JPH04309986A - Method and device for image forming - Google Patents

Method and device for image forming

Info

Publication number
JPH04309986A
JPH04309986A JP7508891A JP7508891A JPH04309986A JP H04309986 A JPH04309986 A JP H04309986A JP 7508891 A JP7508891 A JP 7508891A JP 7508891 A JP7508891 A JP 7508891A JP H04309986 A JPH04309986 A JP H04309986A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
developer
colloidal
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7508891A
Other languages
Japanese (ja)
Inventor
Hitoshi Fukushima
均 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7508891A priority Critical patent/JPH04309986A/en
Publication of JPH04309986A publication Critical patent/JPH04309986A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an image forming method and device which can obtain a high quality image. CONSTITUTION:In this image forming method, a colloidal developing liquid having the dispersion of a conductive solid fine grain in an insulating solvent is used. The colloidal developing liquid 104 is supplied between a first electrode layer 101 having a photoconductive layer 103, and a second electrode layer 102 provided on a side via the photoconductive layer 103 so as to face the first electrode layer 101, and having the formation of a surface layer having adhesive power stronger than that of the photoconductive layer 103, with respect to the gel state part of the developing liquid, a voltage is applied between the first electrode layer 101 and the second electrode layer 102, and the photoconductive layer 103 is irradiated with light, so that an electrostatic latent image is formed on the irradiated part, the colloidal developing liquid 104 on the electrostatic latent image is turned into a gel state, and an electrical viscous fluid image having high viscosity is formed on the surface layer by the gel state part.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はノンインパクトプリンタ
方式に適用できる新規な画像形成方法および装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel image forming method and apparatus applicable to a non-impact printer system.

【0002】0002

【従来の技術】普通紙に高速で、高品質な画像記録が可
能なノンインパクトプリンタ方式としては電子写真法、
静電記録法、磁気記録法などが知られている。これらの
方法は潜像形成部、現像形成部がそれぞれ別々なため、
装置構成上、小型化、低価格が非常に困難である。また
、現像部から受像紙へ転写させる際、熱定着プロセスが
必要であるため、熱エネルギー浪費が大きいという問題
がある。これに対し特開昭58−27157号公報記載
の電気粘性流体を使った画像形成法は、電界印加の有無
によって液体現像液の粘度を変化させ転写性を変化させ
る。つまり線像部の現像液は低粘性のままとする一方、
非潜像部の現像液は、高粘性に変化させる。これにより
非潜像部の現像液は、受像シートに転写せずに記録媒体
表面に残存し、受像シートには低粘性の潜像部現像液が
転写されて、画像が得られる。この方法だと従来のノン
インパクトプリンタ方式に比較して、同一潜像により複
数枚のコピーが高速で得ることができ、かつ、熱定着が
必要なく熱エネルギー浪費が少なくてすむ。また、装置
の構成上潜像形成も現像も共通部材で行えるため、小型
簡略化、低価格化が容易である。
[Prior Art] Electrophotography is a non-impact printer method that can record high-speed, high-quality images on plain paper.
Electrostatic recording methods, magnetic recording methods, etc. are known. These methods have separate latent image forming sections and development forming sections, so
Due to the configuration of the device, it is extremely difficult to make it smaller and at a lower price. Furthermore, since a heat fixing process is required when transferring the image from the developing section to the image receiving paper, there is a problem in that a large amount of thermal energy is wasted. On the other hand, the image forming method using an electrorheological fluid described in Japanese Patent Application Laid-Open No. 58-27157 changes the viscosity of the liquid developer depending on whether or not an electric field is applied, thereby changing the transferability. In other words, while the developer in the line image area remains low in viscosity,
The developer in the non-latent image area is made to have a high viscosity. As a result, the developer for the non-latent image area remains on the surface of the recording medium without being transferred to the image-receiving sheet, and the low-viscosity developer for the latent image area is transferred to the image-receiving sheet, thereby obtaining an image. Compared to conventional non-impact printer systems, this method allows multiple copies of the same latent image to be obtained at high speed, and requires no heat fixing, resulting in less wasted thermal energy. Further, because the apparatus is configured so that latent image formation and development can be performed using common members, it is easy to simplify the size and reduce the cost.

