JPH04311010A - Manufacture of wound core - Google Patents

Manufacture of wound core

Info

Publication number
JPH04311010A
JPH04311010A JP7605191A JP7605191A JPH04311010A JP H04311010 A JPH04311010 A JP H04311010A JP 7605191 A JP7605191 A JP 7605191A JP 7605191 A JP7605191 A JP 7605191A JP H04311010 A JPH04311010 A JP H04311010A
Authority
JP
Japan
Prior art keywords
amorphous magnetic
coil spring
center rod
wound
inner molds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7605191A
Other languages
Japanese (ja)
Inventor
Koichi Tajima
多嶋 孝一
Kazuo Yamada
一夫 山田
Eiji Shimomura
英二 霜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7605191A priority Critical patent/JPH04311010A/en
Publication of JPH04311010A publication Critical patent/JPH04311010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a low-loss wound core having excellent magnetic characteristics using a method wherein an amorphous magnetic thin band is wound and annealed. CONSTITUTION:Two inner molds 12 and 13, consisting of heat-resisting material, a center rod 14, a coil spring 22 and nuts 18 and 18 are set inside an amorphous magnetic thin band 11 which is wound up in coil form independently or lap- wound with a heat-proof insulating film. By the compressive repulsion of a spring 22 generated by the thread movement of the above-mentioned nuts 18, expanding force is given to an amorphous magnetic thin band by adding force to the above-mentioned inner molds 12 and 13 in the direction wherein they are moving away with each other, and an annealing operation is conducted under this condition.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は非晶質磁性薄帯をコイル
状に巻回して焼鈍することにより製造する巻鉄心の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a wound core by winding an amorphous magnetic ribbon into a coil and annealing it.

【0002】0002

【従来の技術】変圧器やリアクトル等の誘導電気機器の
鉄心材料としては、励磁特性が良好であり、鉄損の低い
ものが要求される。この要求を満たす材料としては、こ
れまで、一般にけい素鋼板やけい素鋼帯が用いられてい
る。これらは、鋳造,熱間圧延,冷間圧延,焼鈍等の工
程を経て製造されているもので、これに対し、近年、合
金を高温の溶融状態からロール上で超急冷凝固させるこ
とにより、上記圧延等の工程を経ずに直接磁性薄帯を製
造し得る技術の開発が進んだ。このようにして製造され
た磁性薄帯は、ガラスのような非晶質構造を有するため
に異方性がなくて電気抵抗が高い。従って鉄損が著しく
低減される上に、励磁特性にも優れているため、省エネ
ルギー形の鉄心材料として期待され、種々適用化への検
討がなされている。
2. Description of the Related Art Iron core materials for induction electrical equipment such as transformers and reactors are required to have good excitation characteristics and low iron loss. Until now, silicon steel plates and silicon steel strips have generally been used as materials that meet this requirement. These are manufactured through processes such as casting, hot rolling, cold rolling, and annealing.In contrast, in recent years, the above-mentioned Advances have been made in the development of technology that allows the direct production of magnetic ribbons without going through processes such as rolling. The magnetic ribbon manufactured in this manner has an amorphous structure like glass, has no anisotropy, and has high electrical resistance. Therefore, in addition to significantly reducing iron loss, it also has excellent excitation characteristics, so it is expected to be an energy-saving iron core material, and various applications are being considered.

【0003】上記非晶質磁性薄帯の中で、鉄系のものと
しては、例えばアライドケミカル社の商品名でいうME
TGLAS2605S2等があり、配電用変圧器や高周
波電源変圧器等への適用が図られている。この非晶質磁
性薄帯を用いて巻鉄心を製造する場合、まず図7に示す
ように、数cm〜数十cmの幅の薄帯1を外周部が円形
の巻枠2によりコイル状に巻取り、その後、それを巻枠
2から外して、図8に示すように、外周部が矩形の内型
3により矩形に成形し、そして磁場焼鈍するという方法
が採用されている。この焼鈍により、非晶質磁性薄帯1
の急冷凝固時に残留していた内部歪みが除去されると共
に、所定の方向に磁区が揃えられ、鉄心の磁気特性が向
上する。同時に又、非晶質磁性薄帯1より成る巻鉄心に
塑性変形が生じ、焼鈍後は特に外力を与えなくても矩形
の巻鉄心形状を保つことができるようになる。
Among the above-mentioned amorphous magnetic ribbons, examples of iron-based ones include ME, which is a trade name of Allied Chemical Co., Ltd.
There are products such as TGLAS2605S2, which are being applied to power distribution transformers, high-frequency power transformers, etc. When manufacturing a wound core using this amorphous magnetic ribbon, first, as shown in FIG. A method is adopted in which the material is wound up, then removed from the winding frame 2, formed into a rectangular shape using an inner mold 3 having a rectangular outer periphery as shown in FIG. 8, and annealed in a magnetic field. Through this annealing, the amorphous magnetic ribbon 1
The internal strain that remained during the rapid solidification of the iron core is removed, the magnetic domains are aligned in a predetermined direction, and the magnetic properties of the iron core are improved. At the same time, plastic deformation occurs in the wound core made of the amorphous magnetic ribbon 1, and after annealing, the rectangular wound core shape can be maintained without any particular external force being applied.

