805191 A JP7805191 A JP 7805191A JP H04312080 A JPH04312080 A JP H04312080A
Authority
JP
Japan
Prior art keywords
light
image information
sensor
optical
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3078051A
Other languages
Japanese (ja)
Inventor
Tsutomu Miyasaka
力 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3078051A priority Critical patent/JPH04312080A/en
Publication of JPH04312080A publication Critical patent/JPH04312080A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable the continuous recording of optical information, and the extraction of the outline by periodically modulating the light intensity of an entire optical input signal, and inputting it. CONSTITUTION:A photosensitive element is that of a type sensitively responding to the change of the quality of light, that is, a differential sensitive type optical sensor. As for the photosensitive material suited to this purpose, a photosensitive color protein is recommended. However, the further desirably used photosensitive material is a bacteriorhodopsin. This photoelectric conversion element is constituted of the two kinds of electrodes, and the thin film of the bacteriorhodopsin and a hypoliminion including an electrolyte, interposed between the electrodes. The light having incident information to this sensor is finally made incident to the light receiving face of the sensor in a state accompanied with the change of the intensity, after the intensity is timewise modulated when the light passes through an optical system. Thus, the emphasis of moving components, or the extraction of the outline components can be executed from the image information.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光画像情報の新規な検出
方法に関するものであり、特に光電変換素子を用いて画
像情報を処理するときに光の窓口である感光素子におい
て特定の情報処理を施すことのできる検出方法に関する
ものである。本発明は感光素子にバクテリオロドプシン
などの感光性色素蛋白質を用いたときに該蛋白質の特徴
的な光情報処理機能を有効に引き出すことのできる検出
方法に関するものである。
[Field of Industrial Application] The present invention relates to a novel method for detecting optical image information, and in particular, when image information is processed using a photoelectric conversion element, specific information processing is performed in a photosensitive element that is a window for light. The present invention relates to a detection method that can be applied. The present invention relates to a detection method that can effectively bring out the characteristic optical information processing function of a photosensitive pigment protein such as bacteriorhodopsin when the photosensitive element is used in the photosensitive element.

【0002】0002

【従来の技術】近年、微細加工技術と光リソグラフィー
の進歩によって画像情報の記録密度はますます記録を更
新する傾向にある。しかしながら現在の高感度光センサ
および高密度記録素子の開発は大部分をシリコンを基板
とする微細加工技術に頼っており、シリコンとその接合
素子の持つ特性が感光素子の機能を支配している現状で
ある。したがって、記録密度は改善されるものの入力さ
れる画像情報の処理は回路とソフトウエアの側が負担す
ることになる。
BACKGROUND OF THE INVENTION In recent years, with advances in microfabrication technology and optical lithography, the recording density of image information is increasingly reaching new records. However, the current development of high-sensitivity optical sensors and high-density recording devices relies mostly on microfabrication technology using silicon as a substrate, and the current state is that the characteristics of silicon and its bonding elements control the functions of photosensitive devices. It is. Therefore, although the recording density is improved, the processing of input image information is burdened by circuits and software.

【0003】画像情報を高密度で入力する撮像素子とし
てはシリコンを主体とするCCD素子が典型である。こ
こでは光信号が電荷量に変換された後に一度電気的にメ
モリーされる。このメモリーは回路側で一次元の逐次処
理によって読み取られたのちに、2次元情報として表示
される。この方法では情報の時間変化を追うためにメモ
リーを逐次一定時間間隔でリセットする操作が採用され
ている。
[0003] A CCD element mainly made of silicon is typical of an image sensor that inputs image information at high density. Here, the optical signal is converted into an amount of charge and then electrically stored. This memory is read by one-dimensional sequential processing on the circuit side and then displayed as two-dimensional information. This method employs an operation that sequentially resets the memory at regular time intervals in order to track changes in information over time.

【0004】0004

【発明が解決しようとする課題】しかしシリコンを主体
とする固体素子には次世代の画像情報処理システムに要
求されるさまざまな機能、すなわち動物の視覚がもつパ
ターン認識や動きの抽出といった情報の識別に必要な処
理機能が備わっておらず、これは所謂インテイジェント
素子としての利用に限界を生じることにつながる。視覚
情報処理システムとして固体素子を働かせるためには、
出力情報を処理するコンピュータ側の負担が大きくなら
ざるを得ない。たとえば、形状を認識して記憶のパター
ンと比較するためには、物体の輪郭構造を取り出さなけ
ればならない。輪郭成分の抽出はパターン認識の重要な
因子である。また、物体の動きを検出するためには入力
される光情報中の動的成分だけを実時間で即座に抽出で
きなければならない。これらの情報抽出にはさらに明る
さに対する順応性や輪郭のコントラストの強調といった
補助機能も重要に関わってくる。以上の機能は視覚の受
容体が本来担っている重要な働きであり、次世代の光セ
ンサが目指す機能であるが、現在の固体素子そのもので
は実現の難しい課題である。
[Problems to be Solved by the Invention] However, solid-state devices mainly made of silicon have various functions required for next-generation image information processing systems, such as information identification such as pattern recognition and movement extraction of animal vision. It does not have the necessary processing functions, which leads to limitations in its use as a so-called inteigent element. In order to make solid-state devices work as a visual information processing system,
This inevitably increases the burden on the computer that processes the output information. For example, in order to recognize a shape and compare it with a pattern in memory, the outline structure of an object must be extracted. Extraction of contour components is an important factor in pattern recognition. Furthermore, in order to detect the movement of an object, it is necessary to be able to immediately extract only the dynamic component in the input optical information in real time. In addition, auxiliary functions such as adaptability to brightness and enhancement of contour contrast are also important in extracting this information. The above functions are important functions originally performed by visual receptors, and are the functions that the next generation of optical sensors are aiming for, but they are difficult to achieve with current solid-state devices themselves.

【0005】[0005]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明者は固体素子に固執せずに生物材料にその
機能を求めると共に、視覚に習った情報処理手段を備え
た素子を構築しようという考えにたって検討を進めた。 その結果、本発明に開示するように、光入力信号を電気
信号に直接変換する感光ピクセルが受光平面上に複数配
列してなる光電変換素子において、感光ピクセルが入力
信号の光量の変化分を出力する微分感応性の光センサか
らなっており、この光センサに対して光入力信号の全体
の光強度を周期的に変調させた後で入力することを特徴
とする像情報の検出方法を用いることで、課題を解決す
るに至った。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention do not rely on solid-state devices, but instead seek biological materials for their functions, and also create devices equipped with information processing means learned from vision. We proceeded with the idea of building one. As a result, as disclosed in the present invention, in a photoelectric conversion element in which a plurality of photosensitive pixels that directly convert an optical input signal into an electrical signal are arranged on a light receiving plane, the photosensitive pixels output a change in the amount of light of the input signal. The image information detection method is characterized in that the image information is input to the optical sensor after periodically modulating the overall light intensity of the optical input signal. So, I was able to solve the problem.

【0006】この発明に効果的に用いられる感光素子は
、光量変化すなわち光強度の対時間変化量に対して敏感
に応答するタイプの感光素子であり、換言すれば微分感
応型の光センサである。このようなセンサでは、光量の
変化分(時間微分値)が電気量として出力され光量の増
加は正の電気量、光量の減少は負の電気量として出力さ
れる。
The photosensitive element effectively used in the present invention is a type of photosensitive element that responds sensitively to changes in light amount, that is, changes in light intensity over time; in other words, it is a differentially sensitive type photosensor. . In such a sensor, a change in the amount of light (time differential value) is output as an amount of electricity, an increase in the amount of light is output as a positive amount of electricity, and a decrease in the amount of light is output as a negative amount of electricity.