【0003】0003

【発明が解決しようとする課題】しかしながら上記従来
の方法によってもなお高品質な画像を得るためにはいく
つかの問題点が残っている。
However, even with the above-mentioned conventional methods, several problems remain in order to obtain high-quality images.

【0004】第1に、潜像形成方法は、一様に帯電した
誘電記録媒体上に、潜像部分の電荷をピン電極により中
和させて、潜像をつくるわけだが、このピンの解像度に
限界があるため、高い解像度をもつ潜像を得ることがで
きない。
First, in the latent image forming method, a latent image is created on a uniformly charged dielectric recording medium by neutralizing the charge in the latent image area with a pin electrode, but the resolution of this pin is Due to limitations, it is not possible to obtain latent images with high resolution.

【0005】第2に、ピンによる接触方式のため、誘電
記録媒体上での接触不良または、長時間使用によるピン
の劣化で接触不良が起こり、潜像が形成されるプロセス
で、電荷中和がうまく行われずに、記録したり画像が現
像液から誘電記録媒体上に正しく構成されず、画像劣化
の大きな要因となる。
Second, since the contact method uses pins, poor contact may occur due to poor contact on the dielectric recording medium or deterioration of the pins due to long-term use, and charge neutralization occurs in the process of forming a latent image. If this is not done properly, the recorded image will not be properly formed from the developer onto the dielectric recording medium, which will be a major cause of image deterioration.

【0006】第3に、潜像部の現像液は低粘度の状態で
受像シートに転写されるわけだが、受像シートのアプリ
ケータロール上に吸収されて、紙に転写されるとき、普
通紙上では液体現像液が低粘性で流動性が高いため、に
じみが紙上で発生、高品質な画像が得られない。
Third, the developing solution in the latent image area is transferred to the image receiving sheet in a low viscosity state, but when it is absorbed onto the applicator roll of the image receiving sheet and transferred to paper, it is not as viscous as it is on plain paper. Because the liquid developer has low viscosity and high fluidity, smearing occurs on the paper, making it impossible to obtain high-quality images.

【0007】本発明の目的は、以上の問題点をすべて解
消し、高品質な画像を得ることのできる新規な画像形成
方法および装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel image forming method and apparatus that can solve all of the above problems and obtain high quality images.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の画像形成方法は、誘電性を有する固体微粒子
を絶縁性溶媒に分散したコロイド状現像液を用いる画像
形成方法であって、光導電体層を有する第1の電極層と
、この第1の電極層に体向して前記光導電体層を介した
側に設けられ、前記現像液のゲル状態部に対して前記光
導電体層よりも強い接着力を有する表面層が形成された
第2の電極層との間に前記コロイド状現像液を供給し、
第1の電極層と第2の電極層との間に電圧をかけ、かつ
前記光導電体層に光を照射することにより、その照射部
に静電潜像を形成してこの静電潜像上のコロイド現像液
をゲル状態とし、このゲル状態部によって前記表面層上
に高粘度電気粘性流体像を形成することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the image forming method of the present invention is an image forming method using a colloidal developer in which solid fine particles having dielectric properties are dispersed in an insulating solvent, the method comprising: a first electrode layer having a photoconductor layer; a first electrode layer provided on a side facing the first electrode layer with the photoconductor layer in between; supplying the colloidal developer between the second electrode layer and the second electrode layer on which a surface layer having stronger adhesive force than the body layer is formed;
By applying a voltage between the first electrode layer and the second electrode layer and irradiating the photoconductor layer with light, an electrostatic latent image is formed on the irradiated portion, and the electrostatic latent image is The above colloidal developer is in a gel state, and a high viscosity electrorheological fluid image is formed on the surface layer by this gel state portion.

【0009】また、本発明の画像形成装置は、誘電性を
有する固体微粒子を絶縁性溶媒に分散したコロイド状現
像液を用いる画像形成装置であって、光導電体層を有す
る第1の電極層と、この第1の電極層に対向して前記光
導電体層を介した側に前記コロイド状現像液が供給され
る間隔を隔てて設けられ、前記現像液のゲル状態部に対
して前記光導電体層よりも強い接着力を有する表面層が
形成された第2の電極層と、これら第1の電極層と第2
の電極層との間に電圧をかける電源と、前記光導電体層
に光を照射する光源とを備えたことを特徴とする。
Further, the image forming apparatus of the present invention is an image forming apparatus using a colloidal developer in which solid fine particles having dielectric properties are dispersed in an insulating solvent, and wherein the first electrode layer has a photoconductor layer. and the colloidal developer is provided on the side facing the first electrode layer with the photoconductor layer interposed therebetween, and is provided at a distance such that the colloidal developer is supplied to the gel state portion of the developer. a second electrode layer on which a surface layer having stronger adhesive force than the conductor layer is formed;
The photoconductor layer is characterized by comprising a power source that applies a voltage between the photoconductor layer and the photoconductor layer, and a light source that irradiates the photoconductor layer with light.

【0010】まず第1の電極層と第2の電極層との間に
、コロイド状現像液を供給し、一定の電圧を両電極層間
に印加する。この電界強度では、絶縁性溶媒に分散され
た、誘電性を有する固体微粒子はその固体微粒子がもつ
極性と反対の電荷をもつ電極層方向に電気泳動によって
移動はしない。次に、この状態で光導電体層に光を照射
してやる。すると光が照射された光導電体層は絶縁層か
ら動電層に変化し、その部分の電界強度は光が照射され
ていない部分に比較してより強くなる。そうすると照射
部付近に分散している固体微粒子はその誘電性の影響に
よって移動し、電界の方向に沿った粒子群の鎖が両電極
層間に形成される。この部分は一種のゲル状態となり、
非光照射部に比較して凝集力が非常に強くなる。表面層
はゲル状態部との接着力が光導電体層に比べて強いため
、電界をOFFにして両電極間から現像液を除いた後も
ゲル状態部は表面層と密着したまま残る。また、固体微
粒子鎖間の凝集力も不可逆的に増大するため、電界をO
FFにしてもゲル状態部の固体微粒子は再分散されない
。したがって、両電極層が分離された後も表面層上に、
光照射によって高電界下形成された高粘性ゲル状態部が
残り、現像形成が可能となる。
First, a colloidal developer is supplied between the first electrode layer and the second electrode layer, and a constant voltage is applied between the two electrode layers. At this electric field strength, the dielectric solid particles dispersed in the insulating solvent do not electrophoretically move toward the electrode layer, which has a charge opposite to the polarity of the solid particles. Next, in this state, the photoconductor layer is irradiated with light. Then, the photoconductor layer irradiated with light changes from an insulating layer to an electrodynamic layer, and the electric field strength in that part becomes stronger than in the part not irradiated with light. Then, the solid fine particles dispersed near the irradiation part move due to the influence of their dielectric properties, and a chain of particle groups along the direction of the electric field is formed between the two electrode layers. This part becomes a kind of gel state,
The cohesive force is much stronger compared to the non-light irradiated area. Since the adhesive force between the surface layer and the gel state part is stronger than that of the photoconductor layer, the gel state part remains in close contact with the surface layer even after the electric field is turned off and the developer is removed from between the two electrodes. In addition, since the cohesive force between solid fine particle chains increases irreversibly, the electric field is
Even with FF, the solid particles in the gel state are not redispersed. Therefore, even after the two electrode layers are separated, the
A highly viscous gel state portion formed under a high electric field by light irradiation remains, allowing development and formation.

【0011】[0011]

【実施例】まず、本発明による基本的な画像形成工程お
よび装置につて図面によって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the basic image forming process and apparatus according to the present invention will be explained with reference to the drawings.