【0004】0004

【発明が解決しようとする課題】ところが、非晶質磁性
薄帯1のコイル状の巻取り及び成形を行なうとき、薄帯
1の持つ幅方向の板厚変化等の形状不良が原因で巻歪み
を生じたり、成形する際に形状変化による歪みや面圧を
受けたりすることが考えられ、或いはそのほかにも巻鉄
心取扱い時に不測の力が加わることが考えられる。これ
に対して、前述のような鉄系の非晶質磁性材料は歪み感
受性が大きく正の磁気歪み特性を有しているため、板厚
方向の圧縮歪みを発生した状態では鉄損等の磁気特性が
悪化する。これは、前述のように、非晶質磁性薄帯1の
残留歪みの大半を、鉄心の成形時の焼鈍によって、除去
できるものの、上述の圧縮歪みを生じたままの状態で焼
鈍すると、磁区構造がそのままの状態で定着されてしま
うため、磁束に対する抵抗として作用するようになり、
鉄損を大きく悪化させる原因となってしまうからである
[Problems to be Solved by the Invention] However, when winding and forming the amorphous magnetic ribbon 1 into a coil shape, winding distortion occurs due to poor shape of the ribbon 1 such as changes in thickness in the width direction. It is conceivable that the core may be subjected to distortion or surface pressure due to shape change during molding, or that unexpected force may be applied when handling the wound core. On the other hand, iron-based amorphous magnetic materials as mentioned above have high strain sensitivity and positive magnetostriction characteristics, so when compressive strain occurs in the thickness direction, magnetic properties such as iron loss occur. Characteristics deteriorate. As mentioned above, most of the residual strain in the amorphous magnetic ribbon 1 can be removed by annealing during core forming, but if annealing is performed with the above-mentioned compressive strain still occurring, the magnetic domain structure is fixed in that state, so it acts as a resistance to magnetic flux,
This is because it becomes a cause of greatly worsening iron loss.

【0005】このような現象を防止改善する方法として
、例えば特開昭63−114205号公報に示されるよ
うに、巻鉄心を成形する際使用する内型により、非晶質
磁性薄帯に長手方向の張力を付与した状態で、焼鈍する
方法が提案されている。しかし、一般にこのような方法
では、焼鈍時の温度上昇と共に非晶質磁性薄帯が膨張し
て張力が緩和され、焼鈍温度に達した後はもはや引張歪
みの効果を期待することはできない。
[0005] As a method for preventing and improving such a phenomenon, for example, as shown in Japanese Patent Application Laid-Open No. 114205/1983, an inner mold used when forming a wound core is used to form a longitudinal direction in an amorphous magnetic ribbon. A method has been proposed in which annealing is performed with a tension of . However, in general, in such a method, as the temperature rises during annealing, the amorphous magnetic ribbon expands and the tension is relaxed, and after the annealing temperature is reached, the effect of tensile strain can no longer be expected.

【0006】更に、焼鈍温度としては一般に360〜4
20℃の範囲の温度が選ばれるが、前述したような歪み
取りの目的からすれば、それよりも高い温度が望ましい
。しかし、通常組成の鉄系非晶質磁性薄帯の再結晶温度
が450〜600℃の範囲にあるため、それよりやや低
い温度で焼鈍した方が良い磁気特性が得られる。このよ
うに焼鈍温度が再結晶温度に接近しているため、焼鈍時
の温度管理は厳密に行なう必要がある。最適温度を外れ
ると歪み取りが不充分となったり、或いは再結晶化が起
こったりし、非晶質磁性材料特有の優れた磁気特性が失
われることになる。
Furthermore, the annealing temperature is generally 360 to 4
A temperature in the range of 20° C. is selected, but a higher temperature is desirable for the purpose of eliminating distortion as described above. However, since the recrystallization temperature of an iron-based amorphous magnetic ribbon having a normal composition is in the range of 450 to 600°C, better magnetic properties can be obtained by annealing at a slightly lower temperature. Since the annealing temperature is close to the recrystallization temperature in this way, it is necessary to strictly control the temperature during annealing. If the temperature is outside the optimum temperature, strain relief may become insufficient or recrystallization may occur, resulting in the loss of the excellent magnetic properties unique to amorphous magnetic materials.

【0007】一方、非晶質磁性薄帯は一般に絶縁コーテ
ィングが施されていないために、周波数が10kHz以
上の変圧器鉄心等では、鉄心層間の絶縁抵抗が影響し、
高周波におけるうず電流損の増大が問題となることがあ
る。特に、高電圧パルス発生用可飽和リアクトルのよう
に高電圧のものでは、巻線1ターンの電圧が高くなるた
めに、鉄心層間の絶縁抵抗が低いと、絶縁破壊等により
、鉄心が局部加熱を生じることがある。又、大きな動作
磁束密度をとるためには、高角形ヒステリシス特性が要
求される。
On the other hand, since amorphous magnetic ribbons are generally not coated with an insulating coating, the insulation resistance between the core layers is affected in transformer cores with frequencies of 10 kHz or higher.
Increased eddy current loss at high frequencies may become a problem. In particular, in high-voltage reactors such as saturable reactors for high-voltage pulse generation, the voltage per turn of the winding is high, so if the insulation resistance between the core layers is low, the core may be locally heated due to dielectric breakdown, etc. This may occur. Furthermore, in order to obtain a large operating magnetic flux density, high square hysteresis characteristics are required.

【0008】この可飽和リアクトル等に用いられる鉄心
のうず電流損の増大を防止する方法としては、特開昭6
3−6822号公報に示されるように、非晶質磁性薄帯
とこの薄帯の板幅と同等もしくはそれ以上のテープ幅の
耐熱絶縁フィルムを重ねて巻回することにより鉄心を形
成した後に焼鈍する方法や、特公昭59−79516号
公報のように、非晶質磁性薄帯を巻回することにより鉄
心を形成し、歪取り焼鈍後に、合成樹脂を含浸する方法
等が検討されている。
[0008] As a method for preventing an increase in eddy current loss in the iron core used in saturable reactors, etc., there is a method disclosed in Japanese Patent Laid-Open No. 6
As shown in Publication No. 3-6822, an iron core is formed by overlapping and winding an amorphous magnetic ribbon and a heat-resistant insulating film with a tape width equal to or greater than the width of the ribbon, and then annealed. A method of forming an iron core by winding an amorphous magnetic ribbon and impregnating it with a synthetic resin after strain relief annealing, as disclosed in Japanese Patent Publication No. 59-79516, has been studied.

