JPH04309270A - Manufacture of tandem type solar cell - Google Patents

Manufacture of tandem type solar cell

Info

Publication number
JPH04309270A
JPH04309270A JP3075106A JP7510691A JPH04309270A JP H04309270 A JPH04309270 A JP H04309270A JP 3075106 A JP3075106 A JP 3075106A JP 7510691 A JP7510691 A JP 7510691A JP H04309270 A JPH04309270 A JP H04309270A
Authority
JP
Japan
Prior art keywords
gap
solar cell
type
gaasp
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3075106A
Other languages
Japanese (ja)
Inventor
Tatsuya Tanabe
達也 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3075106A priority Critical patent/JPH04309270A/en
Publication of JPH04309270A publication Critical patent/JPH04309270A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a method which can efficiently manufacture a tandem type solar cell having a GaP/GaAsP structure or a structure which includes the structure. CONSTITUTION:This tandem type solar cell manufacturing method forms a p-type GaP compound semiconductor on the surface of an n-type GaP semiconductor substrate after a p-type GaAsP compound semiconductor and n-type GaAsP compound semiconductor are successively formed by epitaxial growth on the surface of the substrate opposite to the p-type GaP compound semiconductor.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、GaPセルとGaAs
Pセルの積層構造を有するタンデム型太陽電池の製造方
法に関する。
[Industrial Application Field] The present invention relates to GaP cells and GaAs cells.
The present invention relates to a method for manufacturing a tandem solar cell having a stacked structure of P cells.

【0002】0002

【従来の技術】太陽電池の超高効率化を図るためには、
太陽光線のスペクトル全域にわたって有効にエネルギー
を利用する必要がある。そのために、禁制帯幅の異なる
太陽電池セルを積層した構造のタンデム型太陽電池が提
案され、研究開発が進められている。  表1に、3層
タンデム型太陽電池の材料例を示す。これらの材料の中
で、η=30%以上の効率を得る組み合わせの1つとし
て、表2の禁制帯幅を有し、これに適した材料の組み合
わせとしてGaP/GaAsP/Si構造が知られてい
る(M.E.Nell et al.”GaAsP h
igh−efficiency tandem sol
ar cell”18th IEEE PVSC,19
85)。
[Prior art] In order to achieve ultra-high efficiency in solar cells,
It is necessary to utilize energy effectively across the spectrum of sunlight. To this end, a tandem solar cell with a structure in which solar cells with different forbidden band widths are stacked has been proposed, and research and development is underway. Table 1 shows examples of materials for three-layer tandem solar cells. Among these materials, the GaP/GaAsP/Si structure is known to have the forbidden band width shown in Table 2 as one of the combinations that can obtain an efficiency of η = 30% or more, and is a suitable combination of materials. (M.E. Nell et al. “GaAsPh
right-efficiency tandem sol
ar cell”18th IEEE PVSC, 19
85).

【表1】[Table 1]

【表2】[Table 2]

【0003】0003

【発明が解決しようとする課題】Siセルについては従
来より広く開発されており、一部実用化されているが、
GaPセルとGaAsPセルについては、現在研究が進
められつつある。これらの化合物半導体系セルは、一般
にエピタキシャル成長法で形成される。エピタキシャル
成長法によってGaPセルを形成する場合には、次のよ
うな問題点があった。即ち、GaP化合物半導体は間接
遷移型のバンド構造であるため、図3のように直接遷移
型のGaAs等の化合物半導体と比べて吸収係数がはる
かに小さいことから、太陽光線を有効に吸収するために
はセルの厚みを十分に厚くする必要がある。例えば、太
陽光線のピーク波長0.5μmに対して99.9%以上
の吸収を得るためには、直接遷移型のAlGaAs化合
物半導体では1μm程度の厚みで良いのに対してGaP
化合物半導体は10〜20μm以上の厚みが必要である
[Problem to be solved by the invention] Although Si cells have been widely developed and some have been put into practical use,
Research on GaP cells and GaAsP cells is currently underway. These compound semiconductor cells are generally formed by epitaxial growth. When forming a GaP cell by epitaxial growth, there are the following problems. In other words, since the GaP compound semiconductor has an indirect transition type band structure, its absorption coefficient is much smaller than that of a direct transition type compound semiconductor such as GaAs, as shown in Figure 3, so it can effectively absorb sunlight. It is necessary to make the cell thickness sufficiently thick. For example, in order to obtain absorption of 99.9% or more for the peak wavelength of sunlight 0.5 μm, a thickness of about 1 μm is sufficient for direct transition type AlGaAs compound semiconductors, whereas GaP
The compound semiconductor needs to have a thickness of 10 to 20 μm or more.

【0004】一方、上記の厚みのGaPセルをOMVP
E法で形成すると、成長速度は一般的に1〜2μm/h
r程度であるから、成長時間が5〜20時間以上もかか
り現実的には困難である。また、成長時間は製造コスト
に直接影響するので、その短縮は不可欠の課題である。 そこで、本発明は、上記の問題点を解消し、GaP/G
aAsP構造、若しくは、これを包含する構造のタンデ
ム型太陽電池を効率的に製造する方法を提供しようとす
るものである。
On the other hand, a GaP cell with the above thickness is OMVP
When formed using the E method, the growth rate is generally 1 to 2 μm/h.
Since the growth time is about 5 to 20 hours, it is practically difficult. Furthermore, since the growth time directly affects the manufacturing cost, shortening the growth time is an essential issue. Therefore, the present invention solves the above problems and provides GaP/G
The present invention aims to provide a method for efficiently manufacturing a tandem solar cell having an aAsP structure or a structure including this.

【0005】[0005]

【課題を解決するためき手段】本発明は、GaPセル及
びGaAsPセルを有するタンデム型太陽電池の製造方
法において、n型GaP基板の上にp型GaAsP化合
物半導体及びn型GaAsP化合物半導体を順次エピタ
キシャル成長させた後、上記基板の反対側にp型GaP
化合物半導体を形成することを特徴とするタンデム型太
陽電池の製造方法、及び、GaPセルとGaAsPセル
の積層構造に他の太陽電池セルを積層することを特徴と
する上記のタンデム型太陽電池の製造方法である。
Means for Solving the Problems The present invention provides a method for manufacturing a tandem solar cell having a GaP cell and a GaAsP cell, in which a p-type GaAsP compound semiconductor and an n-type GaAsP compound semiconductor are sequentially epitaxially grown on an n-type GaP substrate. After that, p-type GaP is placed on the opposite side of the substrate.
A method for producing a tandem solar cell characterized by forming a compound semiconductor, and a method for producing the tandem solar cell described above, characterized by stacking another solar cell on a stacked structure of GaP cells and GaAsP cells. It's a method.

【0006】[0006]

【作用】図1(a)〜(c)は、GaP/GaAsP構
造のタンデム型太陽電池の製造手順に従ってそれぞれの
断面図を示したものである。(a)は、n−GaP基板
の上にp−GaAsP層及びn−GaAsP層をエピタ
キシャル成長させた段階である。GaAsPはP組成(
x:GaAs1−xPx)が0.45以下において直接
遷移型になり、タンデム型太陽電池に適した禁制帯幅1
.6eV を確保するためのP組成はx=0.14 で
あることから、GaAsPセルは薄くても充分に太陽光
を吸収することができる。このセルの厚みはp型層とn
型層を合わせて5μmもあれば良く、OMVPE法で成
長するときには5時間以内で成長させることができる。 (b)は、GaAsPセル形成後、n−GaP基板の背
面に拡散法等によりpn接合を形成した段階である。こ
こで使用するn−GaP基板は、太陽電池セル形成に適
した厚みのものを当初より用いても良いし、GaAsP
セル形成後にエッチングや研磨等により調整しても良い
が、一般的にはGaPセルの厚みが数十μmであるため
、後者の方が望ましい。また、これらの処理は一度に大
量のウエハに対して行うことができるため、コスト的に
も大きな問題とはならない。 (c)は、GaP/GaAsP構造のウエハにp電極と
n電極を形成した段階であり、GaPセル及びGaAs
Pセルの積層構造を有するタンデム型太陽電池が作製さ
れる。図2は、図1(b)のGaP/GaAsP構造に
対して、別途作製したSiセルを積層し、p電極とn電
極を形成した3層タンデム型太陽電池の断面図である。
[Operation] FIGS. 1(a) to 1(c) are sectional views showing the steps for manufacturing a tandem solar cell having a GaP/GaAsP structure. (a) is a stage in which a p-GaAsP layer and an n-GaAsP layer are epitaxially grown on an n-GaP substrate. GaAsP has a P composition (
When x:GaAs1-xPx) is 0.45 or less, it becomes a direct transition type, and the forbidden band width 1 is suitable for tandem solar cells.
.. Since the P composition to ensure 6 eV is x=0.14, the GaAsP cell can sufficiently absorb sunlight even if it is thin. The thickness of this cell is the p-type layer and n
The total thickness of the mold layers is only 5 μm, and when grown by the OMVPE method, it can be grown within 5 hours. (b) is a stage in which a pn junction is formed on the back surface of an n-GaP substrate by a diffusion method or the like after forming a GaAsP cell. The n-GaP substrate used here may have a thickness suitable for forming solar cells, or a GaAsP substrate may be used from the beginning.
The thickness may be adjusted by etching, polishing, etc. after cell formation, but the latter is more desirable since the thickness of a GaP cell is generally several tens of micrometers. Furthermore, since these processes can be performed on a large number of wafers at once, there is no major problem in terms of cost. (c) shows the stage at which p-electrodes and n-electrodes are formed on a wafer with a GaP/GaAsP structure;
A tandem solar cell having a stacked structure of P cells is manufactured. FIG. 2 is a cross-sectional view of a three-layer tandem solar cell in which separately manufactured Si cells are stacked on the GaP/GaAsP structure of FIG. 1(b) to form a p-electrode and an n-electrode.

【0007】[0007]

【実施例】(実施例1)まず、Sドープのn型で200
μm厚さの(100)GaP基板上にOMVPE法でG
aAsPセルを形成した。原料はアルシン(AsH3)
、ホスフィン(PH3)、トリメチルガリウム(TMG
)を用い、成長温度を700℃に調整した。セルのP組
成はx=0.14とし、ドーパントとしてはp型にはジ
メチル亜鉛(DMZ)を、また、n型には水素化テルル
を用い、p型層次いでn型層の順番で成長させた。この
ようにして得たGaAsPセルの厚みは5.2 μmで
あり、成長時間は2.8 時間であった。得られたウエ
ハのGaP基板部分を選択エッチングして厚み22μm
まで薄くした後、800℃に加熱された拡散炉でGaP
表面よりZnを拡散させてpn接合を形成してGaPセ
ルを得た。次いで、このウエハのp型GaP側に櫛形電
極と反射防止膜を、n型GaAsP側に全面電極を形成
して2層タンデム型太陽電池を得た。この太陽電池にソ
ーラー・シミュレータによりAM1.5 の標準太陽光
を照射したところ、光電変換効率は26%であった。
[Example] (Example 1) First, an S-doped n-type
G
aAsP cells were formed. Raw material is arsine (AsH3)
, phosphine (PH3), trimethyl gallium (TMG)
), and the growth temperature was adjusted to 700°C. The P composition of the cell was x = 0.14, dimethyl zinc (DMZ) was used as the dopant for the p-type, and tellurium hydride was used for the n-type, and the p-type layer was grown in the order of n-type layer. Ta. The thickness of the GaAsP cell thus obtained was 5.2 μm, and the growth time was 2.8 hours. The GaP substrate portion of the obtained wafer was selectively etched to a thickness of 22 μm.
GaP is thinned to 800°C in a diffusion furnace heated to
A GaP cell was obtained by diffusing Zn from the surface to form a pn junction. Next, a comb-shaped electrode and an antireflection film were formed on the p-type GaP side of this wafer, and a full-surface electrode was formed on the n-type GaAsP side to obtain a two-layer tandem solar cell. When this solar cell was irradiated with standard sunlight of AM1.5 using a solar simulator, the photoelectric conversion efficiency was 26%.

【0008】(実施例2)実施例1で得たGaP/Ga
AsP構造のウエハに、別途作製したSiセルを機械的
に張り合わせ、実施例1と同様に電極を形成して3層タ
ンデム型太陽電池を得た。この太陽電池にソーラー・シ
ミュレータによりAM1.5 の標準太陽光を照射した
ところ、32%の光電変換効率を得ることができた。
(Example 2) GaP/Ga obtained in Example 1
Separately prepared Si cells were mechanically bonded to a wafer having an AsP structure, and electrodes were formed in the same manner as in Example 1 to obtain a three-layer tandem solar cell. When this solar cell was irradiated with standard sunlight of AM1.5 using a solar simulator, a photoelectric conversion efficiency of 32% could be obtained.

【0009】[0009]

【発明の効果】本発明は、上記の構成を採用することに
より、GaP/GaAsP構造、若しくは、これにSi
セル等をさらに積層したタンデム型太陽電池を効率的に
製造することができるようになり、コストの低減を可能
にした。
[Effects of the Invention] By adopting the above configuration, the present invention provides a GaP/GaAsP structure or a Si
It has become possible to efficiently manufacture tandem solar cells in which cells are further stacked, making it possible to reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の方法により、2層タンデム型太陽電池
の製造手順を示した説明図である。
FIG. 1 is an explanatory diagram showing a procedure for manufacturing a two-layer tandem solar cell by the method of the present invention.

【図2】3層タンデム型太陽電池の断面図である。FIG. 2 is a cross-sectional view of a three-layer tandem solar cell.

【図3】各種半導体の吸収係数を示したグラフである。FIG. 3 is a graph showing absorption coefficients of various semiconductors.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  GaPセル及びGaAsPセルを有す
るタンデム型太陽電池の製造方法において、n型GaP
基板の上にp型GaAsP化合物半導体及びn型GaA
sP化合物半導体を順次エピタキシャル成長させた後、
上記基板の反対側にp型GaP化合物半導体を形成する
ことを特徴とするタンデム型太陽電池の製造方法。
Claim 1. In a method for manufacturing a tandem solar cell having a GaP cell and a GaAsP cell, n-type GaP
P-type GaAsP compound semiconductor and n-type GaA on the substrate
After epitaxially growing the sP compound semiconductor,
A method for manufacturing a tandem solar cell, comprising forming a p-type GaP compound semiconductor on the opposite side of the substrate.
【請求項2】  GaPセルとGaAsPセルの積層構
造に他の太陽電池セルを積層することを特徴とする請求
項1記載のタンデム型太陽電池の製造方法。
2. The method for manufacturing a tandem solar cell according to claim 1, wherein another solar cell is stacked on the stacked structure of the GaP cell and the GaAsP cell.
JP3075106A 1991-04-08 1991-04-08 Manufacture of tandem type solar cell Pending JPH04309270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3075106A JPH04309270A (en) 1991-04-08 1991-04-08 Manufacture of tandem type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3075106A JPH04309270A (en) 1991-04-08 1991-04-08 Manufacture of tandem type solar cell

Publications (1)

Publication Number Publication Date
JPH04309270A true JPH04309270A (en) 1992-10-30

Family

ID=13566591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3075106A Pending JPH04309270A (en) 1991-04-08 1991-04-08 Manufacture of tandem type solar cell

Country Status (1)

Country Link
JP (1) JPH04309270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190990A (en) * 2011-03-10 2012-10-04 Nippon Telegr & Teleph Corp <Ntt> Tandem solar battery cell
CN102820344A (en) * 2012-08-06 2012-12-12 厦门理工学院 Gallium, arsenic and phosphorus/gallium phosphide yellow light narrow-band detector and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190990A (en) * 2011-03-10 2012-10-04 Nippon Telegr & Teleph Corp <Ntt> Tandem solar battery cell
CN102820344A (en) * 2012-08-06 2012-12-12 厦门理工学院 Gallium, arsenic and phosphorus/gallium phosphide yellow light narrow-band detector and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
JP5520496B2 (en) Manufacturing method of solar cell
JP2010118667A (en) Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
JP2010512664A (en) Zinc oxide multi-junction photovoltaic cell and optoelectronic device
JPS61255074A (en) Photoelectric conversion semiconductor device
JPS61502020A (en) Solar cells and photodetectors
KR20120024806A (en) Methods of fabricating semiconductor structures and devices using quantum dot structures and related structures
DE112016005313T5 (en) Double junction thin film solar cell module and manufacturing method therefor
DE4039390A1 (en) SOLAR BATTERY AND METHOD FOR THE PRODUCTION THEREOF
JP2021504980A (en) Flexible double-junction solar cell
CN101740654B (en) Semiconductor p-i-n junction solar battery epitaxial wafer and preparation method thereof
JP3718329B2 (en) GaN compound semiconductor light emitting device
EP3614444B1 (en) Multi-junction laminated laser photovoltaic cell and manufacturing method thereof
JP3841146B2 (en) Method for producing group III nitride compound semiconductor device
JPH0964386A (en) Multijunction solar cell
JPH04309270A (en) Manufacture of tandem type solar cell
JP3979115B2 (en) Method for manufacturing iron silicide layer, semiconductor substrate, and optical semiconductor device
JPH03268360A (en) Semiconductor device
JPH08204215A (en) Series connected solar cell
JP2599088B2 (en) GaP red light emitting element substrate and method of manufacturing the same
JP3657096B2 (en) GaAs solar cell
JPH0955522A (en) Tunnel diode
JP3723314B2 (en) Semiconductor light emitting device
JPH10135494A (en) Solar cell
JP2934072B2 (en) Solar cell manufacturing method