【0012】図1に本方法に用いる基本的な画像形成装
置を示してある。101は第1の電極層であり、光導電
体層103を有している。102は第2の電極層であり
、表面層102aが形成されている。表面層102aは
、顔料集合体特にゲル組成状のインク凝集体(固体微粒
子104aと液体104bとが不均一状態のまま凝集し
、固体微粒子104同志の強い構造形成力によって液体
104bが取り込まれた状態)に対して強い吸着力をも
っている。光導電体層103は780nm前後に吸収波
長光をもっている。104はコロイド状現像液であり、
強い誘電体材料を含む顔料トナー粒子、(固体微粒子)
104aを絶縁性溶媒に分散して構成されている。 105は電源を示す。
FIG. 1 shows a basic image forming apparatus used in this method. Reference numeral 101 denotes a first electrode layer, which includes a photoconductor layer 103. 102 is a second electrode layer, on which a surface layer 102a is formed. The surface layer 102a is composed of pigment aggregates, particularly ink aggregates having a gel composition (solid particles 104a and liquid 104b aggregate in a non-uniform state, and liquid 104b is taken in by the strong structure-forming force of the solid particles 104). ) has strong adsorption power. The photoconductor layer 103 has an absorption wavelength of light around 780 nm. 104 is a colloidal developer;
Pigment toner particles, containing strong dielectric material (solid fine particles)
104a dispersed in an insulating solvent. 105 indicates a power source.

【0013】まず、図1に示すように両電極層101,
102の間にコロイド状現像液104を満たし、ある一
定の電圧を両電極層102,102間に印加する。この
電界強度では分散されたトナー粒子104aはそのトナ
ー粒子がもつ極性と反対の電荷電極に電気泳動によって
移動はしない。次にこの状態で図2に示すように光導電
体層103にLaserまたはLEDなどからなる光源
106により780μm付近の波長光をパルス状に照射
してやる。すると光が照射された部分の光導電体層は絶
縁層から導電層に変化し、その部分の電界強度は光が照
射されていない部分に比較してより強くなる。そうする
と照射部付近に分散しているトナー粒子104aはトナ
ー材料に含まれている強い誘電体成分の影響によって図
2に示すような電界の方向に沿った粒子群の鎖107を
両電極間に形成する。この部分は一種のゲル状態となり
、他の非光照射部に比較して凝集力が非常に強くなる。 表面層102aはゲル成分との接着力が強いため、電界
をOFFにして両電極層101,102間から現像液1
04を除いた後もゲル状態部108は図3に示すように
表面層102aと密着したまま残る。また、トナー粒子
鎖間の凝集力も不可逆的に増大するため、電界をOFF
にしてもゲル状態部108のトナー粒子104aは再分
散されない。また、光導電体層103との接着性は対向
の、ゲル状態部108が接着している表面層102aに
比較して弱い。したがって、両電極層101,102が
分離された後も表面層102a側上に、光書き込み照射
によって高電界下形成されたゲル状態部高粘性ゲルイン
ク集合部108が残り、現像形成が可能となる。
First, as shown in FIG. 1, both electrode layers 101,
102 is filled with a colloidal developer 104, and a certain voltage is applied between both electrode layers 102,102. At this electric field strength, the dispersed toner particles 104a do not move electrophoretically to the charged electrode opposite to the polarity of the toner particles. Next, in this state, as shown in FIG. 2, the photoconductor layer 103 is irradiated with light having a wavelength of around 780 μm in a pulsed manner from a light source 106 consisting of a laser or an LED. Then, the portion of the photoconductor layer that is irradiated with light changes from an insulating layer to a conductive layer, and the electric field strength of that portion becomes stronger than that of a portion that is not irradiated with light. Then, the toner particles 104a dispersed near the irradiation part form a chain 107 of particle groups along the direction of the electric field between the two electrodes as shown in FIG. 2 due to the influence of the strong dielectric component contained in the toner material. do. This part becomes a kind of gel state and has a much stronger cohesive force than other non-light irradiated parts. Since the surface layer 102a has a strong adhesive force with the gel component, the developer 1 is applied from between the electrode layers 101 and 102 by turning off the electric field.
Even after removing 04, the gel state portion 108 remains in close contact with the surface layer 102a, as shown in FIG. In addition, since the cohesive force between toner particle chains increases irreversibly, turning off the electric field
Even so, the toner particles 104a in the gel state portion 108 are not redispersed. Further, the adhesiveness with the photoconductor layer 103 is weaker than that of the opposing surface layer 102a to which the gel state portion 108 is adhered. Therefore, even after the electrode layers 101 and 102 are separated, the gel state high viscosity gel ink gathering portion 108 formed under a high electric field by optical writing irradiation remains on the surface layer 102a side, and development can be performed.

【0014】以下に具体例を示す。A specific example will be shown below.

【0015】実際の装置構成において、光導電体層10
3に使用される材料としてはメタルフリーフタロシアニ
ン,バナジウムフタロシアニン,チタノイルフタロシア
ニン,N.N’−ジフェニル−N−N’−ビス(3−メ
チルフェニル)−1.1’−ビフェニル−4.4’−ジ
アミン,N.N−テトラフェニル−3・3’−ジメチル
ベンジジン,N・N・N’・N’−テトラフェニル−4
.4’−ジアシノスチルベン,N・N・N’・N’−テ
トラトリル−4.4’−ジアミノスチルベン,トリス(
8−ヒドロキシキノリノール)アルミニウム,3,4,
9,10ペリレンテトラカルボキシリック,ビスベンジ
ミダゾール,N・N−ジフェニル−3,4,9,10−
ペリレンテトラカルボキシリックジイミド,などがある
。ただし使用される材料はこれらに限定されるものでは
ない。光導電体層の厚さは1μm〜50μm望ましくは
10〜30μmである。表面層102aは具体的には、
極性基をもつ樹脂、例えばアクリル酸エステル,ヒドロ
キシアクリル酸エステル,などを厚さ5〜50μmの範
囲に調整して第2の電極層102上に形成する。光導電
体層103と表面層102aとの間隔は50μm〜50
0μmの範囲に設定し、またその間隔にかける電圧は、
100v〜10Kvが適当とされる。コロイド状現像液
104としては、ウンデカン,ドデカンなどの飽和炭化
水素,セバシン酸ジブチル,塩化ビフェニルなどの絶縁
性液体中に、一般的にSiO2・nH2Oで示されるシ
リカゲル微粉,〔K・Mg・(AlSi3O10)(O
H)2〕で示されるマイカ微粉,(C6H10O5)n
で示されるセルロースなどの固体微粒子を分散し、さら
に必要あればカーボンブラック,オイルイエローAB,
オイルレッド,オイルブルーGエキストラ,オイルブラ
ックなど無機、または有機着色材を分散または溶解させ
たコロイド溶液が使用される。ここで使用される固体微
粒子は0.1〜30重量%で好ましくは2〜15重量%
で溶媒中に分散させる。またそれらの粒子は1〜10重
量%の含水率を有している。
In the actual device configuration, the photoconductor layer 10
Materials used in No. 3 include metal-free phthalocyanine, vanadium phthalocyanine, titanoyl phthalocyanine, N. N'-diphenyl-N-N'-bis(3-methylphenyl)-1.1'-biphenyl-4.4'-diamine, N. N-tetraphenyl-3,3'-dimethylbenzidine, N-N-N'-N'-tetraphenyl-4
.. 4'-diacinostilbene, N・N・N'・N'-tetratolyl-4.4'-diaminostilbene, tris(
8-hydroxyquinolinol) aluminum, 3,4,
9,10 perylenetetracarboxylic, bisbenzimidazole, N/N-diphenyl-3,4,9,10-
Examples include perylenetetracarboxylic diimide. However, the materials used are not limited to these. The thickness of the photoconductor layer is 1 μm to 50 μm, preferably 10 to 30 μm. Specifically, the surface layer 102a is
A resin having a polar group, such as acrylic ester, hydroxyacrylic ester, etc., is formed on the second electrode layer 102 to a thickness of 5 to 50 μm. The distance between the photoconductor layer 103 and the surface layer 102a is 50 μm to 50 μm.
The voltage set in the range of 0 μm and the voltage applied to the interval is:
100v to 10Kv is considered appropriate. The colloidal developer 104 contains fine silica gel powder generally represented by SiO2.nH2O, [K.Mg.(AlSi3O10 )(O
H) 2] mica fine powder, (C6H10O5)n
Solid fine particles such as cellulose shown by are dispersed, and if necessary, carbon black, oil yellow AB,
A colloidal solution in which an inorganic or organic colorant such as Oil Red, Oil Blue G Extra, or Oil Black is dispersed or dissolved is used. The solid fine particles used here are 0.1 to 30% by weight, preferably 2 to 15% by weight.
Disperse it in a solvent. The particles also have a water content of 1 to 10% by weight.

【0016】基本的な現像液の電気粘性プロセスは粒子
自体の誘電体成分の分極機構および粒子周辺溶媒の電気
2重層が分極する機構に強く依存している。
The basic electrorheological process of the developer strongly depends on the polarization mechanism of the dielectric component of the particles themselves and the polarization mechanism of the electric double layer of the solvent around the particles.

【0017】図4は装置の具体例を示す要部斜視図、図
5はその部分拡大図である。表面層102aはドラム状
の第2の電極層102にメタクリル酸ヒドロキシメチル
樹脂層を約10μmにコーティングして形成してある。 第2の電極層および光導電体層は透明PET50μmに
ITO透明電極を蒸着させた後CGR(電荷発生層)と
してメタルフリーフタロシアニン1μmをITO上に蒸
着させて形成し、さらにその上にCTL(電荷移動層)
としてN−N−N’−N’−テトラトリル−4.4’ジ
アミノスチルベンを溶媒にとかして厚さ約30μmにコ
ーティングして最終的な感光体ベルドとして使用する。 光導電体層103と表面層102aとの間隔は、約20
0μmとする。この間に現像液供給タンク201より、
カーボンブラックのISoperL(飽和炭化水素系溶
媒:エクソン化学)5wt%分散液にシリカゲル微粉を
15wt%添加し分散させた現像液104を光導電体層
103上に均一に展開してやる。表面層102aを含む
中間転写ロール100と光導電体層103の形成された
ベルト200とが最短距離の転写部Aにおいてベルト2
00は凹部になっており、展開された現像液はその凹部
にたまる。両電極層に1Kv電圧させ印加をその状態で
780μm波長のGaAs半導体レーザー106より書
き込む情報をパルス光として光導電体層103上に照射
してやると、レーザー光204が照射された部分の現像
液が、高粘土化、凝集して表面層102a側に付着し、
そのまま現像液のたまった凹部より取り出され回転して
、転写ローラ203との間に供給された受像紙Pと接触
し、圧力により中間転写ロール100上から受像紙Pへ
インク凝集体108が転写される。この後ベルト200
上の現像液の残りはクリーンブラシ202で洗浄され再
び201よりインク現像剤が供給され同じ転写プロセス
をくりかえす。このようにして得られた転写物は地汚れ
のない非常にドットの切れがよい鮮明な画像であった。 なお、受像紙Pは一般にいわれる普通紙、例えばXER
OX4024などである。
FIG. 4 is a perspective view of a main part showing a specific example of the apparatus, and FIG. 5 is a partially enlarged view thereof. The surface layer 102a is formed by coating the drum-shaped second electrode layer 102 with a hydroxymethyl methacrylate resin layer to a thickness of about 10 μm. The second electrode layer and the photoconductor layer are formed by depositing an ITO transparent electrode on transparent PET 50 μm, then depositing 1 μm metal-free phthalocyanine on ITO as a CGR (charge generating layer), and then on top of that, CTL (charge generating layer). moving layer)
N-N-N'-N'-tetratolyl-4.4' diaminostilbene was dissolved in a solvent and coated to a thickness of about 30 μm, which was then used as the final photoreceptor belt. The distance between the photoconductor layer 103 and the surface layer 102a is approximately 20
It is set to 0 μm. During this time, from the developer supply tank 201,
A developer 104 in which 15 wt % of silica gel fine powder is added and dispersed in a 5 wt % dispersion of ISoper L (saturated hydrocarbon solvent: Exxon Chemical) of carbon black is uniformly spread on the photoconductor layer 103 . The intermediate transfer roll 100 including the surface layer 102a and the belt 200 on which the photoconductor layer 103 is formed are connected to the belt 2 at the transfer portion A where the distance is the shortest.
00 is a recess, and the developed developer accumulates in the recess. When a voltage of 1 Kv is applied to both electrode layers and in that state, the information to be written is irradiated onto the photoconductor layer 103 as pulsed light from a GaAs semiconductor laser 106 with a wavelength of 780 μm, the developer in the area irradiated with the laser light 204 becomes highly clayey, aggregates and adheres to the surface layer 102a side,
The ink aggregate 108 is taken out from the recess where the developer has accumulated and rotated, and comes into contact with the image receiving paper P supplied between the transfer roller 203 and the ink aggregate 108 is transferred from the intermediate transfer roller 100 to the image receiving paper P due to pressure. . After this belt 200
The remainder of the upper developer is washed away by a clean brush 202, and ink developer is again supplied from 201 to repeat the same transfer process. The thus obtained transfer material was a clear image with very clear dots and no background smudges. Note that the image receiving paper P is commonly called plain paper, such as XER.
OX4024, etc.

【0018】[0018]

【発明の効果】本発明の構成によれば、2つの電極層の
うち1方に光導電体層をもうけ、電極層間の電界強度を
光で変調させ、現像液の粘性をコントロールすることに
よって、従来あった潜像形成時におこる潜像劣化から生
じる画像劣化がなくなり著しい転写向上性が実現できた
。また、受像紙へ転写される時に生じていたにじみなど
地汚れの発生原因となる要因が、不可逆的なインク凝集
機構によって取り除かれ、高品質な画像が得られるとい
う効果も有する。
According to the structure of the present invention, a photoconductor layer is provided on one of the two electrode layers, the electric field strength between the electrode layers is modulated by light, and the viscosity of the developer is controlled. Image deterioration caused by latent image deterioration that conventionally occurs during latent image formation has been eliminated, and a significant transfer improvement has been achieved. In addition, the irreversible ink aggregation mechanism removes factors that cause background stains, such as bleeding, that occur during transfer to image-receiving paper, resulting in a high-quality image.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の作用および基本的な装置構成を説明す
る図。
FIG. 1 is a diagram illustrating the operation and basic device configuration of the present invention.

【図2】本発明の作用および基本的な装置構成を説明す
る図。
FIG. 2 is a diagram illustrating the operation and basic device configuration of the present invention.

【図3】本発明の作用および基本的な装置構成を説明す
る図。
FIG. 3 is a diagram illustrating the operation and basic device configuration of the present invention.

【図4】本発明の装置の一具体例を説明する斜視図。FIG. 4 is a perspective view illustrating a specific example of the device of the present invention.

【図5】図4の拡大図。FIG. 5 is an enlarged view of FIG. 4.

【符号の説明】[Explanation of symbols]

101    第1の電極層 102    第2の電極層 102a  表面層 103    光導電体層 104    コロイド状現像液 105    電源 106    光源 101 First electrode layer 102 Second electrode layer 102a Surface layer 103 Photoconductor layer 104 Colloidal developer 105 Power supply 106 Light source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  誘電性を有する固体微粒子を絶縁性溶
媒に分離したコロイド状現像液を用いる画像形成方法で
あって、光導電体層を有する第1の電極層と、この第1
の電極層に対向して前記光導電体層を介した側に設けら
れ、前記現像液のゲル状態部に対して前記光導電体層よ
りも強い接着力を有する表面層が形成された第2の電極
層との間に前記コロイド状現像液を供給し、第1の電極
層と第2の電極層との間に電圧をかけ、かつ前記光導電
体層に光を照射することにより、その照射部に静電潜像
を形成してこの静電潜像上のコロイド現像液をゲル状態
とし、このゲル状態部によって前記表面層上に高粘度電
気粘性流体像を形成することを特徴とする画像形成方法
1. An image forming method using a colloidal developer in which solid fine particles having dielectric properties are separated into an insulating solvent, the method comprising: a first electrode layer having a photoconductor layer;
A second surface layer is provided on the side opposite to the electrode layer with the photoconductor layer interposed therebetween, and has a surface layer formed thereon that has a stronger adhesive force than the photoconductor layer to the gel state portion of the developer. by supplying the colloidal developer between the first electrode layer and the second electrode layer, applying a voltage between the first electrode layer and the second electrode layer, and irradiating the photoconductor layer with light. The method is characterized in that an electrostatic latent image is formed on the irradiated portion, a colloidal developer on the electrostatic latent image is brought into a gel state, and a high-viscosity electrorheological fluid image is formed on the surface layer by this gel state portion. Image forming method.
【請求項2】  誘電性を有する固体微粒子を絶縁性溶
媒に分散したコロイド状現像液を用いる画像形成装置で
あって、光導電体層を有する第1の電極層と、この第1
の電極層に対向して前記光導電体層を介した側に前記コ
ロイド状現像液が供給される間隔を隔てて設けられ、前
記現像液のゲル状態部に対して前記光導電体層よりも強
い接着力を有する表面層が形成された第2の電極層と、
これら第1の電極層と第2の電極層との間に電圧をかけ
る電源と、前記光導電体層に光を照射する光源とを備え
たことを特徴とする画像形成装置。
2. An image forming apparatus using a colloidal developer in which dielectric solid particles are dispersed in an insulating solvent, the first electrode layer having a photoconductor layer;
The colloidal developer is provided on the side opposite to the electrode layer with the photoconductor layer in between, and the colloidal developer is supplied at a distance from the photoconductor layer to the gel state portion of the developer. a second electrode layer formed with a surface layer having strong adhesive strength;
An image forming apparatus comprising: a power source that applies a voltage between the first electrode layer and the second electrode layer; and a light source that irradiates the photoconductor layer with light.
JP7508891A 1991-04-08 1991-04-08 Method and device for image forming Pending JPH04309986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7508891A JPH04309986A (en) 1991-04-08 1991-04-08 Method and device for image forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7508891A JPH04309986A (en) 1991-04-08 1991-04-08 Method and device for image forming

Publications (1)

Publication Number Publication Date
JPH04309986A true JPH04309986A (en) 1992-11-02

Family

ID=13566067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7508891A Pending JPH04309986A (en) 1991-04-08 1991-04-08 Method and device for image forming

Country Status (1)

Country Link
JP (1) JPH04309986A (en)

Similar Documents

Publication Publication Date Title
US3772013A (en) Photoelectrophoretic imaging process employing electrically photosensitive particles and inert particles
US3804620A (en) Method of producing planographic plates by photoelectrophoretic imaging
KR100438721B1 (en) Developer storage and delivery system for liquid electrophotography
JP3865815B2 (en) Image formation process with liquid toner
JP2009503579A (en) Method and apparatus for liquid electrostatic printing
KR100416559B1 (en) Developer storage and delivery system for liquid electrophotography
JPH0511566A (en) Image forming method and device
US3551313A (en) Image contrast control in photoelectrophoretic imaging
US4804601A (en) Electrophotographic and electrographic imaging processes
JPH04309986A (en) Method and device for image forming
JP6614807B2 (en) Image forming apparatus
US3729334A (en) Imaging process
JPH02212149A (en) Image forming method
JP5146824B2 (en) Adhesive transfer liquid developer
US6311035B1 (en) Reprographic system operable for direct transfer of a developed image from an imaging member to a copy substrate
US5451986A (en) Image formation device having photoconductive ink based ink sheet reconditioning
US3782932A (en) Electrophoretic imaging process using transparent particles
US4822710A (en) Liquid developer compositions
US3917880A (en) Electrophoretic imaging system
US6621998B2 (en) Method and apparatus for formation and development of high solids content toner cake in an electrostatic printing system
JP2012018221A (en) Electrophotographic developer, image forming apparatus and image forming method
JPH0962109A (en) Developing method using liquid developer
JPH01205173A (en) Liquid developer composition
JP2610304B2 (en) Recording device using electric viscous ink
US5131768A (en) Replenishing an ink transfer sheet