【0009】しかし、非晶質磁性薄帯と耐熱絶縁フィル
ムとを重ねて巻回し、その後、その鉄心を焼鈍する方法
では、層間絶縁抵抗が増して、うず電流損の増大は防止
できるものの、焼鈍時、耐熱絶縁フィルムが熱収縮する
ことによって、非晶質磁性薄帯に圧縮応力を加えること
になり、非晶質磁性薄帯本来の低損失,高角形ヒステリ
シス特性が損なわれることがある。
However, in the method of layering and winding an amorphous magnetic ribbon and a heat-resistant insulating film and then annealing the core, the interlayer insulation resistance increases and an increase in eddy current loss can be prevented; When the heat-resistant insulating film shrinks due to heat, compressive stress is applied to the amorphous magnetic ribbon, which may impair the low loss and high square hysteresis characteristics inherent to the amorphous magnetic ribbon.

【0010】又、非晶質磁性薄帯を巻回して巻鉄心を形
成し、焼鈍後に、合成樹脂を含浸して薄帯層間を絶縁す
る方法では、これも層間絶縁抵抗が増して、層間絶縁に
よるうず電流損の増大は防止できるものの、非晶質磁性
薄帯の応力感受性が大きいために、巻鉄心形成後に歪取
り焼鈍して磁気特性の改善を図っても、樹脂含浸による
応力によって焼鈍効果がなくなり、所望の磁気特性が得
られないという問題点があった。
[0010] Furthermore, in the method of winding an amorphous magnetic ribbon to form a wound core and then impregnating it with synthetic resin after annealing to insulate the ribbon layers, the interlayer insulation resistance also increases and the interlayer insulation Although the increase in eddy current loss due to resin impregnation can be prevented, the stress sensitivity of the amorphous magnetic ribbon is large, so even if strain relief annealing is performed after forming the wound core to improve the magnetic properties, the stress caused by resin impregnation will reduce the annealing effect. There was a problem that the desired magnetic properties could not be obtained.

【0011】本発明は上述の事情に鑑みてなされたもの
であり、従って、その第1の目的は、非晶質磁性薄帯に
よる巻鉄心成形のための焼鈍時における圧縮歪みの影響
と温度管理の厳密さを排除し、より鉄損を少なくし得て
磁気特性に優れた巻鉄心を容易に製造し得る巻鉄心の製
造方法を提供するにある。
The present invention has been made in view of the above-mentioned circumstances, and therefore, its first object is to improve the influence of compressive strain and temperature control during annealing for forming a wound core using an amorphous magnetic ribbon. An object of the present invention is to provide a method for manufacturing a wound core, which can easily manufacture a wound core with excellent magnetic properties and which can further reduce iron loss by eliminating the strictness of the method.

【0012】本発明の第2の目的は、非晶質磁性薄帯に
よる巻鉄心の層間絶縁抵抗を増したもので、更に低損失
であり、高角形ヒステリシス特性を充分に発揮させるこ
とのできる巻鉄心の製造方法を提供するにある。 [発明の構成]
[0012] A second object of the present invention is to increase the interlayer insulation resistance of a wound core made of amorphous magnetic ribbons, which has further low loss and which can fully exhibit high square hysteresis characteristics. To provide a method for manufacturing iron cores. [Structure of the invention]

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の巻鉄心の製造方法は、コイル状に巻取った
非晶質磁性薄帯の内側に、耐熱材料から成る2個の内型
と、この内型間にわたる中心棒、及びこの中心棒を囲繞
するコイルばね、並びに中心棒に沿い螺進してコイルば
ねを圧するナットをセットし、このナットの螺進による
コイルばねの圧縮反発により、上記2個の内型に互いに
遠ざかる方向の力を加えて非晶質磁性薄帯に拡張力を与
え、この状態で焼鈍をするようにしたことを特徴とする
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a wound core of the present invention includes two layers made of a heat-resistant material placed inside an amorphous magnetic ribbon wound into a coil. An inner mold, a center rod extending between the inner molds, a coil spring surrounding this center rod, and a nut that is screwed along the center rod to compress the coil spring are set, and the coil spring is compressed by screwing the nut. The present invention is characterized in that a force is applied to the two inner molds in a direction that causes them to move away from each other due to repulsion, thereby applying an expansion force to the amorphous magnetic ribbon, and annealing is performed in this state.

【0014】又、本発明の巻鉄心の製造方法は、耐熱絶
縁フィルムと重ねてコイル状に巻取った非晶質磁性薄帯
の内側に、耐熱材料から成る2個の内型と、この内型間
にわたる中心棒、及びこの中心棒を囲繞するコイルばね
、並びに中心棒に沿い螺進してコイルばねを圧するナッ
トをセットし、このナットの螺進によるコイルばねの圧
縮反発により、上記2個の内型に互いに遠ざかる方向の
力を加えて非晶質磁性薄帯に拡張力を与え、この状態で
焼鈍をするようにしたことをも特徴とする。
[0014] Furthermore, the method for manufacturing a wound core of the present invention includes two inner molds made of a heat-resistant material, and two inner molds made of a heat-resistant material on the inside of an amorphous magnetic ribbon wound into a coil shape with a heat-resistant insulating film layered thereon. A center rod that extends between the molds, a coil spring surrounding this center rod, and a nut that is screwed along the center rod and presses the coil spring are set, and the above two items are Another feature is that an expanding force is applied to the amorphous magnetic ribbon by applying a force in a direction that moves the inner mold away from each other, and annealing is performed in this state.

