JPH04311542A - Manufacture of hydrogen storage metal body - Google Patents

Manufacture of hydrogen storage metal body

Info

Publication number
JPH04311542A
JPH04311542A JP3106674A JP10667491A JPH04311542A JP H04311542 A JPH04311542 A JP H04311542A JP 3106674 A JP3106674 A JP 3106674A JP 10667491 A JP10667491 A JP 10667491A JP H04311542 A JPH04311542 A JP H04311542A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
sintering
palladium
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3106674A
Other languages
Japanese (ja)
Other versions
JP2815124B2 (en
Inventor
Nobuyuki Sasao
笹尾 信之
Hideyuki Funasaka
船坂 英之
Norifumi Uehara
上原 典文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP3106674A priority Critical patent/JP2815124B2/en
Publication of JPH04311542A publication Critical patent/JPH04311542A/en
Application granted granted Critical
Publication of JP2815124B2 publication Critical patent/JP2815124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a hydrogen storage metal body having hydrogen occluded quantity, occluding rate and simple treatment at a low cost by compacting palladium metal fine particles having the specific particle size with a rubber press and sintering in non-oxidizing atmosphere. CONSTITUTION:The palladium fine particles having >=10mum particle size, are compacted into the aimed shape with the rubber press. This powder compact formation is executed e.g. by pressurizing a pressurizing rubber mold 18 in a pressure vessel 10 providing an upper and lower covers 12, 14 with pressurizing fluid supplied through a flow passage 24, gap 26 and flow passage 28 to compact the metal particles 22 incorporated in forming rubber mold 20. A green compact obtd. with this, is sintered in non-oxidizing atmosphere. This sintering is desirably executed e.g. at 900 deg.C for >=3hr in pure argon gas atmosphere. By this method, the optional shaped hydrogen storage metal body having very high occluding rate of the hydrogen containing deuterium at the room temp., much hydrogen occluded quantity and easy treatment, is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、室温で多量の水素(重
水素も含む)ガスを吸蔵しうる多孔質金属体を製造する
方法に関するものである。更に詳しく述べると、パラジ
ウム等の金属微粒子を圧粉成形し焼結する水素吸蔵金属
体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous metal body capable of storing a large amount of hydrogen (including deuterium) gas at room temperature. More specifically, the present invention relates to a method for manufacturing a hydrogen storage metal body by compacting and sintering fine metal particles such as palladium.

【0002】0002

【従来の技術】金属には水素を吸収して貯蔵する性質が
あり、このことは古くから知られた事実である。近年、
各種の金属・合金について、水素の吸収・放出現象に関
する物理的あるいは化学的な研究が系統的に行われ、そ
れによって常温付近で水素ガスを吸収し、加熱すると放
出する、所謂「水素吸蔵合金」が開発されてきた。その
代表的な例としては鉄−チタン系の合金がある。
2. Description of the Related Art Metals have the property of absorbing and storing hydrogen, and this has been known for a long time. recent years,
Physical and chemical research has been conducted systematically on hydrogen absorption and release phenomena for various metals and alloys, and as a result, so-called "hydrogen storage alloys" absorb hydrogen gas at room temperature and release it when heated. has been developed. A typical example is an iron-titanium alloy.

【0003】従来、この種の水素吸蔵合金は、構成元素
の化学量論的な比が一定であること及び全体として成分
が均一であることなどが要求されるため、一般に金属溶
解法により製造している。
[0003] Conventionally, this type of hydrogen storage alloy has generally been manufactured by a metal melting method because it is required that the stoichiometric ratio of the constituent elements be constant and that the composition be uniform as a whole. ing.

【0004】0004

【発明が解決しようとする課題】ところでパラジウム(
Pd)金属が優れた水素吸蔵特性を呈することは知られ
ているが、微粒子状態の場合には取り扱い難く、用途や
使用法の点で大きな制約を受ける。
[Problem to be solved by the invention] By the way, palladium (
Although it is known that Pd) metal exhibits excellent hydrogen storage properties, it is difficult to handle when it is in the form of fine particles, and is subject to significant restrictions in terms of applications and usage.

【0005】他方、バルク材(溶融固化体)の場合は、
パラジウム金属の水素化物生成反応のエンタルピー変化
ΔHが小さいため、試料温度を変化させても水素吸収速
度を大幅に向上させることはできない。
On the other hand, in the case of bulk material (melted solidified material),
Since the enthalpy change ΔH of the hydride production reaction of palladium metal is small, the hydrogen absorption rate cannot be significantly improved even if the sample temperature is changed.

【0006】しかし技術的には電気分解などの湿式法に
より水素吸蔵速度を高めることは可能である。これは、
パラジウムを陰極とし、白金等を陽極として水の電気分
解を行うと、電離した水素イオンが陰極表面で電子を受
け取りパラジウム中に入り込むことを利用した方法であ
る。水素イオンを用いるので吸蔵速度は極めて高くなる
が、水素イオン生成のために電力を使用することになる
から、経済的ではないし、装置製作や取扱いが面倒であ
る。
However, technically it is possible to increase the hydrogen absorption rate by a wet method such as electrolysis. this is,
This method utilizes the fact that when water is electrolyzed using palladium as a cathode and platinum or the like as an anode, ionized hydrogen ions receive electrons on the surface of the cathode and enter the palladium. Since hydrogen ions are used, the storage rate is extremely high, but since electric power is used to generate hydrogen ions, it is not economical and the device manufacturing and handling are troublesome.

【0007】本発明の目的は、室温での水素ガス(重水
素ガス)の吸蔵量が大きく且つ吸蔵速度が非常に高く、
取扱いが簡単であり、しかも製造コストを下げることが
できる水素吸蔵金属体の製造方法を提供することである
The object of the present invention is to have a large amount of hydrogen gas (deuterium gas) absorbed at room temperature and a very high absorption rate.
It is an object of the present invention to provide a method for manufacturing a hydrogen storage metal body that is easy to handle and can reduce manufacturing costs.

【0008】[0008]

【課題を解決するための手段】一般に、金属の微粒子は
ガス吸着特性が優れている。本発明はこの現象に着目し
てなされたものである。本発明は、粒径10μm以下の
パラジウム金属微粒子を、ラバープレスで目的形状に圧
粉成形し、その圧粉成形体を非酸化性雰囲気で焼結する
水素吸蔵金属体の製造方法である。焼結は、例えば純ア
ルゴン(Ar)ガス雰囲気中において900℃で3時間
以上の条件で行うことが望ましい。なお本発明において
「水素吸蔵」とは、重水素(D2 )吸蔵も含む広い概
念の用語として用いている。
[Means for Solving the Problems] Generally, fine metal particles have excellent gas adsorption properties. The present invention has been made focusing on this phenomenon. The present invention is a method for manufacturing a hydrogen storage metal body, in which fine palladium metal particles having a particle size of 10 μm or less are compacted into a desired shape using a rubber press, and the compacted compact is sintered in a non-oxidizing atmosphere. It is desirable that the sintering be performed, for example, in a pure argon (Ar) gas atmosphere at 900° C. for 3 hours or more. In the present invention, the term "hydrogen storage" is used as a broad term that includes deuterium (D2) storage.

【0009】本発明には、パラジウム金属に代えて、金
属ウラン微粒子又は金属チタン微粒子を用いる場合も含
まれる。
[0009] The present invention also includes the case where metallic uranium fine particles or metallic titanium fine particles are used in place of palladium metal.

【0010】0010

【作用】金属微粒子の圧粉成形体を焼結するとスポンジ
状の多孔質焼結体が得られる。この焼結体は多孔質であ
るため水素(重水素)ガスが浸透し易く、室温での水素
吸蔵速度が非常に高くなり、水素吸蔵量も多くなる。圧
粉成形法を採用しているため任意の形状に製造でき、取
扱い易くなる。
[Operation] A spongy porous sintered body is obtained by sintering a powder compact of fine metal particles. Since this sintered body is porous, hydrogen (deuterium) gas easily permeates therein, and the rate of hydrogen absorption at room temperature becomes extremely high, resulting in a large amount of hydrogen storage. Since it uses a powder compaction method, it can be manufactured into any shape and is easy to handle.

【0011】[0011]

【実施例】図1は本発明方法における圧粉成形工程で用
いるラバープレス装置の一例を示す説明図である。中心
線の右半分は組み込み時の状態を、左半分は加圧時の状
態をそれぞれ示している。円筒状の圧力容器10の上端
部と下端部にそれぞれ上蓋12及び下蓋14を設ける。 圧力容器10の内部にアタッチメント本体16を装着し
、その内側に加圧ゴム型18と成形ゴム型20とを取り
付ける。そして該成形ゴム型20の内部に成形すべき金
属微粒子22を充填する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram showing an example of a rubber press apparatus used in the powder compacting process in the method of the present invention. The right half of the center line shows the state when assembled, and the left half shows the state when pressurized. An upper lid 12 and a lower lid 14 are provided at the upper and lower ends of the cylindrical pressure vessel 10, respectively. An attachment main body 16 is installed inside the pressure vessel 10, and a pressurizing rubber mold 18 and a molding rubber mold 20 are installed inside the attachment main body 16. Then, the inside of the molding rubber mold 20 is filled with metal fine particles 22 to be molded.

【0012】粒径約10μmのパラジウム金属微粒子(
純度99.9%以上)を、上記のラバープレス装置の成
形ゴム型20内に充填し、装置外部から加圧流体を供給
して約1t/cm2 の圧力で圧粉成形した。加圧流体
は、下蓋14に形成した流路24、圧力容器10とアタ
ッチメント本体16との隙間26、及びアタッチメント
本体16に形成してある流路28などを通って送り込ま
れ、加圧ゴム型18を押圧する。そして成形ゴム型20
によって金属微粒子22を加圧成形する。本発明で充填
する金属微粒子22には結合剤などを混入する必要はな
い。 粒径が10μm以下であれば、このようなラバープレス
で目的形状に成形できる。ラバープレスを用いるのは、
金属微粒子のみによって直接成形できることと、全方向
から圧力をかけることができ、任意の形状の成形体を得
ることができるためである。
[0012] Palladium metal fine particles with a particle size of about 10 μm (
(purity of 99.9% or more) was filled into the molding rubber mold 20 of the above-mentioned rubber press device, and compacted at a pressure of about 1 t/cm 2 by supplying pressurized fluid from outside the device. The pressurized fluid is fed through a channel 24 formed in the lower lid 14, a gap 26 between the pressure vessel 10 and the attachment body 16, a channel 28 formed in the attachment body 16, etc. Press 18. And molding rubber mold 20
The metal fine particles 22 are pressure-molded by the following steps. There is no need to mix a binder or the like into the metal fine particles 22 filled in the present invention. If the particle size is 10 μm or less, it can be molded into the desired shape using such a rubber press. Using a rubber press is
This is because molding can be performed directly using only fine metal particles, pressure can be applied from all directions, and a molded article of any shape can be obtained.

【0013】次に、このようにして得たパラジウム金属
微粒子の圧粉成形体を焼結する。焼結工程で使用する加
熱炉の一例を図2に示す。加熱炉40は、炉心管42の
外周に加熱コイル44を配置した雰囲気制御が可能な構
成の炉である。炉心管40内に圧粉成形体30を挿入し
、所定の条件で焼結する。パラジウム金属微粒子の圧粉
成形体の場合、焼結条件は下記の通りとした。 ■焼結温度…900℃ ■焼結時間…3時間以上 ■焼結雰囲気…純アルゴンガス中 ■ガス流通条件…50ml/分 得られた焼結体における充填密度は約56.5%(比重
6.8)であった。
Next, the compacted compact of palladium metal fine particles thus obtained is sintered. Figure 2 shows an example of a heating furnace used in the sintering process. The heating furnace 40 is a furnace having a configuration in which a heating coil 44 is arranged around the outer periphery of a furnace core tube 42 and the atmosphere can be controlled. The powder compact 30 is inserted into the furnace core tube 40 and sintered under predetermined conditions. In the case of a powder compact of palladium metal fine particles, the sintering conditions were as follows. ■Sintering temperature: 900℃ ■Sintering time: 3 hours or more ■Sintering atmosphere: pure argon gas ■Gas flow conditions: 50ml/min The packing density of the obtained sintered body is approximately 56.5% (specific gravity 6 .8).

【0014】ところで低温核融合研究において、乾式法
(重水素ガスを金属に吸蔵させる方式)では、パラジウ
ムやチタンが用いられる。パラジウムは水素吸蔵金属で
あるが、その吸蔵速度はチタンに比較してかなり小さい
。本発明方法により製造した金属焼結体は多孔質であり
、それを使用することにより、簡単に多量の重水素ガス
を吸蔵させることができ、その吸蔵速度も大きい。以下
、その特性について説明する。
By the way, in low-temperature nuclear fusion research, palladium and titanium are used in the dry method (a method in which deuterium gas is occluded in metal). Palladium is a hydrogen storage metal, but its storage rate is considerably lower than that of titanium. The metal sintered body produced by the method of the present invention is porous, and by using it, a large amount of deuterium gas can be easily stored, and the storage rate is also high. The characteristics will be explained below.

【0015】図3は本発明により得られたパラジウム金
属微粒子焼結体についての重水素ガスの吸蔵特性線図で
ある。横軸は測定時間(1目盛りが10分間に相当する
)を示し、縦軸は重水素ガスD2 圧力を示している。 測定は、圧力容器内に弁付き重水素ガス配管と圧力計を
取り付け、内部に焼結体試料を設置して室温で行った。 最初、a点(580Torr)まで重水素ガスを送入し
、そのまま放置すると約15分後にはb点(115To
rr)まで圧力が低下する。その分、重水素ガスが焼結
体試料に吸蔵されたことになる。以下同様に、c点まで
重水素ガスを送入してd点まで放置し、更にe点まで重
水素ガスを送入してf点まで放置した。このことから、
焼結体試料に多量の重水素ガスが急速に吸蔵されていく
ことが分かる。
FIG. 3 is a deuterium gas occlusion characteristic diagram of the palladium metal fine particle sintered body obtained according to the present invention. The horizontal axis shows the measurement time (one scale corresponds to 10 minutes), and the vertical axis shows the deuterium gas D2 pressure. The measurements were carried out at room temperature by installing a deuterium gas pipe with a valve and a pressure gauge inside the pressure vessel, and placing the sintered compact sample inside. At first, deuterium gas is introduced to point a (580 Torr), and if it is left as it is, after about 15 minutes it reaches point b (115 Torr).
The pressure decreases to rr). This means that deuterium gas was occluded in the sintered body sample. Similarly, deuterium gas was fed to point c and left to stand until point d, and then deuterium gas was fed to point e and left to stand until point f. From this,
It can be seen that a large amount of deuterium gas is rapidly absorbed into the sintered sample.

【0016】本発明の有効性を示すため、パラジウム金
属の微粒子焼結体とバルク材との重水素吸蔵性能の比較
結果を表1に示す。この比較データは、外部から重水素
ガス圧力を常に500Torr以上負荷し、平衡圧が5
00Torrになるまで放置したときのPd原子比及び
吸収ガス量を求めたものであり、Pd原子比は増加重量
により計算した値である。
In order to demonstrate the effectiveness of the present invention, Table 1 shows the comparison results of the deuterium storage performance between a palladium metal fine particle sintered body and a bulk material. This comparison data shows that deuterium gas pressure is always applied from the outside at 500 Torr or more, and the equilibrium pressure is 5.
The Pd atomic ratio and absorbed gas amount were determined when the sample was left to stand until the temperature reached 00 Torr, and the Pd atomic ratio was calculated based on the weight increase.

【0017】[0017]

【表1】[Table 1]

【0018】上記の実施例はいずれもパラジウムについ
ての結果であるが、チタン又はウランの微粒子を用いて
同様の方法で得た焼結体も優れた水素吸蔵特性を示す。 金属微粒子の粒径を10μm以下としたのは、10μm
を超えるとラバープレスで成形し難くなるからである。 焼結雰囲気は、不活性ガス雰囲気の他、水素ガスによる
還元性雰囲気でもよい。
Although the above examples are all results for palladium, sintered bodies obtained in a similar manner using fine particles of titanium or uranium also exhibit excellent hydrogen storage properties. The particle size of the metal fine particles is 10 μm or less.
This is because if it exceeds this, it becomes difficult to mold with a rubber press. The sintering atmosphere may be an inert gas atmosphere or a reducing atmosphere using hydrogen gas.

【0019】[0019]

【発明の効果】本発明は上記のように、金属微粒子をラ
バープレスで成形するため、用途に見合った任意の形状
の水素吸蔵金属体を製造でき、使用し易い。そして得ら
れる水素吸蔵金属体は多孔質であるため、通常のバルク
材に比して室温での水素(重水素)吸蔵速度が非常に高
くなり、吸蔵量も増大する。更に湿式のカッター(高速
カッターや放電加工機)で切断しても水素吸蔵特性が変
化しないから、薄片が必要な時は容易に所望形状に加工
でき、取扱いも非常に簡単となる。更にラバープレスを
用いるため、HIP(熱間静水圧プレス)装置などを使
用する場合と比較して、製造コストが低くなり有利であ
る。
[Effects of the Invention] As described above, since the present invention molds fine metal particles using a rubber press, it is possible to manufacture a hydrogen storage metal body of any shape suitable for the intended use, and it is easy to use. Since the resulting hydrogen storage metal body is porous, the hydrogen (deuterium) storage rate at room temperature is much higher than that of ordinary bulk materials, and the amount of storage is also increased. Furthermore, the hydrogen storage properties do not change even when cut with a wet cutter (high-speed cutter or electrical discharge machine), so when thin pieces are needed, they can be easily processed into the desired shape and are extremely easy to handle. Furthermore, since a rubber press is used, the manufacturing cost is lower than when using a HIP (hot isostatic press) device, which is advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法の成形工程で使用するラバープレス
の説明図。
FIG. 1 is an explanatory diagram of a rubber press used in the molding process of the method of the present invention.

【図2】本発明方法の焼結工程で使用する加熱炉の説明
図。
FIG. 2 is an explanatory diagram of a heating furnace used in the sintering process of the method of the present invention.

【図3】焼結体試料についての重水素ガスの吸蔵特性線
図。
FIG. 3 is a deuterium gas absorption characteristic diagram for a sintered body sample.

【符号の説明】[Explanation of symbols]

10  圧力容器 12  上蓋 14  下蓋 16  アタッチメント本体 18  加圧ゴム型 20  成形ゴム型 22  金属微粒子 30  圧粉成形体 40  加熱炉 42  炉心管 44  加熱コイル 10 Pressure vessel 12 Top lid 14 Lower lid 16 Attachment body 18 Pressure rubber mold 20 Molding rubber mold 22 Metal fine particles 30 Powder compact 40 Heating furnace 42 Furnace core tube 44 Heating coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  粒径10μm以下のパラジウム金属微
粒子を、ラバープレスで目的形状に圧粉成形し、その圧
粉成形体を非酸化性雰囲気中で焼結することを特徴とす
る水素吸蔵金属体の製造方法。
1. A hydrogen storage metal body characterized by compacting palladium metal fine particles with a particle size of 10 μm or less into a desired shape using a rubber press, and sintering the compacted body in a non-oxidizing atmosphere. manufacturing method.
【請求項2】  純アルゴンガス雰囲気中において90
0℃で3時間以上の焼結を行う請求項1記載の方法。
[Claim 2] 90% in a pure argon gas atmosphere
The method according to claim 1, wherein the sintering is carried out at 0°C for 3 hours or more.
【請求項3】  パラジウム金属微粒子に代えて金属チ
タン微粒子又は金属ウラン微粒子を使用する請求項1記
載の方法。
3. The method according to claim 1, wherein metallic titanium particles or metallic uranium particles are used in place of the palladium metal particles.
JP3106674A 1991-04-11 1991-04-11 Method for producing hydrogen storage metal body Expired - Fee Related JP2815124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3106674A JP2815124B2 (en) 1991-04-11 1991-04-11 Method for producing hydrogen storage metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3106674A JP2815124B2 (en) 1991-04-11 1991-04-11 Method for producing hydrogen storage metal body

Publications (2)

Publication Number Publication Date
JPH04311542A true JPH04311542A (en) 1992-11-04
JP2815124B2 JP2815124B2 (en) 1998-10-27

Family

ID=14439620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3106674A Expired - Fee Related JP2815124B2 (en) 1991-04-11 1991-04-11 Method for producing hydrogen storage metal body

Country Status (1)

Country Link
JP (1) JP2815124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078944A (en) * 2013-10-18 2015-04-23 株式会社日立製作所 Pressure transmission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025409A (en) * 1973-07-10 1975-03-18
JPS5220911A (en) * 1975-08-11 1977-02-17 Matsushita Electric Ind Co Ltd Hydrogen storage apparatus
JPS59219429A (en) * 1983-05-25 1984-12-10 Toyobo Co Ltd Production of porous metal for occluding hydrogen
JPH0266105A (en) * 1988-07-15 1990-03-06 Corning Inc Method for sintering metallic powder into structure without using sintering aid and method of using said structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025409A (en) * 1973-07-10 1975-03-18
JPS5220911A (en) * 1975-08-11 1977-02-17 Matsushita Electric Ind Co Ltd Hydrogen storage apparatus
JPS59219429A (en) * 1983-05-25 1984-12-10 Toyobo Co Ltd Production of porous metal for occluding hydrogen
JPH0266105A (en) * 1988-07-15 1990-03-06 Corning Inc Method for sintering metallic powder into structure without using sintering aid and method of using said structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078944A (en) * 2013-10-18 2015-04-23 株式会社日立製作所 Pressure transmission device

Also Published As

Publication number Publication date
JP2815124B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
Guoxian et al. Hydrogen absorption and desorption characteristics of mechanically milled Mg 35wt.% FeTi1. 2 powders
AU766574B2 (en) Low oxygen refractory metal powder for powder metallurgy
CN103667837A (en) Nanometer TiF3 catalyzed high-volume hydrogen-storing alloy and preparation method thereof
US5127970A (en) Method for producing rare earth magnet particles of improved coercivity
US4347082A (en) Mischmetal alloy for storage of hydrogen
Tuscher et al. Porous metal hydride compacts: Preparation, properties and use
JP2815124B2 (en) Method for producing hydrogen storage metal body
CN103667836A (en) MoS2 catalyzed high-volume hydrogen-storing alloy and preparation method thereof
US3953355A (en) Preparation of uranium nitride
EP4209608A1 (en) Hydrogen storage material, hydrogen storage container and hydrogen supply apparatus
Lim et al. The effects of aluminium substitution in TiFe on its hydrogen absorption properties
CN112251647B (en) ZrCo-based hydrogen isotope storage alloy with orthorhombic crystal structure and high cycle stability as well as preparation and application thereof
US20010007638A1 (en) Hydrogen occluding alloy for battery cathode
JPH01264901A (en) Storage vessel for hydrogen storage alloy
US7381368B2 (en) Palladium-boron alloys and methods for making and using such alloys
JPS624321B2 (en)
CN105671405A (en) Low-temperature high-capacity Mg-RE-Ni-based A2B-type hydrogen storage alloy and preparation method thereof
Tsuchiya et al. Preliminary Characterization of Zr9Ni11 Alloy for Its Tritium Gettering Property in In-Ditu Irradiation Test
JPS63162884A (en) Structural body of hydrogen occlusion alloy and its production
KR100828414B1 (en) Method and Furnace for Sintering of U-Zr Powder Compacts in a Low-vacuum Environment
JPH03126607A (en) Method for refining rare gas
Takeya et al. Hydrogen storage alloy powders produced by a reduction-diffusion process and their electrode properties
KR20150033828A (en) Magnesium based hydrogen storage material and the fabrication method thereof
US3652745A (en) Method of fabricating porous metal bodies
EP4332258A1 (en) Hydrogen storage material, hydrogen storage container, and hydrogen supply apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees