JPH04309488A - Copper-plated steel wire for gas shielded arc welding - Google Patents

Copper-plated steel wire for gas shielded arc welding

Info

Publication number
JPH04309488A
JPH04309488A JP7126591A JP7126591A JPH04309488A JP H04309488 A JPH04309488 A JP H04309488A JP 7126591 A JP7126591 A JP 7126591A JP 7126591 A JP7126591 A JP 7126591A JP H04309488 A JPH04309488 A JP H04309488A
Authority
JP
Japan
Prior art keywords
wire
copper
welding
plated steel
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7126591A
Other languages
Japanese (ja)
Other versions
JP2847581B2 (en
Inventor
Eiichi Fukuda
栄一 福田
Shinichi Fukushima
新一 福島
Isao Sugioka
杉岡 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP7126591A priority Critical patent/JP2847581B2/en
Publication of JPH04309488A publication Critical patent/JPH04309488A/en
Application granted granted Critical
Publication of JP2847581B2 publication Critical patent/JP2847581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To provide the wire for gas shielded arc welding which is usable without troubles, such as interruption, even when used for long-term welding under a high current density condition to feed the wire at a high speed in order to obtain high welding efficiency and yields a weld zone having good quality free from bead meandering, etc., with the copper-plated steel wire (hereafter abbreviated as the wire) loaded into a pail pack mainly used for automatic arc welding to be executed by using a robot, etc. CONSTITUTION:The copper-plated steel wire for gas shielded arc welding to be used under the high current density condition is constituted by specifying the copper plating thickness of the copper-plated steel wire of <=1.6mm diameter to be packed into the pail pack to 0.45 to 1.40mum, specifying the content of the Ca interposed between the wire base and the plating layer on the wire surface so as to satisfy equation (1) including the copper plating thickness and specifying the oil deposition to 0.30 to 1.20g/10kg. The Ca content (mg/m<2>)<=28.1 copper plating thickness (mum)+10... equation (1).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はシールドガスを使用する
ガスメタルアーク溶接用のワイヤに関するものである。 詳しくは本発明はロボットなどを使用して行う自動アー
ク溶接用に主に使用されるペールパックに装填された銅
メッキ鋼ワイヤ(以下ワイヤという)であって、高溶接
能率を得るため、ワイヤが高速度で送給される高電流密
度条件で、長時間の溶接に使用されても中断などのトラ
ブルなく使用でき、かつビード蛇行などのない品質の良
好な溶接部が得られるガスシールドアーク溶接用ワイヤ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wire for gas metal arc welding using shielding gas. Specifically, the present invention relates to a copper-plated steel wire (hereinafter referred to as wire) loaded in a pail pack mainly used for automatic arc welding using a robot etc. In order to obtain high welding efficiency, the wire is For gas-shielded arc welding, which can be used for long periods of welding without trouble such as interruptions under conditions of high current density delivered at high speeds, and which produces high-quality welds without bead meandering. It concerns wires.

【0002】0002

【従来の技術】最近、溶接の自動化、高能率化に伴ない
、ガスシールドアーク溶接法は益々広く使用されつつあ
るが、さらに高能率化を目指す手段として、より高電流
密度の条件を採用して、ワイヤの溶融速度を増加するこ
とができる技術が開発されつつある。
[Prior Art] Recently, gas-shielded arc welding has become more and more widely used as welding becomes more automated and more efficient. As a result, techniques are being developed that can increase the melting rate of wire.

【0003】例えば、スパッタ発生量の少ないAr−C
O2 混合ガス法では、電流値が一定以上になると溶接
ビードの溶込み形状が中央部に幅の狭い過大な溶込みと
なる、いわゆる“フインガー状”を呈し、割れ、ブロー
ホールなどの欠陥が生じる問題があるが、シールドガス
をAr−He−CO2 −O2 4種混合ガスにして高
電流密度条件下で溶込形状問題を解決する特開昭59−
45084号公報にあるような方法が開発され、又特開
平1−35881号公報にあるようなAr−CO2 溶
接でワイヤを特別のものにした方法が開発され、さらに
はCO2 溶接では電流密度を高めるとスパッタが急増
する問題があるが、これを比較的細径(1.2〜1.4
mmφ)の金属粉系フラックス入りワイヤを使用して解
決するなど高電流密度溶接法が実用されてきている。な
お、これらはいずれも溶接機(電源及びワイヤ送給装置
)がワイヤを従来より高速で安定に送給できる(例えば
ワイヤ送給速度、従来20m/min max →40
m/min max )ものに改善されて使用されてい
る。
For example, Ar--C, which generates less spatter,
In the O2 mixed gas method, when the current value exceeds a certain level, the penetration shape of the weld bead becomes so-called "finger-shaped" with excessive penetration with a narrow width in the center, resulting in defects such as cracks and blowholes. Although there is a problem, Japanese Patent Application Laid-Open No. 1983-1997 solves the penetration shape problem under high current density conditions by using a mixture of four types of Ar-He-CO2-O2 as the shielding gas.
A method as described in Japanese Patent Publication No. 45084 was developed, and a method was developed in which the wire was made special by Ar-CO2 welding as described in Japanese Unexamined Patent Publication No. 1-35881, and furthermore, a method was developed in which the wire was made special by Ar-CO2 welding as described in Japanese Patent Application Laid-Open No. 1-35881. Furthermore, in CO2 welding, the current density was increased. However, this problem can be solved by using a relatively small diameter (1.2 to 1.4
High current density welding methods, such as the use of metal powder-based flux-cored wire (mmφ), have been put into practical use. In addition, in both of these, the welding machine (power supply and wire feeding device) can feed the wire stably at a higher speed than before (for example, wire feeding speed, conventional 20 m/min max → 40
m/min max ) has been improved and used.

【0004】一方、このような高電流密度条件を採用す
る場合に使用されるワイヤは必然的にロボットなどで使
用されることが多くなり、従来の20kg以下の重量の
スプール巻きワイヤに代わり200〜400kg収納で
きる、いわゆる円筒形状のペールパックに入れたワイヤ
が多用されることになる。このようなペールパックに装
填されたワイヤに要求される特性としては、(1)何時
間もの溶接がほぼ連続して行われるため、ワイヤの送給
性がチップ詰りなどによる中断などがなく、長時間安定
しており、(2)ワイヤの先端振れが小さく溶接ビード
が蛇行しない、ことがあげられる。
On the other hand, when such high current density conditions are adopted, the wire used is inevitably used in robots and the like, and instead of the conventional spool-wound wire weighing 20 kg or less, Wires housed in so-called cylindrical pail packs that can hold 400 kg will be widely used. The characteristics required of the wire loaded in such a pail pack are: (1) Since welding is carried out almost continuously for many hours, the wire feeding performance can be maintained for a long time without interruptions due to tip clogging, etc. It is stable over time, and (2) the runout of the wire tip is small and the weld bead does not meander.

【0005】これらの要求される特性に対して、本発明
者らはすでに特願平1−258553号発明(以下先願
発明という)で解決している。しかしながら、前述のよ
うにワイヤが20m/min を超えるような送給速度
で送給される高電流密度条件で使用される場合には、先
願発明によるワイヤでは十分対応できず、やはり溶接時
にワイヤの送給上の問題が発生し易くなることがわかっ
てきた。即ち、従来ワイヤではチップ詰りにより溶接中
断が頻繁に生ずることがわかった。
The present inventors have already solved these required characteristics in the invention of Japanese Patent Application No. 1-258553 (hereinafter referred to as the invention of the prior application). However, as mentioned above, when the wire is used under high current density conditions where the wire is fed at a feeding speed exceeding 20 m/min, the wire according to the earlier invention cannot sufficiently cope with the situation, and the wire is also used during welding. It has become clear that problems with feeding are likely to occur. That is, it has been found that with conventional wire, welding is frequently interrupted due to tip clogging.

【0006】なお、ここで高電流密度条件とは従来の一
般溶接機でのワイヤ送給速度上限の20m/min を
超えるような溶接電流条件を意味し、ほぼワイヤ単位断
面積当りの溶接電流値、即ち溶接電流密度340A/m
m2 以上の条件を示すものである。
[0006] Here, the high current density condition means a welding current condition that exceeds the upper limit of wire feeding speed of 20 m/min in a conventional general welding machine, and the welding current value per unit cross-sectional area of the wire is approximately , that is, welding current density 340A/m
This indicates the condition of m2 or more.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは以上述べ
たような高電流密度条件又は高速ワイヤ送給速度条件で
使用され、かつペールパックに装填されたワイヤの問題
点を解決しようとしたもので、先ず先願発明によるワイ
ヤで何が問題なのかを調査した。その結果、特開昭58
−35068号公報に述べられているように、ペールパ
ックに装填されたワイヤは直進性が良く、溶接時ワイヤ
がチップを通過する時、一方向にある曲率半径を持った
スプール巻きワイヤと違って、チップ内壁からワイヤへ
の通電点が一定箇所になりにくく、チップ内壁を広い範
囲に亙って移動することが分かった。このように通電点
が移動しようとする場合、銅チップ内壁面とワイヤ間で
スパークが生じるが、高電流密度になる程、より大きな
スパークが生じ易く、チップ内壁面の損傷を大きくする
こと、又高電流密度になる程、通電点の移動が困難にな
ることによると考えられる瞬間的な電流値の急激な変化
(低下)又はアークが一瞬切れる現象が顕著に生じ易く
なり、ひいては溶接中断が起り易くなることが明らかに
なった。
[Problems to be Solved by the Invention] The present inventors have attempted to solve the above-mentioned problems with wires used under high current density conditions or high wire feeding speed conditions and loaded into pail packs. First, we investigated what was the problem with the wire according to the invention of the earlier application. As a result, JP-A-58
- As stated in Publication No. 35068, the wire loaded in the pail pack has good straightness, and when the wire passes through the tip during welding, unlike the spool-wound wire, which has a radius of curvature in one direction. It was found that the point where the current flows from the inner wall of the chip to the wire does not tend to be fixed, but moves over a wide range of the inner wall of the chip. When the current-carrying point attempts to move in this way, sparks occur between the inner wall surface of the copper chip and the wire, but the higher the current density, the more likely sparks will occur, causing greater damage to the inner wall surface of the chip. The higher the current density, the more likely it is that a rapid change (decrease) in the current value or momentary breakage of the arc, which is thought to be caused by the difficulty in moving the current point, will occur, resulting in welding interruption. It turned out to be easier.