【0015】[0015]

【作用】上記手段によれば、コイル状に巻取った非晶質
磁性薄帯にコイルばねの圧縮反発により拡張力を与える
のであるから、鉄心焼鈍時の温度上昇により非晶質磁性
薄帯が膨張しても、その拡張力を引続き与えることがで
きる。
[Operation] According to the above means, expansion force is applied to the amorphous magnetic ribbon wound into a coil by the compression and repulsion of the coil spring. Even when expanded, it can continue to provide its expansion force.

【0016】又、非晶質磁性薄帯に耐熱絶縁フィルムを
重ねたもので、その耐熱絶縁フィルムが鉄心焼鈍時に熱
収縮しても、非晶質磁性薄帯にはコイルばねの圧縮反発
により拡張力を与え続けることができ、圧縮応力が加わ
るようになることを避けることができる。
[0016] Furthermore, a heat-resistant insulating film is layered on an amorphous magnetic ribbon, and even if the heat-resistant insulating film shrinks due to heat during core annealing, the amorphous magnetic ribbon expands due to the compression and repulsion of the coil spring. Force can be continued to be applied, and compressive stress can be avoided.

【0017】[0017]

【実施例】以下、本発明の第1実施例につき、図1ない
し図3を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

【0018】まず図1及び図2には、図7に示した巻枠
2等を用いてあらかじめコイル状に巻取った非晶質磁性
薄帯11を示しており、内側に2個の内型12,13が
セットされている。この内型12,13は、互いに遠ざ
かる方向(図中左右方向)に移動可能なように分割して
構成されており、ともに矩形を成している。
First, FIGS. 1 and 2 show an amorphous magnetic ribbon 11 that has been previously wound into a coil using the winding frame 2 shown in FIG. 12 and 13 are set. The inner molds 12 and 13 are configured to be divided so as to be movable in directions away from each other (horizontal direction in the figure), and both have a rectangular shape.

【0019】内型12,13間には中心棒14がわたし
て設けられており、その図中右側の一端部はねじ部15
で、内型12の中心部に形成されたねじ穴16に螺挿さ
れている。又、これに対し、中心棒14の図中左側の他
端部は、内型13の中心部に中心棒14の外径より大き
めの内径で形成された孔17に挿入されている。
A center rod 14 is provided between the inner molds 12 and 13, and one end on the right side in the figure is a threaded portion 15.
It is screwed into a screw hole 16 formed in the center of the inner mold 12. On the other hand, the other end of the center rod 14 on the left side in the figure is inserted into a hole 17 formed in the center of the inner mold 13 with an inner diameter larger than the outer diameter of the center rod 14.

【0020】中心棒14のねじ部15にはナット18が
螺合されており、更に当て板19がその中心部にねじ部
15より大きめに形成された孔20によって嵌合されて
いる。この当て板19は、ナット18には座金21を介
して当接されている。
A nut 18 is screwed onto the threaded portion 15 of the center rod 14, and a backing plate 19 is fitted into the center of the nut 19 through a hole 20 formed larger than the threaded portion 15. This backing plate 19 is brought into contact with the nut 18 via a washer 21 .

【0021】当て板19と内型13との間には、コイル
ばね22が中心棒14を囲繞して介在されている。この
コイルばね22に対し、当て板19と内型13のそれぞ
れコイルばね22端部が接する部分には、コイルばね2
2の外径とほゞ同内径の円形の凹部23,24を設けて
おり、コイルばね22の端部を安定位置させるようにな
っている。
A coil spring 22 is interposed between the backing plate 19 and the inner mold 13 so as to surround the center rod 14. With respect to this coil spring 22, the coil spring 2
Circular recesses 23 and 24 having approximately the same inner diameter as the outer diameter of the coil spring 22 are provided to stably position the end of the coil spring 22.

【0022】なお、これら内型12,13,中心棒14
,ナット18,当て板19,座金21,及びコイルばね
22は、いずれも後述する焼鈍の温度である約400℃
に耐え得る耐熱材料、中でも内型12,13は炭素鋼、
コイルばね22は低合金鋼で製造したものを使用してい
る。
[0022] Furthermore, these inner molds 12, 13, center rod 14
, nut 18, patch plate 19, washer 21, and coil spring 22 are all heated to approximately 400°C, which is the annealing temperature described later.
The inner molds 12 and 13 are made of heat-resistant materials that can withstand
The coil spring 22 is made of low alloy steel.

【0023】しかして、これらのセットは次の手順で行
なう。まず、中心棒14のねじ部15にナット18を浅
く螺合し、この状態の中心棒14のねじ部15を内型1
2のねじ穴16に螺挿する。次いで、中心棒14の他端
部側から、座金21,当て板19,コイルばね22,内
型13を順次中心棒14に嵌合し、かくして組立てたも
のを円形のコイル状に巻取られた非晶質磁性薄帯11の
内側に配置する。
[0023] These settings are performed in the following procedure. First, the nut 18 is lightly screwed onto the threaded portion 15 of the center rod 14, and the threaded portion 15 of the center rod 14 in this state is inserted into the inner mold 1.
Insert the screw into the screw hole 16 of No.2. Next, the washer 21, the cover plate 19, the coil spring 22, and the inner mold 13 were sequentially fitted onto the center rod 14 from the other end side of the center rod 14, and the thus assembled product was wound into a circular coil shape. It is placed inside the amorphous magnetic ribbon 11.

【0024】この後、ナット18を中心棒14のねじ部
15に沿って螺進させることにより、座金21及び当て
板19を介してコイルばね22を圧し、内型13を内型
12から遠ざかるように移動させる。そして、ナット1
8の螺進を続けることにより、やがて内型12,13が
非晶質磁性薄帯11の内側面に充分接触して、この非晶
質磁性薄帯11を矩形に成形するようになり、これに伴
ってコイルばね22には圧縮荷重が作用し、たわみを発
生する。更に、スパナ等を用いナット18の螺進を続け
ると、上記コイルばね22のたわみが増すことによって
増加する反発力により、非晶質磁性薄帯11に充分な拡
張力が作用する。この拡張力は、ナット18の螺進距離
によって、その大きさをコントロールすることができる
After that, by screwing the nut 18 along the threaded portion 15 of the center rod 14, the coil spring 22 is pressed through the washer 21 and the backing plate 19, and the inner mold 13 is moved away from the inner mold 12. move it to And nut 1
By continuing the spiral movement of step 8, the inner molds 12 and 13 will eventually come into sufficient contact with the inner surface of the amorphous magnetic ribbon 11 to form the amorphous magnetic ribbon 11 into a rectangular shape. Along with this, a compressive load acts on the coil spring 22, causing it to deflect. Furthermore, when the nut 18 is continued to be screwed on using a spanner or the like, a sufficient expansion force acts on the amorphous magnetic ribbon 11 due to the repulsive force that increases as the deflection of the coil spring 22 increases. The magnitude of this expansion force can be controlled by the screwing distance of the nut 18.

【0025】以上のようにセットした状態で、次に焼鈍
炉で約400℃に加熱し、引続き冷却する。この折り、
非晶質磁性薄帯11はその線膨脹係数(7.6×10−
6/℃)に相当する量だけ膨脹,収縮するが、その絶対
量は通常の寸法の鉄心の場合約1mm程度とわずかなも
のであり、最初のセット時に非晶質磁性薄帯11に拡張
力を付与するためにコイルばね22に与えた圧縮たわみ
量より約1オーダ以上小さい。(密巻コイルばねの場合
、ばね定数kは次式で表わされる。
[0025] In the state set as above, it is then heated to about 400°C in an annealing furnace and then cooled. This fold,
The amorphous magnetic ribbon 11 has a coefficient of linear expansion (7.6×10−
6/°C), but the absolute amount is as small as about 1 mm in the case of a core of normal size, and when the amorphous magnetic ribbon 11 is first set This is approximately one order of magnitude smaller than the amount of compressive deflection given to the coil spring 22 in order to impart this. (In the case of a closely wound coil spring, the spring constant k is expressed by the following formula.

【0026】[0026]

【数1】[Math 1]

【0027】ここで、Pは荷重、δはばねのたわみ、G
はばね材剛性率、dはコイル線径、Rはコイル半径、n
はコイル巻数をそれぞれ示しており、d=30mm、R
=50mm、n=5、G=5380kgf /mm2 
、P=5ton として計算すると、
[0027] Here, P is the load, δ is the deflection of the spring, and G
is the spring material rigidity, d is the coil wire diameter, R is the coil radius, n
indicate the number of coil turns, d=30mm, R
=50mm, n=5, G=5380kgf/mm2
, P=5ton

【0028】[0028]

【数2】 となる。)[Math 2] becomes. )

【0029】従って、コイルばね22に適切な寸法のも
のを選定することにより、温度変化にあまり影響される
ことなくほゞ一定の拡張力を継続的に付与することが可
能であり、特に、鉄心焼鈍時の温度上昇により非晶質磁
性薄帯11が膨張しても、その拡張力を引続き与えるこ
とができる。ただし、温度が上昇すると、ばね材の剛性
率Gは変化する。剛性率Gは、
Therefore, by selecting an appropriate size for the coil spring 22, it is possible to continuously apply a substantially constant expansion force without being greatly affected by temperature changes, and in particular, it is possible to apply a substantially constant expansion force to the coil spring 22. Even if the amorphous magnetic ribbon 11 expands due to the temperature increase during annealing, the expansion force can be continuously applied. However, as the temperature rises, the rigidity G of the spring material changes. The rigidity G is

【0030】[0030]

【数3】[Math 3]

【0031】(Eは縦弾性係数、νはポアソン比)で表
わされるが、鉄系材料の縦弾性係数Eの温度変化は−0
.03%/℃程度であるため、400℃での剛性率Gの
低下は約12%であると考えられ、400℃における拡
張力Pの大きさも約12%の低下が予想される。しかし
、この程度の低下は問題にならず、冷却の過程では再び
回復する。
(E is the longitudinal elastic modulus, ν is Poisson's ratio), and the temperature change in the longitudinal elastic modulus E of iron-based materials is -0
.. 03%/°C, it is thought that the decrease in rigidity G at 400°C is about 12%, and the magnitude of expansion force P at 400°C is also expected to decrease by about 12%. However, this degree of decrease is not a problem and it recovers again during the cooling process.

【0032】以上のような組立構成の内型12,13を
用いてFe−Si−B系合金製の非晶質磁性薄帯11を
300℃から420℃の温度範囲で焼鈍した後の鉄損測
定結果を図3に示す。同図には従来法で磁界800A/
mで励磁した磁場中焼鈍及び磁場なし焼鈍を行なった結
果についても示しているが、本実施例では磁界をかけな
くても、鉄損が従来法による磁場中焼鈍後の鉄損と同等
かもしくはそれより低い結果になると共に、焼鈍温度の
変化による差が小さくなる結果が得られた。
[0032] Iron loss after annealing the amorphous magnetic ribbon 11 made of Fe-Si-B alloy at a temperature range of 300°C to 420°C using the inner molds 12 and 13 assembled as described above. The measurement results are shown in Figure 3. The figure shows the conventional method with a magnetic field of 800A/
The results of annealing in a magnetic field excited at m and annealing without a magnetic field are also shown. Results were obtained that were lower than that, and that the difference due to changes in annealing temperature became smaller.

【0033】なお、内型12,13や中心棒14,ナッ
ト18,当て板19,座金21,及びコイルばね22の
材料としては、前述の炭素鋼や低合金鋼以外であっても
良く、特に、内型12,13には鋳鉄のほか、ムライト
系のセラミックス等が考えられ、更に、コイルばね22
にはSUS304のようなオーステナイト系ステンレス
鋼を使用すると、より耐熱性に優れ、ばね定数の温度変
化も小さくできる利点がある。次に、本発明の第2実施
例につき、図4ないし図6を参照して説明する。
The materials of the inner molds 12 and 13, the center rod 14, the nut 18, the cover plate 19, the washer 21, and the coil spring 22 may be other than the above-mentioned carbon steel or low alloy steel. In addition to cast iron, the inner molds 12 and 13 may be made of mullite-based ceramics, and the coil spring 22
The use of austenitic stainless steel such as SUS304 has the advantage of superior heat resistance and the ability to reduce temperature changes in the spring constant. Next, a second embodiment of the present invention will be described with reference to FIGS. 4 to 6.

【0034】この場合、特に図4及び図5においては、
先の図1及び図2と同一の部分に同一の符号を付して示
しており、従って、それと異なる部分についてのみ述べ
る。まず図4において、非晶質磁性薄帯11は中間ロー
ル25上で耐熱絶縁フィルム26と重ね、周方向の一箇
所を切断部27で示すように切断することにより拡縮自
在に形成した円形の巻枠28により、コイル状に巻取ら
れている。この耐熱絶縁フィルム26と重ねて巻枠28
に巻取られた非晶質磁性薄帯11の内側(巻枠28の内
側)に、図5に示すように、ほゞ半円形の2個の内型2
9,30がセットされ、この内型29,30間に中心棒
14が前述同様にわたして設けられている。このほか、
ナット18,当て板19,座金21,及びコイルばね2
2も前述同様であり、更にそれらのセット手順も前述同
様である。
In this case, especially in FIGS. 4 and 5,
The same parts as in FIGS. 1 and 2 are given the same reference numerals, and therefore only the parts that are different will be described. First, in FIG. 4, the amorphous magnetic ribbon 11 is stacked with a heat-resistant insulating film 26 on an intermediate roll 25, and cut at one point in the circumferential direction as shown by a cut portion 27, thereby forming a circular roll that can be expanded and contracted. It is wound into a coil shape by the frame 28. The winding frame 28 is overlapped with this heat-resistant insulating film 26.
As shown in FIG. 5, two approximately semicircular inner molds 2 are placed inside the amorphous magnetic ribbon 11 (inside the winding frame 28).
9 and 30 are set, and the center rod 14 is provided between the inner molds 29 and 30, extending in the same manner as described above. other than this,
Nut 18, backing plate 19, washer 21, and coil spring 2
2 is the same as above, and the setting procedure thereof is also the same as above.

【0035】ただし、この場合、上記内型29,30,
中心棒14,ナット18,当て板19,座金21,及び
コイルばね22の材料としては、ステンレス鋼、特には
SUS304のようなオーステナイト系ステンレス鋼を
使用している。そしてこの場合、焼鈍は、磁化力800
A/mの直流磁界中で行なうようにしている。
However, in this case, the inner molds 29, 30,
The center rod 14, nut 18, backing plate 19, washer 21, and coil spring 22 are made of stainless steel, particularly austenitic stainless steel such as SUS304. In this case, annealing is performed with a magnetizing force of 800
The test is carried out in a DC magnetic field of A/m.

【0036】このように、非晶質磁性薄帯11に耐熱絶
縁フィルム26を重ねたもので、その耐熱絶縁フィルム
26が鉄心焼鈍時に熱収縮しても、非晶質磁性薄帯11
にはコイルばね22の前述のような圧縮反発により拡縮
自在な巻枠28を介して拡張力を与え続けることができ
るものであり、圧縮応力が加わることを避けることがで
きる。又、その鉄心焼鈍時には800A/mの磁化力を
印加しているから、上記コイルばね22による拡張力と
磁化力との相乗効果も得られる。
In this way, since the heat-resistant insulating film 26 is layered on the amorphous magnetic ribbon 11, even if the heat-resistant insulating film 26 shrinks during core annealing, the amorphous magnetic ribbon 11
The expansion force can be continuously applied to the coil spring 22 through the expandable and contractible winding frame 28 due to the above-mentioned compressive repulsion of the coil spring 22, and application of compressive stress can be avoided. Further, since a magnetizing force of 800 A/m is applied during core annealing, a synergistic effect between the expansion force and magnetizing force by the coil spring 22 can be obtained.

【0037】以上のような組立構成の内型29,30を
用いてFe−Si−B系合金製の非晶質磁性薄帯11(
アライドケミカル社の商品名でいうMETGLAS26
05S2)と厚さ7.5μmの耐熱絶縁フィルム26(
宇部興産社の商品名でいうユーピレックス−S)とを重
ねて巻回した鉄心について、380℃の温度、800A
/mの直流磁界で焼鈍した後の直流ヒステリシス特性測
定結果を図6に示す。この図6で、B1 は磁化力10
0A/mにおける磁束密度であり、Br は残留磁気、
Hc は保持力、ΔBは動作磁束密度である。
Using the inner molds 29 and 30 assembled as described above, the amorphous magnetic ribbon 11 (
METGLAS26, the product name of Allied Chemical Co., Ltd.
05S2) and a heat-resistant insulating film 26 (with a thickness of 7.5 μm)
Regarding the iron core wound in layers with Ube Industries' product name UPILEX-S), the temperature of 380℃, 800A
FIG. 6 shows the measurement results of DC hysteresis characteristics after annealing in a DC magnetic field of /m. In this Figure 6, B1 is the magnetizing force 10
is the magnetic flux density at 0 A/m, Br is the residual magnetism,
Hc is the coercive force and ΔB is the operating magnetic flux density.

【0038】この図6では、従来方法で同一の条件で焼
鈍した結果についても示しており、本発明方法によると
、磁化力100A/mにおける磁束密度B1 ,残留磁
気Br,保持力Hc だけでなく、角形比及び動作磁束
密度ΔBまで、従来方法に比して優れた特性を示すこと
が認められた。
FIG. 6 also shows the results of annealing under the same conditions using the conventional method. According to the method of the present invention, not only the magnetic flux density B1, residual magnetism Br, and coercive force Hc at a magnetizing force of 100 A/m , squareness ratio, and operating magnetic flux density ΔB, it was recognized that the method exhibited superior characteristics compared to conventional methods.

【0039】なお、この場合、内型29,30は、耐熱
絶縁フィルム26と重ねて巻回した非晶質磁性薄帯11
に、巻枠28を介してでなく、直接接するようにしても
良い。又、内型29,30等の材料としては、この場合
も、オーステナイト系ステンレス鋼以外の他の耐熱金属
の使用が可能であり、特に内型29,30にはセラミッ
クス等の使用が可能である。
In this case, the inner molds 29 and 30 are made of the amorphous magnetic ribbon 11 wound over the heat-resistant insulating film 26.
Alternatively, it may be in direct contact with the winding frame 28 instead of through the winding frame 28. In addition, as the material for the inner molds 29, 30, etc., heat-resistant metals other than austenitic stainless steel can also be used in this case, and in particular, ceramics etc. can be used for the inner molds 29, 30. .

【0040】[0040]

【発明の効果】本発明は以上説明したとおりのもので、
下記の効果を奏する。
[Effect of the invention] The present invention is as explained above,
It has the following effects.

【0041】請求項1の巻鉄心の製造方法によると、コ
イル状に巻取った非晶質磁性薄帯の内側に、耐熱材料か
ら成る2個の内型と、この内型間にわたる中心棒、及び
この中心棒を囲繞するコイルばね、並びに中心棒に沿い
螺進してコイルばねを圧するナットをセットし、このナ
ットの螺進によるコイルばねの圧縮反発により、上記2
個の内型に互いに遠ざかる方向の力を加えて非晶質磁性
薄帯に拡張力を与え、この状態で焼鈍をするようにした
ので、焼鈍の際の加熱,冷却の全過程を通じ継続的に非
晶質磁性薄帯に拡張力を付与することができて、非晶質
磁性薄帯の膨張,収縮に関係なく磁区整列の効果を大き
く表わし得、鉄損を大幅に低減することができると共に
、磁気特性を優れさせることができる。又、この場合、
適正な温度範囲も広くなるため、温度管理を容易にする
ことができる。
According to the method for manufacturing a wound core according to claim 1, two inner molds made of a heat-resistant material are provided inside the amorphous magnetic ribbon wound into a coil, and a center rod extending between the inner molds; A coil spring surrounding this center rod, and a nut that is screwed along the center rod and presses the coil spring are set, and the compression and repulsion of the coil spring due to the screw movement of this nut causes the above-mentioned 2.
By applying force in the direction of moving away from each other to the inner molds, an expanding force is applied to the amorphous magnetic ribbon, and annealing is performed in this state, so that it can be continuously applied throughout the entire heating and cooling process during annealing. Expansion force can be applied to the amorphous magnetic ribbon, and the effect of magnetic domain alignment can be greatly exhibited regardless of expansion or contraction of the amorphous magnetic ribbon, and iron loss can be significantly reduced. , it is possible to improve magnetic properties. Also, in this case,
Since the appropriate temperature range is also widened, temperature management can be facilitated.

【0042】又、請求項2の巻鉄心の製造方法によると
、耐熱絶縁フィルムと重ねてコイル状に巻取った非晶質
磁性薄帯の内側に、耐熱材料から成る2個の内型と、こ
の内型間にわたる中心棒、及びこの中心棒を囲繞するコ
イルばね、並びに中心棒に沿い螺進してコイルばねを圧
するナットをセットし、このナットの螺進によるコイル
ばねの圧縮反発により、上記2個の内型に互いに遠ざか
る方向の力を加えて非晶質磁性薄帯に拡張力を与え、こ
の状態で焼鈍をするようにしたのであるから、耐熱絶縁
フィルムが鉄心焼鈍時に熱収縮しても、非晶質磁性薄帯
に拡張力を与え続けることができて、圧縮応力が加わる
ようになることを避けることができ、もって、低損失で
あり、高角形ヒステリシス特性を充分に発揮させること
ができる。又、それにより、動作磁束密度を高くとるこ
とができ、巻鉄心を小形化できるため、高周波電源装置
の小型・軽量化を図ることができる。
According to the method for manufacturing a wound core according to claim 2, two inner molds made of a heat-resistant material are placed inside the amorphous magnetic thin ribbon wound into a coil shape overlapping a heat-resistant insulating film; A center rod extending between the inner molds, a coil spring surrounding this center rod, and a nut that is screwed along the center rod and presses the coil spring are set. By applying force in the direction of moving away from each other to the two inner molds, an expanding force was applied to the amorphous magnetic ribbon, and annealing was performed in this state, so that the heat-resistant insulating film did not shrink during core annealing. Also, it is possible to continue to apply expansion force to the amorphous magnetic ribbon and avoid the application of compressive stress, thereby achieving low loss and fully demonstrating high square hysteresis characteristics. Can be done. Furthermore, since the operating magnetic flux density can be increased and the wound core can be made smaller, the high frequency power supply device can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例を示す方法実施のための装
置全体の平面図
FIG. 1 is a plan view of the entire apparatus for carrying out the method, showing a first embodiment of the present invention;

【図2】同装置全体の縦断面図[Figure 2] Longitudinal cross-sectional view of the entire device

【図3】焼鈍温度と鉄損との関係を従来方法との比較で
表わした図
[Figure 3] Diagram showing the relationship between annealing temperature and iron loss in comparison with the conventional method

【図4】本発明の第2実施例を示す非晶質磁性薄帯を耐
熱絶縁フィルムと重ねて巻回する装置の側面図
FIG. 4 is a side view of a device for winding an amorphous magnetic ribbon in a heat-resistant insulating film layer according to a second embodiment of the present invention.

【図5】
図1相当図
[Figure 5]
Figure 1 equivalent diagram

【図6】直流ヒステリシス特性を従来方法との比較で表
わした図
[Figure 6] A diagram showing the DC hysteresis characteristics in comparison with the conventional method

【図7】従来の方法を実施するための巻取装置の斜視図
[Fig. 7] A perspective view of a winding device for carrying out the conventional method.

【図8】成形装置の斜視図[Fig. 8] Perspective view of molding device

【符号の説明】[Explanation of symbols]

11は非晶質磁性薄帯、12,13は内型、14は中心
棒、18はナット、22はコイルばね、26は耐熱絶縁
フィルム、29,30は内型を示す。
11 is an amorphous magnetic ribbon, 12 and 13 are inner molds, 14 is a center rod, 18 is a nut, 22 is a coil spring, 26 is a heat-resistant insulating film, and 29 and 30 are inner molds.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  コイル状に巻取った非晶質磁性薄帯の
内側に、耐熱材料から成る2個の内型と、この内型間に
わたる中心棒、及びこの中心棒を囲繞するコイルばね、
並びに中心棒に沿い螺進してコイルばねを圧するナット
をセットし、このナットの螺進によるコイルばねの圧縮
反発により、前記2個の内型に互いに遠ざかる方向の力
を加えて非晶質磁性薄帯に拡張力を与え、この状態で焼
鈍をするようにしたことを特徴とする巻鉄心の製造方法
1. Inside an amorphous magnetic ribbon wound into a coil, two inner molds made of a heat-resistant material, a center rod extending between the inner molds, and a coil spring surrounding the center rod,
In addition, a nut is set that is screwed along the center rod and presses the coil spring, and the compression and repulsion of the coil spring due to the screwing of this nut applies a force in the direction of moving the two inner molds away from each other, forming an amorphous magnetic material. A method for manufacturing a wound iron core characterized by applying expansion force to the ribbon and annealing it in this state.
【請求項2】  耐熱絶縁フィルムと重ねてコイル状に
巻取った非晶質磁性薄帯の内側に、耐熱材料から成る2
個の内型と、この内型間にわたる中心棒、及びこの中心
棒を囲繞するコイルばね、並びに中心棒に沿い螺進して
コイルばねを圧するナットをセットし、このナットの螺
進によるコイルばねの圧縮反発により、前記2個の内型
に互いに遠ざかる方向の力を加えて非晶質磁性薄帯に拡
張力を与え、この状態で焼鈍をするようにしたことを特
徴とする巻鉄心の製造方法。
[Claim 2] Inside the amorphous magnetic thin ribbon wound into a coil shape with a heat-resistant insulating film, a layer made of a heat-resistant material is placed.
A set of inner molds, a center rod extending between the inner molds, a coil spring surrounding the center rod, and a nut that is screwed along the center rod and presses the coil spring, and the coil spring is released by screwing the nut. A wound iron core characterized in that a force is applied to the two inner molds in a direction to move them away from each other due to compressive repulsion, thereby applying an expansion force to the amorphous magnetic ribbon, and annealing is performed in this state. Method.
JP7605191A 1991-04-09 1991-04-09 Manufacture of wound core Pending JPH04311010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7605191A JPH04311010A (en) 1991-04-09 1991-04-09 Manufacture of wound core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7605191A JPH04311010A (en) 1991-04-09 1991-04-09 Manufacture of wound core

Publications (1)

Publication Number Publication Date
JPH04311010A true JPH04311010A (en) 1992-11-02

Family

ID=13593986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7605191A Pending JPH04311010A (en) 1991-04-09 1991-04-09 Manufacture of wound core

Country Status (1)

Country Link
JP (1) JPH04311010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012257A (en) * 2013-07-02 2015-01-19 株式会社東芝 Heat treatment device and method for superconducting coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012257A (en) * 2013-07-02 2015-01-19 株式会社東芝 Heat treatment device and method for superconducting coil

Similar Documents

Publication Publication Date Title
KR101113411B1 (en) Current transformer core and method for producing a current transformer core
US4368447A (en) Rolled core
US4809411A (en) Method for improving the magnetic properties of wound core fabricated from amorphous metal
KR970007511B1 (en) Method of manufacturing & applying heat treatment to a agnetic core
US5091253A (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
CA1200469A (en) Dynamic annealing method for optimizing the magnetic properties of amorphous metals
KR930010640B1 (en) Magnet core and making method thereof
JPH04311010A (en) Manufacture of wound core
US7138188B2 (en) Magnetic implement using magnetic metal ribbon coated with insulator
JPS5893311A (en) Coil core and manufacture thereof
JPS6137762B2 (en)
JP2006514433A5 (en)
JPH01208822A (en) Manufacture of wound core
JPH01308013A (en) Manufacture of wound core
JPH0684655A (en) High frequency wound core and high frequency induction electric appliance employing wound core
JP2788248B2 (en) High frequency magnetic core and method of manufacturing the same
JPS61226909A (en) Forming method for iron core of amorphous alloy thin band
JPS6140016A (en) Manufacture of core
KR100209438B1 (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JPS63114206A (en) Method for working iron core and inner frame for winding process
JPS59148314A (en) Manufacture of magnetic core
JPH03278503A (en) Bobbin for magnetic core device, and magnetic core device and manufacture thereof
JPS6025210A (en) Insulation treatment of induction apparatus core
JPH0399410A (en) Wound core
JPH04260310A (en) Manufacture of wound core