【0007】この目的に適した感光材料としては、感光
性色素蛋白質が挙げられる。感光性色素蛋白質において
は、可視光の吸収下で方向性を持った電荷の分離が高効
率で起こるためである。なかでも特に好ましく用いられ
るものはバクテリオロドプシンである。バクテリオロド
プシンは光合成反応中心クロロフィル蛋白質とならび感
光性色素蛋白質を代表する物質であり、また視物質ロド
プシンとともにレチナールを発色団とするレチナール蛋
白質の典型として知られている。バクテリオロドプシン
は、高度好塩菌ハロバクテリア(Halobacter
ium  halobium)の細胞形質膜より、たと
えばD.Oesterhalt,W.Stoecken
ius,Methods  in  Enzymolo
zy,31,pp667−678(1974)に記載さ
れる方法に従って、紫膜と呼ばれるディスク状膜断片(
サイズ約0.5μm)の形で精製することができる。バ
クテリオロドプシンは従って一般にはこの紫膜の形態で
使用されることが多い。バクテリオロドプシンは蛋白質
部分のオプシンとその中に埋め込まれオプシンとシッフ
結合をするレチナールからなっている。このシッフ結合
がもたらすオプシンシフトと呼ばれる長波長シフトによ
って広い可視吸収(550〜570nmに極大)が賦与
されている。
Photosensitive materials suitable for this purpose include photosensitive dye proteins. This is because in photosensitive pigment proteins, directional charge separation occurs with high efficiency under the absorption of visible light. Among them, bacteriorhodopsin is particularly preferably used. Bacteriorhodopsin is a typical photosensitive pigment protein along with the photosynthetic reaction center chlorophyll protein, and is also known as a typical retinal protein that uses retinal as a chromophore, along with the visual substance rhodopsin. Bacteriorhodopsin is produced from the highly halophilic bacterium Halobacterium.
For example, from the plasma membrane of D. ium halobium). Oesterhalt, W. Stoecken
ius, Methods in Enzymolo
zy, 31, pp667-678 (1974), disc-shaped membrane fragments called purple membranes (
0.5 μm in size). Bacteriorhodopsin is therefore generally used in the form of this purple membrane. Bacteriorhodopsin consists of the protein part opsin and retinal embedded within it that forms a Schiff bond with the opsin. A long wavelength shift called an opsin shift caused by this Schiff bond imparts broad visible absorption (maximum at 550 to 570 nm).

【0008】バクテリオロドプシンは輸送機能をもつ膜
蛋白の1種であり、その機能は光吸収のもとで水素イオ
ンを膜の内側から外側にベクトル的に輸送することであ
り、その意味でプロトンポンプとも称されている。この
プロトンポンプ機能に関しては、池上  明著「蛋白質
・核酸・酵素」第34巻、pp440〜461(198
9)あるいはA.Ikegami,et  al.,S
pringerProc.Phys.,20,pp17
3〜182(1987)に解説がある。光によるプロト
ンすなわち正電荷の移動はバクテリオロドプシンからさ
まざまの光電効果を引き出すことのできる重要な現象と
なっている。
Bacteriorhodopsin is a type of membrane protein with a transport function, and its function is to vectorially transport hydrogen ions from the inside of the membrane to the outside under light absorption, and in this sense it is a proton pump. It is also called. Regarding this proton pump function, see "Proteins, Nucleic Acids, and Enzymes" by Akira Ikegami, Vol. 34, pp. 440-461 (198
9) Or A. Ikegami, et al. ,S
pringerProc. Phys. ,20,pp17
There is an explanation in 3-182 (1987). The movement of protons, or positive charges, by light is an important phenomenon that allows bacteriorhodopsin to exhibit various photoelectric effects.

【0009】バクテリオロドプシンの光機能を生体外で
光電変換に利用した例は、たとえばK.Singh,e
t  al.,Biophy.J.,31,pp393
〜402(1980),K.Ihara  and  
Y.Mukohata,FEBSLetters,24
0,pp148〜152(1988),あるいはS.Y
.Liu,Biophys.J.,57,pp943〜
950(1990)とその引用文献に示されている。最
も一般的な方法はバクテリオロドプシンあるいは紫膜の
配向性薄膜を2種の電極の間に挟んでサンドイッチ型の
乾式ボルタイックセルを作製し電極間に生じる光起電力
を計測する方法である。その基本はたとえばG.Var
o,Acta  Biol.Acad.Sci.Hun
gary,32,pp301〜310(1981)に記
載されている。
[0009] Examples of utilizing the photofunction of bacteriorhodopsin for photoelectric conversion in vitro include, for example, K. Singh, e.
tal. , Biophy. J. , 31, pp393
~402 (1980), K. Ihara and
Y. Mukohata, FEBS Letters, 24
0, pp 148-152 (1988), or S. Y
.. Liu, Biophys. J. , 57, pp943~
950 (1990) and its cited references. The most common method is to create a sandwich-type dry voltaic cell by sandwiching an oriented thin film of bacteriorhodopsin or purple membrane between two types of electrodes, and to measure the photovoltaic force generated between the electrodes. The basics are, for example, G. Var
o, Acta Biol. Acad. Sci. Hun
Gary, 32, pp. 301-310 (1981).

【0010】本発明において用いられる光量の変化に対
して応答することのできる光電変化素子として、最も目
的にあったものは以下の構成の素子である。すなわち、
光電変換素子は2種の電極(作用極と対極)とそれに挟
まれたバクテリオロドプシンの薄膜および電解質を含む
親水性層からなっており、バクテリオロドプシン薄膜の
一方の面は作用極に、他方の面は親水性電解質層に接合
しており、結果として作用極/バクテリオロドプシン層
/親水性電解質層/対極という接合構造を取っている。 このような湿式型の接合素子によって、光に対する微分
応答を効率よく取り出すことができる。そして、作用極
を多数の微小な電極群として構成することにより受光平
面上に感光ピクセルを複数配列することができる。
As a photoelectric change element capable of responding to changes in the amount of light used in the present invention, the element most suitable for the purpose is an element having the following configuration. That is,
A photoelectric conversion element consists of two types of electrodes (a working electrode and a counter electrode) sandwiched between them and a hydrophilic layer containing a thin film of bacteriorhodopsin and an electrolyte.One side of the thin film of bacteriorhodopsin serves as the working electrode, and the other side is bonded to a hydrophilic electrolyte layer, resulting in a bonded structure of working electrode/bacteriorhodopsin layer/hydrophilic electrolyte layer/counter electrode. With such a wet type junction element, differential response to light can be extracted efficiently. By configuring the working electrode as a large number of small electrode groups, a plurality of photosensitive pixels can be arranged on the light receiving plane.

【0011】次に本発明の光情報検出方法について説明
する。本発明で用いられる光センサは光の変化量に鋭敏
に応答する種類のセンサであり、このセンサに対して入
射する情報を持った光は、光学系を通過する際にその強
度が時間的な変調を受けることにより、最終的にセンサ
の受光面で強度変化を伴った状態でセンサに入射される
。入射光の強度の時間に対する振動(ocillati
on)のパターンはその種類を選ばないが、ある短い時
間(例えば1秒間)の間では一定の時間周期をもって行
なわれることが必要である。入射光の強度の時間に対す
る振動は、光のチョッピングのようなON/OFFの振
動であってもよいし、ある強度変化の範囲で振幅をもっ
た振動であってもよい。
Next, the optical information detection method of the present invention will be explained. The optical sensor used in the present invention is a type of sensor that responds sensitively to the amount of change in light, and the light that is incident on this sensor and has information changes its intensity over time as it passes through the optical system. By being modulated, the light is finally incident on the sensor with intensity changes at the light receiving surface of the sensor. Oscillation of the intensity of incident light over time
(on) pattern is not limited to any type, but it is necessary that it be performed at a constant time period for a certain short period of time (for example, 1 second). The oscillation of the intensity of the incident light over time may be an ON/OFF oscillation such as light chopping, or may be an oscillation with an amplitude within a certain intensity change range.

【0012】光強度の振動は、光学系に回転セクターや
開閉シャッターを挿入したり、あるいは液晶材料などか
らなる光学空間変調素子を挿入して、これらを電気的に
駆動させることによって行うことができる。これらの手
段のうち光学空間変調素子(液晶シャッターなど)を用
いる方法は機械的振動を生じない点でより望ましい。
[0012] Vibration of the light intensity can be achieved by inserting a rotating sector or an opening/closing shutter into the optical system, or by inserting an optical spatial modulation element made of liquid crystal material or the like and driving these electrically. . Among these means, a method using an optical spatial modulation element (liquid crystal shutter, etc.) is more desirable in that it does not generate mechanical vibrations.

【0013】光強度の振動の周期は、動く像情報をある
程度の時間分解で追跡できる点と像情報の表示をある程
度の連続性をもった行なえる点で、周波数として25H
z以上、周期として50ms以下が好ましく、更に周波
数として50Hz以上、周期として30ms以下がより
好ましい。
The period of oscillation of light intensity is 25H as a frequency, since moving image information can be tracked with a certain degree of time resolution and image information can be displayed with a certain degree of continuity.
z or more and a period of 50 ms or less, and more preferably a frequency of 50 Hz or more and a period of 30 ms or less.

【0014】光情報が回転セクターや変調素子によって
ON/OFFの周期的なチョッピングを受ける場合は、
バクテリオロドプシンを感光材料とする素子においては
、応答出力を十分獲得する目的で、光の明暗(ON/O
FF)の時間比が1/1から1/4の範囲に収まること
が望ましく、1/2から1/4の範囲に入ることが特に
望ましい。
[0014] When optical information is subjected to periodic ON/OFF chopping by a rotating sector or a modulation element,
In devices using bacteriorhodopsin as a photosensitive material, the light brightness (ON/O
It is desirable that the time ratio of FF) falls within the range of 1/1 to 1/4, and particularly desirably falls within the range of 1/2 to 1/4.

【0015】本発明の方法に従った光画像検出方法の特
徴は、入力される像情報中の輪郭部分あるいは境界部分
(像を構成する光の色や強度が変化する部分)にある程
度のコントラストを付加した形で像情報を入力すること
ができる点である。また特にこの方法に従えば、静止画
像の全体像をセンサが捕らえることができると同時に、
動く画像に対しては静止するものよりも敏感な感度をも
ってこの物体の輪郭像を強調して検出することができる
。このような特徴あるセンシングの特性(動く画像の抽
出、画像の輪郭の抽出)は、センサ自体あるいは光をセ
ンサに導く光学系を、該センサの受光面に平行な方向に
周期的に位置的な振動を与えることによって更に強調す
ることができる。
A feature of the optical image detection method according to the method of the present invention is that a certain degree of contrast is added to the contour portion or boundary portion (the portion where the color or intensity of the light forming the image changes) in the input image information. The point is that image information can be input in an added form. In particular, if this method is followed, the sensor can capture the entire still image, while at the same time
The contour image of this object can be emphasized and detected with a higher sensitivity for moving images than for stationary images. These distinctive sensing characteristics (extraction of moving images, extraction of image outlines) are achieved by periodically positioning the sensor itself or the optical system that guides light to the sensor in a direction parallel to the light-receiving surface of the sensor. It can be further emphasized by applying vibration.

【0016】本発明においては、情報処理の目的に従っ
て、以下の操作を付随させて行うことができる。 (1)カラー画像を色分解して情報処理するために、特
定の感光波長域をもったセンサあるいはピクセルのみを
選択して光強度の振動を与える操作。 (2)本発明で示す光強度の振動操作を不連続的に振動
条件を変えて行う操作。 (3)2種以上の光電変換素子を単一の入力像に対して
併用して像情報の多面的処理を行う操作。
In the present invention, the following operations can be performed in conjunction with the purpose of information processing. (1) An operation in which only sensors or pixels with a specific photosensitive wavelength range are selected and the light intensity is oscillated in order to separate a color image and process information. (2) An operation in which the vibration operation of the light intensity shown in the present invention is performed by discontinuously changing the vibration conditions. (3) An operation in which two or more types of photoelectric conversion elements are used together for a single input image to perform multifaceted processing of image information.

【0017】以下に本発明の実施例を示すが、本発明は
これに限定されるものではない。
Examples of the present invention are shown below, but the present invention is not limited thereto.

【0018】[0018]

【実施例】Oesterhalt,et  al.,M
ethods  in  Enzymology,31
,667(1974)の方法に従って、密度勾配遠心法
を用いてHalobacterium  Holobi
umの菌体からバクテリオロドプシンを含む紫膜を分離
精製し、純水に分散して吸光度6.0(560nm)の
サスペンジョンを調製した。
[Example] Oesterhalt, et al. ,M
methods in Enzymology, 31
, 667 (1974) using density gradient centrifugation.
The purple membrane containing bacteriorhodopsin was separated and purified from the bacterial cells of M. um and dispersed in pure water to prepare a suspension with an absorbance of 6.0 (560 nm).

【0019】紫膜の分散水溶液100μlにヘキサン1
00μlとDMF20μlを加えて振とうミキサーにか
けて紫膜の単分子膜展開用懸濁液を調製した。
[0019] 1 part hexane to 100 μl of the aqueous dispersion solution of purple membrane.
00 μl and 20 μl of DMF were added and placed in a shaking mixer to prepare a suspension for developing a purple membrane monolayer.

【0020】この懸濁液を単分子膜製造水槽の純水相の
上に展開し、水面上に紫膜の1層が配列してなるバクテ
リオロドプシンの単分子膜を作製した。この単分子膜を
30mN/mの表面圧力に圧縮した後、この圧力のもと
で水平付着法によって、膜厚1000オングストローム
、伝導度6×103 cm−1のITO(indium
tin  oxide)層の正方ピクセルパターン(ピ
クセルサイズ1×1mm、ピクセル数256)が設けら
れた透明電極基板(3×3cm)の表面に移し取り、付
着操作を繰り返して最終的に20層の紫膜を基板上に累
積した。次いで、紫膜の層を1%グルタルアルデヒド水
溶液にディップした後水洗して紫膜を架橋固定化した。
This suspension was spread on the pure water phase of a monomolecular film production water tank to produce a monomolecular film of bacteriorhodopsin with one layer of purple membrane arranged on the water surface. After compressing this monomolecular film to a surface pressure of 30 mN/m, ITO (indium
The layer was transferred onto the surface of a transparent electrode substrate (3 x 3 cm) on which a square pixel pattern (pixel size: 1 x 1 mm, number of pixels: 256) of a tin oxide layer was provided, and the adhesion operation was repeated to finally form a 20-layer purple film. was accumulated on the substrate. Next, the purple membrane layer was dipped in a 1% aqueous glutaraldehyde solution and washed with water to crosslink and fix the purple membrane.

【0021】バクテリオロドプシンの担持されたパター
ン化ITO基板(厚さ1.1mm)上に、厚さ200μ
mのテフロン製の中空スペーサを介して共通対極の金電
極(厚さ1mm)を置き、スペーサによって形成された
間隙に電解質として3%の寒天水溶液(pH7、40℃
)を注入した。このようにしてITO/バクテリオロド
プシン/電解質/金電極の接合からなる光電変換素子を
作製した。素子には外部回路を通してITOピクセル側
に−0.6Vのバイアスを印加した。素子からの電流出
力はオペアンプによって電圧に変換し且つ増幅を行なっ
た後電圧信号を、同じく256画素を持つ発光素子(L
ED)に出力し、信号の2次元的表示を行なわせた。
[0021] On a patterned ITO substrate (thickness 1.1 mm) supporting bacteriorhodopsin,
A gold electrode (thickness: 1 mm) as a common counter electrode was placed through a hollow spacer made of Teflon of
) was injected. In this way, a photoelectric conversion element consisting of a junction of ITO/bacteriorhodopsin/electrolyte/gold electrode was produced. A bias of -0.6 V was applied to the ITO pixel side of the device through an external circuit. The current output from the element is converted into a voltage by an operational amplifier, and after amplification, the voltage signal is sent to a light emitting element (L), which also has 256 pixels.
ED) for two-dimensional display of the signal.

【0022】このようにして256画素をもつ微分感応
型の光電変換素子(イメージセンサ)とLED表示パネ
ルからなる画像情報処理システムを完成した。このセン
サに対し、ITO基板側からスライドプロジェクターに
よって各種の文字像を光情報として入射した。
In this way, an image information processing system consisting of a differentially sensitive photoelectric conversion element (image sensor) having 256 pixels and an LED display panel was completed. Various character images were applied as optical information to this sensor from the ITO substrate side using a slide projector.

【0023】文字像の入射に際して、センサの光源側手
前3cmに強誘電液晶と直交偏向板からなる光変調素子
(3.5×3.5cm、ITO電極使用)を光学シャッ
ターとして設置し、この液晶素子に駆動回路を介して6
VのON/OFF断続信号を40msの周期で入力して
シャッターの開閉の時間比が1/3となるように設定し
た。この操作によって、シャッターに入射される光が強
度比が10/1の振動光に変調されるようになった。な
お、ちなみにこの強度比は、偏向板の確度を変えること
によって任意に変えることが可能であり、20/1から
2/1の範囲で目的に応じて調整を行なった。
When a character image is incident, a light modulation element (3.5 x 3.5 cm, using ITO electrodes) consisting of a ferroelectric liquid crystal and an orthogonal polarization plate is installed as an optical shutter 3 cm in front of the light source side of the sensor, and this liquid crystal 6 through the drive circuit to the element
A V ON/OFF intermittent signal was input at a cycle of 40 ms, and the shutter opening/closing time ratio was set to 1/3. By this operation, the light incident on the shutter was modulated into oscillating light with an intensity ratio of 10/1. Incidentally, this intensity ratio can be arbitrarily changed by changing the accuracy of the deflection plate, and was adjusted in the range of 20/1 to 2/1 depending on the purpose.

【0024】はじめに、イメージセンサ上に光学シャッ
ターを開の状態にしたままでTという英文字を連続光と
して入射した結果、LED表示パネル上にT文字の全体
像が一瞬表示されたが、この像はすぐに消滅した。これ
は、光の強度変化が照射の一瞬しか生じなかったためで
ある。そこで、つぎに光学シャッターを40msの周期
で振動状態で駆動させた。そうすると、LED表示パネ
ル上にT文字の全体像が明瞭に連続的に表示された。次
にこのように光強度に振動を与えた状態で、T文字がセ
ンサの受光面に平行に水平方向、垂直方向に動くようス
ライドプロジェクターを動かした結果、表示パネル上に
は静止像として検出された文字よりも高いコントラスト
をもって、且つ輪郭部分が強調された状態でT文字の動
く様子が表示された。ここで、強調される輪郭成分を調
べた結果、強調される部分は動く方向に対して垂直な成
分であることがわかった。同様な特徴を持った像情報の
検出は、アルファベットの26文字全てについても再現
することができた。
First, the letter T was incident on the image sensor as continuous light with the optical shutter open, and as a result, the entire image of the letter T was momentarily displayed on the LED display panel. disappeared immediately. This is because the intensity change of the light occurred only for a moment of irradiation. Therefore, next, the optical shutter was driven in a vibrating state at a period of 40 ms. Then, the entire image of the letter T was clearly and continuously displayed on the LED display panel. Next, with the light intensity vibrating in this way, the slide projector was moved so that the letter T moved horizontally and vertically parallel to the light-receiving surface of the sensor, and as a result, it was detected as a static image on the display panel. The movement of the letter T was displayed with a higher contrast than that of the letter T, and with the outline highlighted. As a result of examining the contour components to be emphasized, it was found that the emphasized portions are components perpendicular to the direction of movement. Detection of image information with similar characteristics could be reproduced for all 26 letters of the alphabet.

【0025】振動変調の周期を40msから20msに
変えて同様な文字情報の検出を実施したところ、20m
sの条件下ではより時間的連続性に優れた明瞭な画像が
LED表示パネル上に表示された。
When similar text information was detected by changing the period of vibration modulation from 40 ms to 20 ms, 20 m
Under the conditions of s, a clear image with better temporal continuity was displayed on the LED display panel.

【0026】[0026]

【発明の効果】このように、本発明の像情報検出方法を
用いると、従来のシリコン系固体素子では表現できない
、像情報からの動く成分の強調や輪郭成分の抽出といっ
た特徴的な情報処理をセンサの入力部において実行でき
ることが明らかである。
[Effects of the Invention] As described above, by using the image information detection method of the present invention, characteristic information processing such as emphasizing moving components and extracting contour components from image information, which cannot be expressed with conventional silicon-based solid-state devices, can be performed. It is clear that this can be done at the input of the sensor.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  光入力信号を電気信号に直接変換する
感光ピクセルが受光平面上に複数配列してなる光電変換
素子において、感光ピクセルが入力信号の光量の変化分
を出力する微分感応性の光センサからなっており、この
光センサに対して光入力信号の全体の光強度を周期的に
変調させた後で入力することを特徴とする像情報の検出
方法。
1. A photoelectric conversion element in which a plurality of photosensitive pixels that directly convert an optical input signal into an electrical signal are arranged on a light receiving plane, in which the photosensitive pixels output a change in the amount of light of the input signal. 1. A method for detecting image information, comprising a sensor, and comprising inputting an optical input signal after periodically modulating the entire light intensity of the optical input signal to the optical sensor.
【請求項2】  感光ピクセルがバクテリオロドプシン
もしくはその類似化合物を含む素子であることを特徴と
する請求項1記載の像情報の検出方法。
2. The method for detecting image information according to claim 1, wherein the photosensitive pixel is an element containing bacteriorhodopsin or a similar compound thereof.
【請求項3】  光強度の変調の周期が50ms以下で
あることを特徴とする請求項1記載の像情報の検出方法
3. The method for detecting image information according to claim 1, wherein the period of modulation of the light intensity is 50 ms or less.
【請求項4】  光強度の変調の周期が30ms以下で
あることを特徴とする請求項1記載の像情報の検出方法
4. The method for detecting image information according to claim 1, wherein the period of modulation of light intensity is 30 ms or less.
JP3078051A 1991-04-11 1991-04-11 Image information detecting method for photoelectric conversion element Pending JPH04312080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3078051A JPH04312080A (en) 1991-04-11 1991-04-11 Image information detecting method for photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3078051A JPH04312080A (en) 1991-04-11 1991-04-11 Image information detecting method for photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH04312080A true JPH04312080A (en) 1992-11-04

Family

ID=13651052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3078051A Pending JPH04312080A (en) 1991-04-11 1991-04-11 Image information detecting method for photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH04312080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436340B1 (en) * 1997-06-06 2004-06-18 띤 필름 일렉트로닉스 에이에스에이 The method of preparing a light-sensitive organic material and a multistable optical logic element having the same, and the method of optically determining the logic value of a multistable optical element and the device having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436340B1 (en) * 1997-06-06 2004-06-18 띤 필름 일렉트로닉스 에이에스에이 The method of preparing a light-sensitive organic material and a multistable optical logic element having the same, and the method of optically determining the logic value of a multistable optical element and the device having the same

Similar Documents

Publication Publication Date Title
WO2010033127A1 (en) Response-enhanced monolithic-hybrid pixel
US5107104A (en) Photoelectric transducer having photosensitive chromoprotein film, i.e. bacteriorhodopsin
US7136212B2 (en) Molecular architecture for molecular electro-optical transistor and switch
Yang et al. Spatial resolution and 2D chemical image of light-addressable potentiometric sensor improved by inductively coupled-plasma reactive-ion etching
US5781330A (en) High efficiency optical switching and display devices
JPH04312080A (en) Image information detecting method for photoelectric conversion element
US5260559A (en) Method of detecting image information by photoelectric device
JP2725089B2 (en) Image information detection method by photoelectric conversion element
JP2794498B2 (en) Image information detection method by photoelectric conversion element
JPH04312079A (en) Image information detecting method for photoelectric conversion element
US20120141831A1 (en) Multilayer transparent light-receiving device and electronic device
Miyasaka Design of intelligent optical sensors with organized bacteriorhodopsin films
CA1258313A (en) Molecular electro-optical transistor and switch
Dai et al. Integration of image preprocessing and recognition functions in an optoelectronic coupling organic ferroelectric retinomorphic neuristor
Yang et al. Image edge detecting by using the bacteriorhodopsin-based artificial ganglion cell receptive field
Martin et al. Towards a bacteriorhodopsin-silicon neuromorphic photosensor
JPH03237769A (en) Color picture image sensor
Wang et al. Photoswitch based on bacteriorhodopsin Langmuir–Blodgett films
Wu et al. A Spiking Artificial Vision Architecture Based on Fully Emulating the Human Vision
JP3149257B2 (en) Imaging device having phthalocyanine photoconductive layer and imaging device using the imaging device
Groma et al. Bacteriorhodopsin: a picosecond optoelectric signal transducer
JP2000267223A (en) Optical information processing device
JPH02178612A (en) Optical modulating method and device
Takamatsu et al. The photo charge of a bacterioRhodopsin electrochemical cells measured by a charge amplifier
Wang et al. Protein-based photocell for high-speed motion detection