【0008】[0008]

【課題を解決するための手段】本発明者らはこの現象に
注目して、ペールパックに装填されたワイヤで高電流密
度条件(高速ワイヤ送給条件)でのワイヤ表面の性状、
付着物質及びワイヤ強度につき送給性との関連性を実験
的に調査した。その結果、銅メッキとメッキ下の鉄素地
との間に残留している潤滑剤のCa量を先願発明の場合
よりさらに厳しく制限する必要があること、又銅メッキ
量(厚さ)を高電流密度条件下(高速ワイヤ送給条件下
)では基本的にある一定値以上に保つ必要があること、
さらにワイヤ表面に付着させている油量さらにはワイヤ
の引張強さまたは引張破断強度が相互的にペールパック
に装填されたワイヤの送給性及びその他の特性に大きく
影響していることを見出した。
[Means for Solving the Problems] The present inventors have focused on this phenomenon, and have determined the properties of the wire surface under high current density conditions (high speed wire feeding conditions) with wire loaded in a pail pack.
The relationship between adhesion substances and wire strength and feedability was experimentally investigated. As a result, the amount of Ca in the lubricant remaining between the copper plating and the iron base under the plating needs to be more strictly limited than in the case of the prior invention, and the amount (thickness) of the copper plating must be increased. Under current density conditions (high-speed wire feeding conditions), it is basically necessary to maintain it above a certain value;
Furthermore, it was found that the amount of oil attached to the wire surface, as well as the tensile strength or tensile breaking strength of the wire, mutually greatly influenced the feedability and other properties of the wire loaded in the pail pack. .

【0009】即ち、本発明の要旨とするところは、ペー
ルパックに装填される直径1.6mm以下の銅メッキ鋼
ワイヤにおいて、銅メッキ厚さが0.45〜1.40μ
m であり、ワイヤ素地とワイヤ表面メッキ層との間に
介在するCa量が、銅メッキ厚さを含む(1)式を満足
し、かつ油付着量が0.30〜1.20g/10kgで
あることを特徴とする高電流密度条件で使用されるガス
シールドアーク溶接用銅メッキ鋼ワイヤにある。
That is, the gist of the present invention is that the copper plated steel wire with a diameter of 1.6 mm or less to be loaded into a pail pack has a copper plating thickness of 0.45 to 1.40 μm.
m, the amount of Ca interposed between the wire base and the wire surface plating layer satisfies formula (1) including the copper plating thickness, and the amount of oil adhesion is 0.30 to 1.20 g/10 kg. Copper-plated steel wire for gas-shielded arc welding used in high current density conditions is characterized by:

【0010】   Ca量(mg/m2)≦28.1銅メッキ厚さ(μ
m )+10    …(1)式また、本発明において
は、ソリッドワイヤの場合は引張強さを、フラックス入
りワイヤの場合は引張破断荷重をある特定範囲に設定す
ることによりワイヤの先端振れが小さく溶接ビードが蛇
行しない品質の良好な溶接部が得られるように構成した
[0010] Ca amount (mg/m2)≦28.1 Copper plating thickness (μ
m ) + 10...Equation (1) Furthermore, in the present invention, by setting the tensile strength in the case of solid wire and the tensile breaking load in the case of flux-cored wire to a certain range, welding can be performed with less runout at the tip of the wire. The structure is such that a high-quality welded part with no meandering bead can be obtained.

【0011】なお、ワイヤ素地とワイヤ表面メッキ層と
の間に介在するCa量の基本的な作用効果については本
発明者による前記先願発明の明細書で既に明らかにして
いるものである。
[0011] The basic effects of the amount of Ca interposed between the wire base and the wire surface plating layer have already been clarified in the specification of the aforementioned prior invention by the present inventor.

【0012】0012

【作用】先ず、銅メッキ鋼ワイヤにおいてワイヤ素地と
ワイヤ表面メッキ層との間に介在するCa量を銅メッキ
厚さとの関連で規制したのは次の理由による。即ち、ペ
ールパックワイヤにおいては直進性が良すぎてチップ内
壁とワイヤ間に通電点の移動が短いスパークを伴って頻
繁に起こるが、Ca量が多いとCaイオンの介在によっ
てスパークが継続し易く、短いスパークが長いスパーク
に変化し、チップを短時間に損傷させ、また長いスパー
クができることは新通電点に移動しようとすることを阻
害することを意味し、溶接アークが突然切れる等の現象
となる。
[Operation] First, the reason why the amount of Ca interposed between the wire base and the wire surface plating layer in a copper-plated steel wire is regulated in relation to the copper plating thickness is as follows. That is, in the case of a pail pack wire, the straightness is so good that movement of the energizing point between the inner wall of the chip and the wire occurs frequently with short sparks, but if the amount of Ca is large, the sparks tend to continue due to the presence of Ca ions. A short spark turns into a long spark, damaging the tip in a short period of time, and the formation of a long spark means that it is inhibited from moving to a new energization point, resulting in phenomena such as the welding arc suddenly breaking. .

【0013】本発明者らはこの現象が高電流密度条件に
なると急増することを実験によって確認した。これらの
現象はワイヤがスムーズに送給されているにもかかわら
ず溶接電流値が間欠的に瞬間的に低下することで観察さ
れるが、この状態がひどくなるとアークが突然途切れて
溶接が中断されることになる。この場合銅メッキ厚さが
厚い場合、それらの現象の現れる程度が小さくなる。
The present inventors have experimentally confirmed that this phenomenon increases rapidly under high current density conditions. These phenomena are observed when the welding current value drops momentarily and intermittently even though the wire is being fed smoothly, but if this condition becomes severe, the arc suddenly breaks and welding is interrupted. That will happen. In this case, if the copper plating thickness is thick, the extent to which these phenomena appear will be reduced.

【0014】図1はCa量、銅メッキ厚さとこれらの現
象との関係を示す図であり、長時間溶接送給性試験の結
果は、Ca量が多い程短時間で送給性不良が生ずるが、
銅メッキ厚さが厚くなる程その時間が長くなることを示
している。なお、実験条件は、ワイヤとして、JIS 
 Z3312−YGW11該当品、径1.2mm、溶接
条件は、450A、40V、Ar+10%CO2 25
リットル/min でワイヤ送給速度は25m/min
 、電流密度約400A/mm2 で、下向きビードオ
ンプレート溶接である。
FIG. 1 is a diagram showing the relationship between the amount of Ca, the thickness of copper plating, and these phenomena, and the results of the long-term welding feedability test show that the higher the amount of Ca, the more poor feedability occurs in a short time. but,
It is shown that the thicker the copper plating, the longer the time. Note that the experimental conditions were as follows:
Z3312-YGW11 applicable product, diameter 1.2mm, welding conditions are 450A, 40V, Ar + 10% CO2 25
liter/min and wire feeding speed is 25m/min
, downward bead-on-plate welding at a current density of about 400 A/mm2.

【0015】供試ワイヤは、一般的な逆ひねりを加えて
50kg装填したペールパック(250kg用)より、
取り出し装置、通常の送給装置を経て6m長さのコンジ
ットケーブル及びピストル型トーチを使用して溶接した
。また、長時間送給性試験を行うため、トーチを固定し
溶接試験板を回転治具上に乗せて回転させ、溶接ビード
が連続して累層できるようにして行った。溶接は5分間
の連続溶接を1サイクルとして、最高20サイクルほぼ
連続して実施し、最後まで送給性に問題なく溶接できた
か、送給不良が途中で発生し溶接が中断したか、或いは
最後まで溶接は中断しなかったがアーク電流の瞬間的低
下現象が多数回発生したか、或いはアークが不安定にな
ったか等を確認して判定した。この場合のワイヤの油付
着量は0.5〜1.0g/10kgにして行った。
[0015] The test wire was taken from a pail pack (for 250 kg) loaded with 50 kg with a general reverse twist.
Welding was carried out using a 6 m long conduit cable and a pistol torch via an extraction device and a conventional feed device. In addition, in order to conduct a long-term feedability test, the torch was fixed and the welding test plate was placed on a rotating jig and rotated so that weld beads formed in continuous layers. Welding was carried out almost continuously for a maximum of 20 cycles, with 5 minutes of continuous welding being considered as one cycle, and welding was performed until the end without any problems with feedability, or welding was interrupted due to feed failure midway through, or welding was interrupted at the end. Welding was not interrupted until then, but the determination was made by checking whether the phenomenon of instantaneous decrease in arc current occurred many times or whether the arc became unstable. In this case, the amount of oil attached to the wire was set to 0.5 to 1.0 g/10 kg.

【0016】なお、図1はワイヤ径、1.2mmについ
ての実験データであるが、他のワイヤ径1.4mm及び
1.6mm、さらにフラックス入りワイヤについてもほ
ぼ同様の傾向を示す結果が得られた。Caは伸線で使用
する潤滑剤であるCaを含有する金属石鹸の形で、或い
は焼鈍した場合は加熱分解してCaO又はCa(OH)
2 の形で残存する。ワイヤ中のCa量の定量方法は1
00gのワイヤをエチルアルコールで洗浄して5〜10
cmの長さに切断し、このワイヤを希塩酸(7%)中で
10分間沸騰させてCaを溶解濾過した後、原子吸光光
度計でCaを定量する。この場合鋼素地も多少溶解する
が、一般的な鋼に含有されるCa量は僅かであるので、
全ての検出されたCa量を鋼素地とワイヤ表面メッキ層
との間に介在するCa量とする。
Although FIG. 1 shows experimental data for a wire diameter of 1.2 mm, results showing almost the same tendency were obtained for other wire diameters of 1.4 mm and 1.6 mm, as well as for flux-cored wire. Ta. Ca is in the form of metal soap containing Ca, which is a lubricant used in wire drawing, or in the case of annealing, it is thermally decomposed to form CaO or Ca(OH).
It remains in the form of 2. The method for quantifying the amount of Ca in wire is 1.
00g of wire was cleaned with ethyl alcohol for 5 to 10 minutes.
The wire is cut into a length of cm, and the wire is boiled in dilute hydrochloric acid (7%) for 10 minutes to dissolve and filter Ca, and then Ca is quantified using an atomic absorption spectrophotometer. In this case, the steel base will also melt to some extent, but since the amount of Ca contained in general steel is small,
All the detected amounts of Ca are taken as the amounts of Ca interposed between the steel base and the wire surface plating layer.

【0017】ワイヤ表面メッキ層と鋼素地との間に介在
するCa量を規制する方法としては種々考えられるが、
最も効果的と考えられるのはメッキ前の前処理方法であ
って、特にバイポーラ電解脱脂方法が効果がある。しか
し、この方法の他に、例えば陰極電解酸洗、通常の陽極
電解脱脂等の方法、さらに石灰石鹸を潤滑剤として使用
したあとの洗浄方法(圧力水による洗浄方法、ブラッシ
ングなど機械的方法、他)を前記メッキ前処理方法に加
えて行うのが有効である。なお、脱脂液及び酸洗液の濃
度管理を十分行うことにより、さらにCa量の低減をは
かることが可能である。ワイヤ表面の残留物としてはC
a分の他に、Na,Ba,K分なども有害であるが、こ
れらについてはいずれも30mg/m2以下にすること
が望ましい。銅メッキ厚さを0.45μm 以上に規制
したのは、高電流密度溶接条件では必然的にワイヤが2
0m/min 以上の高速送給されることになるが高速
送給で断続的に長時間溶接するとCa残留分とはあまり
関与しないと考えられるチップの加熱或いはチップ内面
損傷に基づくと考えられる送給不良現象が起るのがみら
れ、これは、銅メッキ厚さを0.45μm 以上に厚く
することにより、非常に少なくなることがわかった。一
方、銅メッキ厚さを1.40μm 以下にしたのは溶着
金属中の銅含有量が増加し、機械的性質(引張強さが増
加するなど)に悪影響がでてくるためである。
Various methods can be considered to control the amount of Ca interposed between the wire surface plating layer and the steel base.
The most effective method is the pretreatment method before plating, and the bipolar electrolytic degreasing method is particularly effective. However, in addition to this method, there are methods such as cathodic electrolytic pickling, normal anodic electrolytic degreasing, cleaning methods after using lime soap as a lubricant (cleaning method with pressure water, mechanical methods such as brushing, etc.). ) is effective in addition to the above plating pretreatment method. Note that by sufficiently controlling the concentrations of the degreasing solution and the pickling solution, it is possible to further reduce the amount of Ca. C as a residue on the wire surface
In addition to a content, Na, Ba, K content, etc. are also harmful, but it is desirable that these are all reduced to 30 mg/m2 or less. The reason why the copper plating thickness was restricted to 0.45 μm or more was that under high current density welding conditions, the wire inevitably
Although the welding is carried out at a high speed of 0 m/min or more, intermittent long-term welding with high-speed feeding is thought to be caused by heating of the chip or damage to the inner surface of the chip, which is not thought to be significantly related to Ca residual content. It was observed that a defective phenomenon occurred, and it was found that this phenomenon was greatly reduced by increasing the copper plating thickness to 0.45 μm or more. On the other hand, the reason why the copper plating thickness is set to 1.40 μm or less is because the copper content in the weld metal increases, which adversely affects mechanical properties (such as an increase in tensile strength).

【0018】この銅メッキ厚さの制御は容易であり、メ
ッキを行うサイズ、メッキ電流、時間等を変えて達成さ
れる。油付着量を0.30g/10kg以上に規制する
のは、溶接時のコンジット及びチップでの摩擦抵抗を小
さくし送給性を良くするため必要であるが、ペールパッ
クワイヤの場合、特に1.20g/10kgを超えると
好ましくない。これはペールパックにワイヤを装填する
とき直進性を出すため矯正ローラーを通すが、1.20
g/10kgを超える油付着量になるとローラーでのス
リップ現象が生じ易くなるため、装填されたワイヤに小
さなうねりが生じ易くなる。このためペールパックワイ
ヤに必要な特性であるワイヤ先端の振れ及び長時間の良
好な送給性の2点を損なうことになる。
Control of the copper plating thickness is easy and can be achieved by changing the plating size, plating current, time, etc. It is necessary to limit the amount of oil adhesion to 0.30 g/10 kg or more in order to reduce the frictional resistance at the conduit and tip during welding and improve feeding performance, but in the case of pail pack wire, especially 1. If it exceeds 20g/10kg, it is not preferable. When loading the wire into the pail pack, it passes through a straightening roller to ensure straightness, but it is 1.20
When the amount of oil adhesion exceeds g/10 kg, slippage phenomenon on the rollers tends to occur, and small waviness tends to occur in the loaded wire. This impairs the two characteristics necessary for the pail pack wire: deflection of the wire tip and good feeding performance over a long period of time.

【0019】ワイヤの引張強さはペールパックワイヤの
長時間の送給性及び溶接時ワイヤ振れの両面に油付着量
及びCa量とも関連して影響する。即ち、各ワイヤ径の
引張強さが下限値未満の場合、ワイヤの剛性が小さく、
送給時コンジットの屈曲部に追従し易く、ワイヤにくせ
がつき易く、ワイヤの先端振れの原因になる。一方上限
値を超えた場合送給時コンジットの屈曲部で送給抵抗を
増すことになり、送給性を悪くする。ワイヤの引張強さ
はペールパックにワイヤを装填する製造時にも油付着量
と共に影響し、低すぎるとうねりを生じ易く、高すぎる
と安定した装填ができなくなる。
The tensile strength of the wire affects both the long-term feedability of the pail pack wire and the wire runout during welding in conjunction with the amount of oil adhesion and the amount of Ca. In other words, if the tensile strength of each wire diameter is less than the lower limit, the rigidity of the wire is small;
It tends to follow the bends of the conduit during feeding, and the wire tends to get curled, causing the tip of the wire to run out. On the other hand, if the upper limit is exceeded, the feeding resistance will increase at the bent portion of the conduit during feeding, which will worsen the feeding performance. The tensile strength of the wire also affects the amount of oil adhesion during manufacturing when loading the wire into a pail pack; if it is too low, it tends to cause waviness, and if it is too high, stable loading cannot be performed.

【0020】フラックス入りワイヤの場合は、ワイヤの
内部にフラックスが充填されており、引張破断荷重を断
面積で割る引張強さではワイヤの剛性を示せないため、
各ワイヤ径の引張破断荷重(kgf)そのままを規定し
た。 尚、これらの引張強さ又は引張破断荷重はワイヤ原線又
は原パイプの寸法、成分及び製造工程における焼鈍の有
無、焼鈍径及び焼鈍条件を変えることにより設定できる
In the case of a flux-cored wire, the inside of the wire is filled with flux, and the tensile strength, which is calculated by dividing the tensile breaking load by the cross-sectional area, cannot indicate the rigidity of the wire.
The tensile breaking load (kgf) of each wire diameter was specified as is. Note that these tensile strengths or tensile breaking loads can be set by changing the dimensions and components of the raw wire or pipe, whether or not annealing is performed in the manufacturing process, the annealing diameter, and the annealing conditions.

【0021】[0021]

【実施例】以下に本発明ワイヤの製造方法を含めて、実
施例で詳しく説明する。先ず、ソリッドワイヤは原線径
5.5mm、化学成分C:0.06%、Si:0.72
%、Mn:1.68%の熱延鋼線材を原線とし、メカニ
カルデスケーリングでスケール除去後酸洗し、潤滑剤で
ある石灰石鹸の懸濁液中に浸漬して塗布乾燥し、伸線潤
滑剤としてNa系金属石鹸を使用して2.0〜2.4m
mまで伸線した後、表1に示す圧力水での洗浄の有無、
焼鈍の有無、メッキ前処理工程及びメッキ工程を経て製
品径1.2〜1.6mmの本発明ワイヤ及び比較ワイヤ
を製造し、前述の長時間の溶接送給性試験を行った。フ
ラックス入りワイヤの場合は化学成分C:0.06%、
Si:0.01%、Mn:0.32%の12mmの原パ
イプにフラックスを充填し、Ca系金属石鹸を使用して
2.4〜4mmまで伸線した後、表1、表2(表1のつ
づき)に示す圧力水での洗浄の有無、焼鈍の有無、メッ
キ前処理工程及びメッキ工程を経て製品径1.2〜1.
6mmの本発明ワイヤ及び比較ワイヤを製造し、前述の
長時間の溶接送給性試験(判定方法も同じ)を行った。 表1、表2にその結果を示した。
EXAMPLES Below, the method of manufacturing the wire of the present invention will be explained in detail using examples. First, the solid wire has an original wire diameter of 5.5 mm, chemical components C: 0.06%, and Si: 0.72.
%, Mn: 1.68% hot rolled steel wire was used as a raw wire, and after removing scale by mechanical descaling, it was pickled, immersed in a suspension of lime soap as a lubricant, coated and dried, and wire drawn. 2.0-2.4m using Na-based metal soap as a lubricant
After drawing the wire to m, the presence or absence of washing with pressure water shown in Table 1,
Wires of the present invention and comparative wires having product diameters of 1.2 to 1.6 mm were manufactured with or without annealing, through a plating pretreatment process, and a plating process, and were subjected to the long-term welding feedability test described above. For flux-cored wire, chemical component C: 0.06%,
A 12 mm raw pipe containing Si: 0.01% and Mn: 0.32% was filled with flux and drawn to 2.4 to 4 mm using Ca-based metal soap. After undergoing the cleaning with pressure water, annealing, pre-plating process and plating process shown in 1), the product diameter is 1.2~1.
A 6 mm wire of the present invention and a comparative wire were manufactured, and the long-term welding feedability test described above (the evaluation method was also the same) was conducted. The results are shown in Tables 1 and 2.

【0022】[0022]

【表1】[Table 1]

【0023】[0023]

【表2】[Table 2]

【0024】ここで、焼鈍条件は550〜750℃×3
時間、雰囲気ガスは窒素を使用した。メッキ前処理及び
メッキの条件は次のとおりで行った。 1)バイポーラ電解脱脂 50A/本、7〜12V 溶液  NaOH    100g/リットル液温  
80℃、  線速  50〜120m/分2)陰極電解
酸洗 110A/本、7〜12V 溶液  HCl    10〜20g/リットル液温 
 25℃、  線速  50〜80m/分3)メッキ 70〜130A/本、7〜12V 溶液  KCN    5〜20g/リットル液温  
60℃、  線速  50〜80m/分なお、最終伸線
潤滑剤は植物性潤滑油を使用した。
[0024] Here, the annealing conditions are 550 to 750°C x 3
Nitrogen was used as the atmospheric gas. The plating pretreatment and plating conditions were as follows. 1) Bipolar electrolytic degreasing 50A/piece, 7-12V solution NaOH 100g/liter liquid temperature
80℃, line speed 50-120m/min2) Cathode electrolytic pickling 110A/piece, 7-12V Solution HCl 10-20g/liter Liquid temperature
25℃, line speed 50-80m/min 3) Plating 70-130A/piece, 7-12V Solution KCN 5-20g/liter liquid temperature
60° C., wire speed 50 to 80 m/min, and a vegetable lubricant was used as the final wire drawing lubricant.

【0025】表1、表2に示した如く、ワイヤの製造条
件を種々変えて製造したワイヤで本発明要件をすべて満
足するワイヤ特性のものは長時間溶接送給性試験で最後
まで良好な結果が得られている(○印  テストNo.
1〜13)。しかし、比較ワイヤで示した如く、銅メッ
キ厚さが低いもの(No.14,15及びNo.21)
、Ca量−銅メッキ厚さが(1)式を満足しないもの(
No.16、17、20及び22)はワイヤ送給中断(
×印)があったか、或いは中断はしなかったが送給不安
定(△印)となったか、もしくはアーク電流の低下現象
が多数回生じた(▲印)。又、No.18は油量が不適
当で中断した。なお、No.19はワイヤ引張強さが低
すぎてペールパックに装填した時、ワイヤにうねりが大
きく、溶接時ビード蛇行を起こすため溶接は中止した。
As shown in Tables 1 and 2, wires manufactured under various wire manufacturing conditions with wire characteristics that satisfy all the requirements of the present invention gave good results throughout the long-term welding feedability test. has been obtained (○ mark Test No.
1-13). However, as shown in the comparative wires, those with low copper plating thickness (No. 14, 15 and No. 21)
, Ca amount - copper plating thickness does not satisfy formula (1) (
No. 16, 17, 20 and 22) are wire feeding interruptions (
(x mark), or there was no interruption but the supply became unstable (△ mark), or the arc current decreased many times (▲ mark). Also, No. No. 18 was discontinued due to an inappropriate amount of oil. In addition, No. In No. 19, the wire tensile strength was too low, and when loaded into the pail pack, the wire had large undulations, causing bead meandering during welding, so welding was discontinued.

【0026】[0026]

【発明の効果】本発明によれば、最近溶接の高能率化の
ため開発され使用されつつある高電流密度溶接用ペール
パック入りワイヤによる溶接に際して、長時間の連続溶
接においても送給性のトラブルがなく、かつワイヤの先
端振れによるビード蛇行のない良好な溶接部が得られる
という効果が奏される。
Effects of the Invention According to the present invention, when welding with a pail-packed wire for high current density welding, which has recently been developed and is being used to improve the efficiency of welding, there is no problem with feeding performance even during long-term continuous welding. The effect is that a good welded part can be obtained without bead meandering due to wobbling of the tip of the wire.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1はワイヤ素地とワイヤ表面メッキ層との間
に介在するCa量と銅メッキ厚さを変化させた場合の長
時間の溶接送給性試験の判定結果を示す図である。
FIG. 1 is a diagram showing the results of a long-term welding feedability test when the amount of Ca interposed between the wire base and the wire surface plating layer and the copper plating thickness were varied.

Claims

【特許請求の範囲】 【請求項1】  ペールパックに装填される直径1.6
mm以下の銅メッキ鋼ワイヤにおいて、銅メッキ厚さが
0.45〜1.40μm であり、ワイヤ素地とワイヤ
表面メッキ層との間に介在するCa量が、銅メッキ厚さ
を含む(1)式を満足し、かつ油付着量が0.30〜1
.20g/10kgであることを特徴とする高電流密度
条件で使用されるガスシールドアーク溶接用銅メッキ鋼
ワイヤ。   Ca量(mg/m2)≦28.1銅メッキ厚さ(μ
m )+10    …(1)式
【請求項2】  ワイ
ヤの引張強さが下記範囲にあるソリッドワイヤである請
求項1記載のガスシールドアーク溶接用銅メッキ鋼ワイ
ヤ。 ワイヤ径、1.6mmの場合  70〜100kgf/
mm2 1.4mmの場合  75〜115kgf/m
m2 1.2mmの場合  80〜130kgf/mm
  【請求項3】  ワイヤの引張破断荷重が下記範囲
にあるフラックス入りワイヤである請求項1記載のガス
シールドアーク溶接用銅メッキ鋼ワイヤ。 ワイヤ径、1.6mmの場合  75〜110kgf1
.4mmの場合  65〜  90kgf1.2mmの
場合  55〜  80kgf
[Claims] Claim 1: Diameter 1.6 loaded in a pail pack
In a copper-plated steel wire of 0.45 to 1.40 μm or less, the copper plating thickness is 0.45 to 1.40 μm, and the amount of Ca interposed between the wire base and the wire surface plating layer includes the copper plating thickness (1) Satisfies the formula and has an oil adhesion amount of 0.30 to 1
.. A copper-plated steel wire for gas-shielded arc welding used under high current density conditions, characterized by a weight of 20g/10kg. Ca amount (mg/m2)≦28.1 Copper plating thickness (μ
m)+10...Equation (1)
2. The copper-plated steel wire for gas shielded arc welding according to claim 1, wherein the wire is a solid wire having a tensile strength within the following range. Wire diameter: 1.6mm 70-100kgf/
For mm2 1.4mm 75-115kgf/m
For m2 1.2mm 80-130kgf/mm
2
3. The copper-plated steel wire for gas-shielded arc welding according to claim 1, which is a flux-cored wire having a tensile breaking load within the following range. For wire diameter 1.6mm: 75-110kgf1
.. For 4mm: 65~90kgf For 1.2mm: 55~80kgf
JP7126591A 1991-04-03 1991-04-03 Copper plated steel wire for gas shielded arc welding Expired - Fee Related JP2847581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7126591A JP2847581B2 (en) 1991-04-03 1991-04-03 Copper plated steel wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7126591A JP2847581B2 (en) 1991-04-03 1991-04-03 Copper plated steel wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JPH04309488A true JPH04309488A (en) 1992-11-02
JP2847581B2 JP2847581B2 (en) 1999-01-20

Family

ID=13455720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7126591A Expired - Fee Related JP2847581B2 (en) 1991-04-03 1991-04-03 Copper plated steel wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP2847581B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170579A (en) * 1992-12-07 1994-06-21 Kawasaki Steel Corp Solid wire for bead meandering preventive gmaw
JP2003181683A (en) * 2001-12-19 2003-07-02 Nippon Steel & Sumikin Welding Co Ltd Steel wire for gas shield arc welding
JP2010264487A (en) * 2009-05-15 2010-11-25 Yaskawa Electric Corp Arc welding method
JP2013237890A (en) * 2012-05-14 2013-11-28 Nippon Steel & Sumikin Welding Co Ltd Pretreatment method for plating of steel wire for arc welding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170579A (en) * 1992-12-07 1994-06-21 Kawasaki Steel Corp Solid wire for bead meandering preventive gmaw
JP2003181683A (en) * 2001-12-19 2003-07-02 Nippon Steel & Sumikin Welding Co Ltd Steel wire for gas shield arc welding
JP2010264487A (en) * 2009-05-15 2010-11-25 Yaskawa Electric Corp Arc welding method
US8536487B2 (en) 2009-05-15 2013-09-17 Kabushiki Kaisha Yaskawa Denki Arc welding method
JP2013237890A (en) * 2012-05-14 2013-11-28 Nippon Steel & Sumikin Welding Co Ltd Pretreatment method for plating of steel wire for arc welding

Also Published As

Publication number Publication date
JP2847581B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
CA2617767C (en) Method for arc or beam brazing/welding of workpieces of identical or different metals or metal alloys with additional materials of sn base alloys; sn base alloy wire
KR20150105296A (en) Systems and methods for welding electrodes
JPH03142100A (en) Electrode including basic metal core
JP2011131243A (en) Arc welding method and arc weld joint of galvanized steel plate
US6784402B2 (en) Steel wire for MAG welding and MAG welding method using the same
US6414269B2 (en) Pit and blow hole resistant flux-cored wire for gas-shielded arc welding of galvanized steel sheet
JPH04309488A (en) Copper-plated steel wire for gas shielded arc welding
JPH1128594A (en) Gas shielded arc welding wire for p-added sheet steel and method for mag welding
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
WO2020112319A1 (en) Metal-cored electrode for producing lower slag volume welds
JP2542266B2 (en) Copper plated steel wire for gas shield arc welding
JP2981928B2 (en) Copper plated steel wire for gas shielded arc welding
JP4754096B2 (en) Solid wire for pulse MAG welding
JP2008018469A (en) Copper-plating free solid wire assembly for gas-shielded arc welding
JPH0451274B2 (en)
JP3881588B2 (en) Welding method of titanium alloy for MIG welding
JP3983155B2 (en) Steel wire for gas shielded arc welding
US20070039936A1 (en) Copper-free wire for gas-shielded arc welding
JPH044993A (en) Flux cored wire for gas shielded arc welding
JP3780116B2 (en) Steel wire for gas shielded arc welding and manufacturing method thereof
CN113751840A (en) Method for improving quality of welding seam of gas metal arc welding of zinc-aluminum-magnesium plating plate
JPS61176492A (en) Flux-cored wire for welding stainless steel
Jud Joining galvanized and galvannealed steels
JP2000158187A (en) Flux cored wire for gas shield arc welding, and manufacture
JP4504115B2 (en) Welding wire for gas shielded arc welding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees