JPH0430837B2 - - Google Patents

Info

Publication number
JPH0430837B2
JPH0430837B2 JP63296202A JP29620288A JPH0430837B2 JP H0430837 B2 JPH0430837 B2 JP H0430837B2 JP 63296202 A JP63296202 A JP 63296202A JP 29620288 A JP29620288 A JP 29620288A JP H0430837 B2 JPH0430837 B2 JP H0430837B2
Authority
JP
Japan
Prior art keywords
lipase
immobilized
reaction
immobilized lipase
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP63296202A
Other languages
Japanese (ja)
Other versions
JPH02142485A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP63296202A priority Critical patent/JPH02142485A/en
Publication of JPH02142485A publication Critical patent/JPH02142485A/en
Publication of JPH0430837B2 publication Critical patent/JPH0430837B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はモノグリセライド及び/又はジグリセ
ライドと脂肪酸を含む基質にリパーゼを作用させ
てトリグリセライドを製造する方法及び装置に関
するものである。 [従来の技術] 食用油脂は主成分のトリグリセライド(TG)
の他に、TGの加水分解生成物である遊離脂肪酸
(FFA)、モノグリセライド(MG)及びジグリセ
ライド(DG)を含んでいる。これらは原料の集
荷から油脂分抽出操作の間に、原料中に含まれる
酵素又は外的要因により、主成分であるTGが加
水分解を受け生成した物である。 これらの加水分解生成物のうちFFA及びMGは
精製段階で除去することができる。例えばアルカ
リ精製または蒸留・脱酸などの方法によりTGか
らFFA及びMGのかなりの割合を分離除去するこ
とが可能である。 一方DGは沸点等の物理性状や化学的性質が
TGと類似しているため相互の分離が困難であ
り、DGの分離方法は確立されていない。 TG中にDGが存在すると共融混合物を形成し
SFI(固体脂含有係数)の低下、結晶核生成の妨
害、チヨコレート製造工程におけるテンパリング
操作を困難にする等の問題が生じる。 このようにTG中にDGが含まれている場合に
はその用途に制限を受けることになるので、油脂
中のDG含有量を効果的に減少させる方法が必要
とされる。 リパーゼを油脂に作用させ、加水分解、エステ
ル合成及びエステル交換反応を行わせることは広
く知られている。 このうち、脂肪酸エステルの加水分解及び合成
は下式の如き可逆反応である。 DG+FFA→←TG+H2O (1) (1)式より、水分の多い系では加水分解側に、又
水分の少ない系ではTG合成側に反応が進むこと
は明らかであり、DGを減少させるためには水分
を除去しつつ上記反応を行わせることが有利であ
るが、いずれにしてもリパーゼは加水分解反応又
は合成反応を促進する触媒となる。 特公昭63−12599は水又は水及び低級アルコー
ルを排出する系において部分グリセリド及び遊離
脂肪又はその低級アルコールのエステルを含む基
質にエステル交換活性を有する脂質分解酵素を作
用させるエステル化法に関するもので、系外への
水又は水及び低級アルコールの排出法として減圧
溜出やゼオライト、シリカゲルなどの吸収剤を用
いることが示されている。反応系内の水分量とし
ては0.18%程度以下と記載されている。 特開昭60−203196は、油脂類の加水分解反応に
続いてエステル合成反応を行うリパーゼによるエ
ステル交換方法に関するもので、エステル合成反
応段階において乾燥した不活性ガスを継続的に或
は断続的に反応系内に通気し、更に反応系外に排
気して反応系内の水分を同伴除去することにより
水分を除去することが述べられている。 特開昭62−19090は、グリセリンとC4〜C22飽和
(不飽和)脂肪酸に、実質的に水を加えることな
く、更に反応によつて副生する水を除きつつ、特
定の性状を有するキヤンデイダ、シリンドラセの
変異菌の生成するリパーゼを作用させてジグリセ
リドを製造する方法に関するもので、反応系から
の脱水法としては吸収剤を用いるか、乾燥した空
気や不活性ガスを反応槽中に通気撹拌して系外へ
排気して水分を除いて反応系の含水率を0.1%以
下にすることが示されている。 上記のごとく従来法においては反応系内を減圧
にするか、或は反応系内に乾燥ガスを通し系内の
水分をガスに同伴させて除去する方法が示されて
いるが、反応系内を減圧にするだけでは水分除去
の効率が悪く、また乾燥ガスを用いて水分を極限
まで除去しようとすると大量のガスを導入する必
要があり、それに伴う撹拌作用により固定化酵素
の減耗が甚だしく、逆に固定化酵素が減耗しない
程度のガス量では水分を極限まで除去できず高濃
度のトリグリセライドが得られないと言う欠点が
あつた。 [発明が解決しようとする課題] 本発明はモノグリセライド及び/又はジグリセ
ライドと脂肪酸にリパーゼを作用させてエステル
合成反応を行うに際し、反応系内の水分を極限ま
で除去することができ、高濃度のトリグリセライ
ドを効率よく製造することのできる方法及び装置
を提供するものである。 [課題を解決するための手段] 本発明にかかわる高濃度トリグリセライドの製
造法は、担体に固定化したリパーゼを充填した固
定床よりなる固定化リパーゼ存在域と固定化リパ
ーゼが充填されていない固定化リパーゼ不存在域
とが内部に設置され、かつ固定化リパーゼ不存在
域にのみガスが導入された後排出される構造の反
応槽にモノグリセライド及び/又はジグリセライ
ドと脂肪酸を含有する基質を供給し、固定化リパ
ーゼ存在域において基質と固定化リパーゼを接触
させてエステル合成を行い、エステル合成で得ら
れた反応生成物を固定化リパーゼ不存在域に移動
して乾燥したガスと接触させ、反応生成物と接触
した後のガスを反応槽外に排出することにより反
応生成物から水分を除去し、乾燥したガスとの接
触により水分を除去された反応生成物を固定化リ
パーゼ存在域に循環させて再びエステル合成を行
わせることよりなる。 本発明の高濃度トリグリセライドの製造法にお
ける基質としては、脂肪酸の他にモノグリセライ
ドとジグリセライドのうちの少なくとも一種を含
むものならばいずれでも良い。油脂のエステル交
換反応により得られるTGの他にMG、DG、
FFAなどの副生物を含むものにも応用できる。
また予め精製してMGやFFAを除去した後のDG
含有物に脂肪酸を添加するようにしても良い。ま
たグリセリンと脂肪酸のエステル化反応により得
られるトリグリセライド濃度の低いものでもよ
い。 本発明において使用する酵素としては、リゾー
プス属(Rhizopus)、アスペルギリユウス属
(Aspergillus)、ペニシリウム属(Penicillum)、
キヤンデイダ属(Candida)、シユードモナス属
(Pseudomonas)、ムコール属(Mucor)及びジ
ヨートリカム属(Geotoricum)由来のリパーゼ
などが挙げられる。 リパーゼは担体に固定化して使用することによ
り、基質とリバーゼの接触面を広げることができ
るので好ましい。担体としては、例えばイオン交
換樹脂、スチレン・ジビニルベンゼン共重合体、
ポリメチルメタアクリレート、光硬化成樹脂など
の重合体やゼオライト、珪藻土、パーライト、カ
オリン、シリカ、アルミナなどの無機系材料が利
用できる。特にマクロな細孔を有する多孔性担体
が好ましく、平均細孔径として600Å以上、好ま
しくは800Å以上の物が良い。他方平均細孔径が
あまり高過ぎると比表面積が低下してリパーゼの
活性発現が悪くなる傾向にあるので平均細孔径は
500000Å以下が望ましい、リパーゼの固定化法と
しては担体にリパーゼを物理吸着法により固定化
することが好ましい。 前述の基質に固定化リパーゼを作用させること
によりエステル合成反応を行う際の反応温度は、
用いるリパーゼにもよるが、20〜75℃の範囲の温
度が好ましい。 反応槽の固定化リパーゼ不存在域への乾燥した
ガスの通気量としては、固定化リパーゼ不存在域
と固定化リパーゼ不存在域とにそれぞれ存在する
基質の容量比や、温度その他の操業条件にもよる
が、高濃度のトリグリセライドを得るためには5
〜20vvm[1分間あたりの通気量(/分)/反
応槽内の固定化リパーゼ不存在域における油脂の
容量()]、好ましくは7〜20vvm、さらに好
ましくは10〜20vvmとするのが良い。通気量が
5vvm以下では反応系内の水分を充分に低くでき
ないか、または所定の水分量になるまで長時間を
要するるため高濃度のトリグリセライドを効果的
に得ることができない。 一方通気量を20vvm以上としてもトリグリセ
ライド濃度の向上はそれほど期待できず、また通
気量が高すぎた場合には反応生成物の飛散等の問
題も生じ、反応生成物の収率の低下や回収のため
の操作付加等を招くことになる、上記範囲の通気
量においては、乾燥ガスと反応生成物との接触が
有効に行われ、エステル合成反応が良好に行われ
る。 乾燥したガスとしては、窒素ガス、アルゴンガ
ス、ヘリウムガス等の如く油脂類に対して反応性
のないものであればよい。 反応槽の固定化リパーゼ不存在域から排出され
たガスは冷却して水分を分離し、再度反応槽に循
環し乾燥ガスとして再利用することができる。 固定化リパーゼ存在域の固定化リパーゼが充填
されていない固定化リパーゼ不存在域とが内部に
設置され、かつ固定化リパーゼ不存在域にのみガ
スが導入された後排出される構造の反応槽の具体
例としては、第1図に示すように、直立円筒状の
反応槽1の外筒2にそれより高さの低い内筒3を
挿入して上下に空間を有するように設置された形
状で、外筒2と内筒3との間に固定化したリパー
ゼの充填床4を設け、内筒3の直下にガスの吹込
口6、槽上部にガス排出口7を有するものが挙げ
られる。記号5は基質及び反応生成物の混合物、
記号8は加熱用ジヤケツトである。記号4の部分
が固定化リパーゼ存在域、反応槽底部及び内筒3
の内部が固定化リパーゼ不存在域となる。 ガスの吹込口6から内筒3に乾燥したガスを導
入すると、基質及び反応生成物の混合物は撹拌さ
れながら脱水して内筒3を上昇し、水分を含んだ
ガスはガス排出口7から系外に排気される。ガス
に伴われて内筒を上昇した基質及び反応生成物の
混合物は内筒上縁をオーバーフローして内筒と外
筒との間に設けられた固定化リパーゼの充填床4
を下降しエステル合成反応が行われる。固定化リ
パーゼの充填床4を通つた基質及び反応生成物は
再び内筒に導入され、乾燥されたガスと接触して
脱水される。 内筒3の上下の空間は基質及び反応生成物の循
環路となる。 この形式の反応槽は、内筒内を乾燥ガスが上昇
するに伴つて、ドラフト作用により、固定化リパ
ーゼ存在域から固定化リパーゼ不存在域への反応
生成物の移動及び固定化リパーゼ不存在域から固
定化リパーゼ存在域への水分を除去された反応生
成物の循環が自動的に行われると言う利点を有す
る。 連続操業を行う場合は、さらに基質の供給口と
反応生成物の排出口を設ける。 図とは逆に内筒に固定化したリパーゼの充填床
を設け、乾燥したガスを内筒と外筒との間に導入
することにより、内筒側を反応域、内筒と外筒と
の間を脱水域としてもよい。 また第2図に示すように、反応槽1を構成する
筒状容器の下半部に担体に固定化したリパーゼの
存在域(充填層)4′を設け、該充填層を有しな
い上半部の固定化リパーゼ不存在域9の下部に乾
燥ガス吹込口6、上部にガス排出口7、上半部に
おける前記乾燥ガス吹込口のガス排出口との間の
適当な位置(液面を形成すべき)から下半部の担
体に固定化したリパーゼの充填層4′の下部への
液循環管10を設けるようにしても良い。 固定化リパーゼ存在域4′の下方から導入され
た基質は、固定化リパーゼの充填層4′を上昇し
エステル合成反応が行われる。固定化リパーゼ充
填層4′を出た基質及び反応生成物の混合物は固
定化リパーゼ不存在域9において乾燥ガス吹込口
6からの乾燥したガスと接触しながら脱水して上
昇し、水分を含んだガスはガス排出口7から系外
に排気される。ガスと接触した後の基質及び反応
生成物の混合物は液循環管10を通して再び固定
化リパーゼ充填層4′に導入され再びエステル合
成反応に供される。液の循環に際しては乾燥ガス
の吹込みによる液のドラフト方式を利用しても良
いが、ポンプ等を使用する強制循環方式の反応槽
を用いても良い。 本発明において使用するこのような反応槽は、
反応を主とする区域(固定化リパーゼ存在域)と
脱水を主とする区域(固定化リパーゼ不存在域)
とが別々に設けられているので、固定化リパーゼ
は吹き込まれたガスによる撹拌作用を受けず減耗
が著しく抑制される。 固定化リパーゼの形状としては粒状、膜状、ハ
ニカム型などのものが使用できる。 固定化リパーゼが細かすぎると基質及び反応生
成物の流れが遅くなり、荒すぎる場合には比表面
積が低下しリパーゼの活性発現が悪くなるので、
粒状の固定化リパーゼを用いる際の粒径としては
0.5〜5mmが好ましい。 固定化リパーゼ存在域と固定化リパーゼ不存在
域との容量比は5:1〜1:5程度の範囲が好ま
しい。 以下実施例により本発明を具体的に説明する。 実施例 1 珪藻土(比表面積:0.8m2/g、細孔容積:
1.08c.c./g、平均細孔径:97200Å)をシリカを
主成分とするバインダーを用いて粒径2〜3mmに
成型した担体10重量部を調製し、これにシユード
モナス属(Pseudomonas)起源のリパーゼ0.3重
量部を水10重量部に溶解した溶液を含浸させて40
℃、1mmHg、4時間の条件で乾燥し、水分を0.1
%以下にした固定化酵素を調製した。 内径20mm、高さ200mmの温水ジヤケツト付き外
管に、外径10mm、内径7mm、長さ180mmの内管を
設置した反応槽の内管と外管の間に上記固定化酵
素30gを充填し、固定化酵素が移動しないように
固定化酵素充填槽の上下にステンレス製20メツシ
ユの金網を設けて固定して固定化リパーゼ存在域
とした。(第1図参照) 基質としてトリグリセライド(TG)87.0重量
%、ジグリセライド(DG)7.3重量%、モノグリ
セライド(MG)0.3重量%及び遊離脂肪酸
(FFA)5.4重量%よりなる組成のクルード・パー
ムオレイン30gをこの反応槽に入れ内管の最下部
より窒素ガスを吹き込み基質の撹拌と反応生成物
の脱水を行つた。 60℃の温水をジヤケツトに通液し、窒素ガス通
気量10vvmで24時間反応を行つたところ基質中
のトリグリセライド(TG)の濃度は95重量%に
なつた。またDG、MG、FFAの濃度はそれぞれ
2.6重量%、0.1重量%、2.4重量%、反応系内の水
分は10ppm以下であつた。 実施例 2 内径80mm、高さ800mmののジヤケツト付き反応
槽に外径45mm、内径44mm、高さ200mmのの内管を
取り付け、実施例1で使用したのと同じ固定化酵
素200gを内管と外管の間に充填し、前記クール
ド・パームオレイン900ml(810g)を入れ、実施
例1と同様に60℃で10vvmの乾燥窒素ガスを導
入したところ24時間でTG濃度は95重量%に達し
た。反応系内の水分は10ppm以下であつた。 また窒素ガス流量5vvmの条件で反応を行つた
ところ、24時間でTG濃度は93重量%と、10vvm
の時よりは低かつた。反応系内の水分は19ppm以
下であつた。 実施例 3 実施例2で用いた反応槽の内管と外管の間に実
施例1で使用したのと同じ固定化酵素を100gを
充填し、実施例1で使用したのと同じクールド・
パームオレインを1000ml(900g)使用し、反応
槽への窒素ガスの送入量を2、5、7、10または
14vvmの各速度に変化させて温度60℃でエステ
ル合成反応を行つた。24時間後のトリグリセライ
ド濃度は第3図に示した。第3図において横軸は
ガス流速(vvm)、縦軸はトリグリセライド濃度
(重量%)を示す。 第3図より高トリグリセライド濃度を得るには
5〜20vvm、特に7〜20vvmのガス速度が適当
であることがわかる。 実施例 4 実施例2で用いたのと同じ反応槽の内管と外管
との間に、実施例1で使用したのと同じ固定化酵
素100gを充填した固定化リパーゼ存在域を設け、
実施例1で使用したのと同じクールド・パームオ
レイン1000ml(900g)を仕込み10vvmのガス流
速で乾燥した窒素ガスを送入して撹拌・液循環及
び脱水を行い温度60℃で合成反応を行つた。 反応は41.7ml/h(滞留時間24時間に相当)の
速度で連続的に基質の送入と反応生成物の抜き出
しながら行つた。反応槽から連続的に抜き出され
る反応生成物中のトリグリセライド濃度を定期的
に分析測定したところ48時間後に安定した。その
時の反応生成物中のトリグリセライド濃度は93.3
重量%、反応系内の水分量は19ppmであつた。さ
らに反応を続けたところ第1表に示す結果を得
た。 比較例 1 実施例4で用いた反応槽において、固定化酵素
の固定床を設けることなく、固定化酵素を基質に
分散させて流動層とした以外は実施例4と同様に
して同量の乾燥ガスを送入してエステル合成反応
を行つた。反応を開始して48時間後に安定し、そ
の時の反応生成物中のトリグリセライド濃度は
93.5重量%、反応系内の水分量は19ppmであつ
た。さらに反応を続けたところ第1表に示す結果
を得た。
[Industrial Application Field] The present invention relates to a method and apparatus for producing triglycerides by causing lipase to act on a substrate containing monoglycerides and/or diglycerides and fatty acids. [Conventional technology] The main component of edible oils and fats is triglyceride (TG).
In addition, it contains free fatty acids (FFA), monoglycerides (MG), and diglycerides (DG), which are hydrolysis products of TG. These products are produced by the hydrolysis of the main component TG by enzymes contained in the raw materials or external factors during the oil and fat extraction operation from the collection of raw materials. Among these hydrolysis products, FFA and MG can be removed in the purification step. For example, it is possible to separate and remove a significant proportion of FFA and MG from TG by methods such as alkali purification or distillation/deacidification. On the other hand, DG has physical and chemical properties such as boiling point.
Since it is similar to TG, it is difficult to separate it from each other, and a method for separating DG has not been established. The presence of DG in TG forms a eutectic mixture.
Problems arise such as a decrease in SFI (solid fat content index), interference with crystal nucleation, and difficulty in tempering operations in the thiokolate production process. As described above, when DG is contained in TG, its uses are limited, so a method is needed to effectively reduce the DG content in fats and oils. It is widely known that lipase acts on fats and oils to cause hydrolysis, ester synthesis, and transesterification reactions. Among these, hydrolysis and synthesis of fatty acid esters are reversible reactions as shown in the following formula. DG + FFA → ← TG + H 2 O (1) From equation (1), it is clear that the reaction proceeds to the hydrolysis side in a system with a lot of water, and to the TG synthesis side in a system with a little water. It is advantageous to carry out the above reaction while removing water, but in any case, lipase serves as a catalyst that promotes the hydrolysis reaction or synthesis reaction. Japanese Patent Publication No. 63-12599 relates to an esterification method in which a lipolytic enzyme having transesterification activity acts on a substrate containing partial glycerides and free fats or esters of their lower alcohols in a system that discharges water or water and lower alcohols. Vacuum distillation and the use of absorbents such as zeolite and silica gel have been shown to be a method for discharging water or water and lower alcohols from the system. The amount of water in the reaction system is stated to be approximately 0.18% or less. JP-A-60-203196 relates to a transesterification method using lipase that performs an ester synthesis reaction following a hydrolysis reaction of oils and fats. It is described that water is removed by venting into the reaction system and then exhausting it outside the reaction system to remove the water in the reaction system along with it. JP-A No. 62-19090 discloses that glycerin and C 4 to C 22 saturated (unsaturated) fatty acids have specific properties without substantially adding water and while removing water by-produced by the reaction. This method concerns the production of diglycerides by the action of lipase produced by mutant strains of Candida and Cylindrace.The method for dehydrating the reaction system is to use an absorbent or to vent dry air or inert gas into the reaction tank. It is shown that the water content of the reaction system is reduced to 0.1% or less by stirring and exhausting the system to remove water. As mentioned above, in the conventional method, the pressure inside the reaction system is reduced or dry gas is passed through the reaction system to remove moisture in the system by entraining the gas. Merely reducing the pressure is inefficient in removing water, and if you try to remove the maximum amount of water using drying gas, it is necessary to introduce a large amount of gas, and the accompanying stirring action causes significant depletion of the immobilized enzyme, which can be counterproductive. However, there was a drawback in that water could not be removed to the maximum extent with a gas amount that did not deplete the immobilized enzyme, making it impossible to obtain highly concentrated triglycerides. [Problems to be Solved by the Invention] The present invention is capable of removing water in the reaction system to the utmost extent when performing an ester synthesis reaction by causing lipase to act on monoglyceride and/or diglyceride and fatty acid, and producing a highly concentrated triglyceride. An object of the present invention is to provide a method and apparatus capable of efficiently manufacturing. [Means for Solving the Problems] The method for producing highly concentrated triglycerides according to the present invention comprises an immobilized lipase presence region comprising a fixed bed filled with lipase immobilized on a carrier and an immobilized lipase not filled with immobilized lipase. A substrate containing monoglyceride and/or diglyceride and fatty acids is supplied to a reaction tank in which a lipase-free region is installed, and gas is introduced only into the immobilized lipase-free region and then discharged, and the substrate is immobilized. Ester synthesis is performed by bringing the substrate and immobilized lipase into contact in the region where immobilized lipase exists, and the reaction product obtained by ester synthesis is moved to the region where immobilized lipase is not present and brought into contact with dry gas to combine the reaction product and the immobilized lipase. Water is removed from the reaction product by discharging the gas after contact to the outside of the reaction tank, and the reaction product from which water has been removed by contact with the dry gas is circulated to the area where the immobilized lipase is present and esterified again. It consists of performing synthesis. The substrate in the method for producing high concentration triglycerides of the present invention may be any substrate as long as it contains at least one of monoglycerides and diglycerides in addition to fatty acids. In addition to TG obtained by transesterification of oils and fats, MG, DG,
It can also be applied to products containing by-products such as FFA.
In addition, DG after pre-purification to remove MG and FFA
Fatty acids may be added to the content. Alternatively, a triglyceride with a low concentration obtained by an esterification reaction of glycerin and fatty acid may be used. Enzymes used in the present invention include Rhizopus, Aspergillus, Penicillum,
Examples include lipases derived from the genus Candida, Pseudomonas, Mucor, and Geotricum. It is preferable to use lipase immobilized on a carrier because this allows the contact surface between the substrate and lipase to be expanded. Examples of carriers include ion exchange resins, styrene/divinylbenzene copolymers,
Polymers such as polymethyl methacrylate and photocurable resins, and inorganic materials such as zeolite, diatomaceous earth, perlite, kaolin, silica, and alumina can be used. Particularly preferred is a porous carrier having macroscopic pores, with an average pore diameter of 600 Å or more, preferably 800 Å or more. On the other hand, if the average pore diameter is too high, the specific surface area will decrease and the expression of lipase activity will tend to deteriorate.
500000 Å or less is preferable. As a method for immobilizing lipase, it is preferable to immobilize lipase on a carrier by physical adsorption. The reaction temperature when performing the ester synthesis reaction by allowing the immobilized lipase to act on the aforementioned substrate is as follows:
Depending on the lipase used, a temperature in the range of 20 to 75°C is preferred. The amount of dry gas vented to the immobilized lipase-free area of the reaction tank depends on the volume ratio of the substrates present in the immobilized lipase-free area and the immobilized lipase-free area, temperature, and other operating conditions. It depends, but in order to obtain a high concentration of triglyceride, 5
~20 vvm [aeration amount per minute (/min)/capacity of fats and oils in the immobilized lipase-free area in the reaction tank ()], preferably 7 to 20 vvm, more preferably 10 to 20 vvm. The amount of ventilation
If it is less than 5 vvm, the water content in the reaction system cannot be sufficiently lowered, or it takes a long time to reach a predetermined water content, making it impossible to effectively obtain a high concentration of triglyceride. On the other hand, even if the aeration rate is 20 vvm or more, it is not expected to improve the triglyceride concentration much, and if the aeration rate is too high, problems such as scattering of reaction products will occur, resulting in a decrease in the yield of reaction products and difficulty in recovery. At the aeration rate within the above range, which would otherwise require additional operations, the drying gas and the reaction product can effectively contact each other, and the ester synthesis reaction can be carried out satisfactorily. The dry gas may be any gas that is not reactive towards fats and oils, such as nitrogen gas, argon gas, helium gas, and the like. The gas discharged from the immobilized lipase-free region of the reaction tank is cooled to separate moisture, and can be circulated to the reaction tank again and reused as dry gas. A reaction tank having a structure in which an immobilized lipase-present region and an immobilized lipase-free region where immobilized lipase is not filled are installed, and gas is introduced only into the immobilized lipase-free region and then discharged. As a specific example, as shown in Fig. 1, an inner cylinder 3 having a lower height is inserted into an outer cylinder 2 of an upright cylindrical reaction tank 1, and is installed so as to have a space above and below. , a packed bed 4 of immobilized lipase is provided between the outer cylinder 2 and the inner cylinder 3, a gas inlet 6 is provided directly below the inner cylinder 3, and a gas outlet 7 is provided at the top of the tank. Symbol 5 is a mixture of substrate and reaction product,
Symbol 8 is a heating jacket. The part marked with symbol 4 is the area where immobilized lipase exists, the bottom of the reaction tank, and the inner cylinder 3.
The inside of the area becomes an area where no immobilized lipase exists. When dry gas is introduced into the inner cylinder 3 from the gas inlet 6, the mixture of substrates and reaction products is dehydrated while being stirred and moves up the inner cylinder 3, and the gas containing moisture is discharged from the gas outlet 7 into the system. Exhausted outside. The mixture of substrates and reaction products that has risen up the inner cylinder along with the gas overflows the upper edge of the inner cylinder and reaches the packed bed 4 of immobilized lipase provided between the inner cylinder and the outer cylinder.
The ester synthesis reaction takes place. The substrate and reaction product that have passed through the packed bed 4 of immobilized lipase are introduced into the inner cylinder again and are dehydrated by contacting with the dried gas. The space above and below the inner cylinder 3 serves as a circulation path for substrates and reaction products. In this type of reaction tank, as the dry gas rises in the inner cylinder, the reaction product moves from the area where immobilized lipase is present to the area where there is no immobilized lipase due to the draft action, and the area where there is no immobilized lipase. This has the advantage that the circulation of the dehydrated reaction product from the immobilized lipase to the area where the immobilized lipase is present is carried out automatically. In case of continuous operation, a substrate supply port and a reaction product discharge port are additionally provided. Contrary to the diagram, a packed bed of immobilized lipase is provided in the inner cylinder, and dry gas is introduced between the inner cylinder and the outer cylinder, so that the inner cylinder side becomes the reaction zone and the inner cylinder and the outer cylinder The space between them may be used as a dehydration area. Further, as shown in FIG. 2, a region (packed layer) 4' in which lipase immobilized on a carrier exists is provided in the lower half of the cylindrical container constituting the reaction tank 1, and the upper half without the packed layer is provided. The dry gas inlet 6 is located at the lower part of the immobilized lipase-free area 9, the gas outlet 7 is located at the upper part, and an appropriate position between the dry gas inlet and the gas outlet in the upper half (to form a liquid level) is provided. A liquid circulation pipe 10 may be provided from the lower half of the carrier to the lower part of the packed layer 4' of lipase immobilized on the carrier. The substrate introduced from below the immobilized lipase existing region 4' ascends the immobilized lipase packed bed 4' and undergoes an ester synthesis reaction. The mixture of substrate and reaction product leaving the immobilized lipase packed bed 4' dehydrates and rises while contacting the dry gas from the dry gas inlet 6 in the immobilized lipase-free area 9, and contains water. The gas is exhausted to the outside of the system from the gas exhaust port 7. After contacting the gas, the mixture of substrate and reaction product is again introduced into the immobilized lipase packed bed 4' through the liquid circulation pipe 10 and subjected to the ester synthesis reaction again. When circulating the liquid, a liquid draft method by blowing dry gas may be used, but a forced circulation reaction tank using a pump or the like may also be used. Such a reaction vessel used in the present invention is
Area where reaction is the main activity (immobilized lipase presence area) and area where dehydration is the main activity (immobilized lipase absence area)
Since these are provided separately, the immobilized lipase is not affected by the stirring action of the blown gas, and its depletion is significantly suppressed. The shape of the immobilized lipase can be granular, film, honeycomb, or the like. If the immobilized lipase is too fine, the flow of the substrate and reaction products will be slow, and if it is too coarse, the specific surface area will decrease and the expression of lipase activity will be impaired.
The particle size when using granular immobilized lipase is
0.5-5 mm is preferred. The volume ratio of the area where immobilized lipase is present and the area where immobilized lipase is not present is preferably in the range of about 5:1 to 1:5. The present invention will be specifically explained below using Examples. Example 1 Diatomaceous earth (specific surface area: 0.8 m 2 /g, pore volume:
1.08 cc/g, average pore size: 97200 Å) was molded into a particle size of 2 to 3 mm using a silica-based binder to prepare 10 parts by weight of carrier, and to this was added 0.3 parts by weight of lipase originating from the genus Pseudomonas. 40 parts by impregnation with a solution of 10 parts by weight of water.
Dry at ℃, 1mmHg, 4 hours to reduce moisture to 0.1
% or less of the immobilized enzyme was prepared. 30 g of the above immobilized enzyme was filled between the inner tube and the outer tube of a reaction tank, in which an inner tube with an outer diameter of 10 mm, an inner diameter of 7 mm, and a length of 180 mm was installed in an outer tube with an inner diameter of 20 mm and a height of 200 mm with a hot water jacket. In order to prevent the immobilized enzyme from moving, 20 mesh wire meshes made of stainless steel were provided above and below the immobilized enzyme filling tank to fix the immobilized enzyme, thereby forming an immobilized lipase presence area. (See Figure 1) 30 g of crude palm olein with a composition consisting of 87.0% by weight of triglyceride (TG), 7.3% by weight of diglyceride (DG), 0.3% by weight of monoglyceride (MG), and 5.4% by weight of free fatty acid (FFA) was used as a substrate. The reactor was placed in the reactor and nitrogen gas was blown into it from the bottom of the inner tube to stir the substrate and dehydrate the reaction product. When hot water at 60°C was passed through the jacket and the reaction was carried out for 24 hours with a nitrogen gas flow rate of 10 vvm, the concentration of triglyceride (TG) in the substrate reached 95% by weight. In addition, the concentrations of DG, MG, and FFA are
2.6% by weight, 0.1% by weight, 2.4% by weight, and the water content in the reaction system was 10 ppm or less. Example 2 An inner tube with an outer diameter of 45 mm, an inner diameter of 44 mm, and a height of 200 mm was attached to a jacketed reaction tank with an inner diameter of 80 mm and a height of 800 mm, and 200 g of the same immobilized enzyme used in Example 1 was added to the inner tube. The space between the outer tubes was filled with 900 ml (810 g) of the cooled palm olein, and dry nitrogen gas of 10 vvm was introduced at 60°C in the same manner as in Example 1, and the TG concentration reached 95% by weight in 24 hours. . The water content in the reaction system was 10 ppm or less. In addition, when the reaction was carried out under the condition of a nitrogen gas flow rate of 5 vvm, the TG concentration was 93% by weight in 24 hours, and the TG concentration was 10 vvm.
It was lower than at the time. The water content in the reaction system was 19 ppm or less. Example 3 100 g of the same immobilized enzyme used in Example 1 was filled between the inner tube and outer tube of the reaction tank used in Example 2, and the same cooled enzyme used in Example 1 was charged.
Use 1000ml (900g) of palm olein and change the amount of nitrogen gas fed into the reaction tank to 2, 5, 7, 10 or
The ester synthesis reaction was carried out at a temperature of 60° C. with various speeds of 14 vvm. The triglyceride concentration after 24 hours is shown in FIG. In FIG. 3, the horizontal axis shows gas flow velocity (vvm), and the vertical axis shows triglyceride concentration (wt%). From FIG. 3, it can be seen that a gas velocity of 5 to 20 vvm, particularly 7 to 20 vvm, is suitable for obtaining a high triglyceride concentration. Example 4 An immobilized lipase presence region filled with 100 g of the same immobilized enzyme used in Example 1 was provided between the inner tube and outer tube of the same reaction tank as used in Example 2,
1000 ml (900 g) of the same cooled palm olein used in Example 1 was charged, and dried nitrogen gas was introduced at a gas flow rate of 10 vvm to perform stirring, liquid circulation, and dehydration, and a synthesis reaction was performed at a temperature of 60°C. . The reaction was carried out at a rate of 41.7 ml/h (corresponding to a residence time of 24 hours) while continuously introducing the substrate and withdrawing the reaction product. The triglyceride concentration in the reaction product continuously extracted from the reaction tank was periodically analyzed and measured, and it stabilized after 48 hours. The triglyceride concentration in the reaction product at that time was 93.3
The water content in the reaction system was 19 ppm by weight. When the reaction was further continued, the results shown in Table 1 were obtained. Comparative Example 1 In the reaction tank used in Example 4, the same amount was dried in the same manner as in Example 4 except that the fixed bed of the immobilized enzyme was not provided and the immobilized enzyme was dispersed in the substrate to form a fluidized bed. Gas was introduced to carry out the ester synthesis reaction. It stabilizes 48 hours after starting the reaction, and the triglyceride concentration in the reaction product at that time is
The water content in the reaction system was 93.5% by weight and 19 ppm. When the reaction was further continued, the results shown in Table 1 were obtained.

【表】 比較例1の場合、短期間では実施例4と同等の
成績を示したが、長期操業では固定化酵素の漏出
が甚だしく固定化酵素の寿命に差があることが判
つた。 即ち固定化酵素を基質に分散させた流動層形式
の比較例1では20日間の連続操業で45%の固定化
酵素が漏出して活性が低下しトリグリセライド濃
度は低下するのに対して、実施例4の固定床方式
の方は若干の固定化酵素の漏出は認められるもの
の40日間安定した活性が発現され高トリグリセラ
イド濃度が維持されることが確認された。 なお、固定床方式においても初期に若干の固定
化酵素の漏出が認められるのは、担体の製造過程
で原料粒子に粉末が付着している為に、酵素固定
化の際この粉末にも酵素が固定化され、反応時間
が長くなるにつれて反応生成物と共に粉末状の固
定化酵素が漏出した為であると推定される。 固定床の場合の固定化酵素漏出量は20日間の連
続操業で僅かに7%であつたが、この量は初期固
定化酵素の担体製造時の担体付着粉末量に相当す
る。 また流動層の場合は、同様に粉末状固定化酵素
が速やかに漏出するばかりではなく、粒状固定化
酵素同志が衝突し合う為の摩耗により粉末化して
固定床方式に比べ固定化酵素の漏出量が大きくな
り活性の低下が早まつたものと推定される。 [発明の効果] 反応系から水分を有効に除去し、水分を低く維
持できるのでジグセライド及び/又はモノグリセ
ライドと脂肪酸からリパーゼの作用により高濃度
のトリグリセライドを得ることができ、しかも長
時間連続操業しても活性が低下しない。 また本発明の装置は、簡単な構造で固定化リパ
ーゼの損失を防ぎ、長時間の連続操業を可能にす
る。
[Table] In the case of Comparative Example 1, the results were similar to those of Example 4 in the short term, but in the long term operation, it was found that the leakage of the immobilized enzyme was severe and there was a difference in the life span of the immobilized enzyme. That is, in Comparative Example 1, which uses a fluidized bed format in which immobilized enzyme is dispersed in a substrate, 45% of the immobilized enzyme leaks out after 20 days of continuous operation, resulting in a decrease in activity and a decrease in triglyceride concentration. Although some leakage of the immobilized enzyme was observed in the case of fixed bed method No. 4, it was confirmed that stable activity was expressed for 40 days and a high triglyceride concentration was maintained. In addition, even in the fixed bed method, some leakage of immobilized enzyme is observed initially because the powder is attached to the raw material particles during the manufacturing process of the carrier. This is presumed to be due to the powdered immobilized enzyme leaking out together with the reaction product as the reaction time increased. In the case of a fixed bed, the amount of immobilized enzyme leaked out was only 7% after 20 days of continuous operation, but this amount corresponds to the amount of powder adhering to the carrier during the initial production of the immobilized enzyme carrier. In addition, in the case of a fluidized bed, not only does the powdered immobilized enzyme leak out quickly, but the granular immobilized enzymes collide with each other and become powdered, resulting in a greater amount of immobilized enzyme leaking than in the fixed bed method. It is presumed that the increase in the activity caused a rapid decline in activity. [Effects of the invention] Since water can be effectively removed from the reaction system and the water content can be maintained at a low level, high concentration triglyceride can be obtained from diglyceride and/or monoglyceride and fatty acids by the action of lipase, and moreover, it can be operated continuously for a long time. However, the activity does not decrease. Furthermore, the device of the present invention has a simple structure, prevents loss of immobilized lipase, and enables continuous operation for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で使用した固定床型反応槽の説
明図、第2図は本発明方法を実施するに適した他
の形式の反応槽の説明図、第3図は反応槽への窒
素ガスの送入量を変化させてエステル合成反応を
行つた場合の24時間後のトリグリセライド濃度を
示す図で、横軸はガス流速(vvm)、縦軸はトリ
グリセライド濃度(重量%)を示す。
Figure 1 is an explanatory diagram of the fixed bed type reaction tank used in the examples, Figure 2 is an explanatory diagram of another type of reaction tank suitable for carrying out the method of the present invention, and Figure 3 is an illustration of the nitrogen supply to the reaction tank. This is a diagram showing the triglyceride concentration after 24 hours when the ester synthesis reaction was carried out by changing the amount of gas fed. The horizontal axis shows the gas flow rate (vvm) and the vertical axis shows the triglyceride concentration (wt%).

Claims (1)

【特許請求の範囲】 1 担体に固定化したリパーゼを充填した固定床
よりなる固定化リパーゼ存在域と固定化リパーゼ
が充填されていない固定化リパーゼ不存在域とが
内部に設置され、かつ固定化リパーゼ不存在域に
のみガスが導入された後排出される構造の反応槽
にモノグリセライド及び/又はジグリセライドと
脂肪酸を含有する基質を供給し、固定化リパーゼ
存在域において基質と固定化リパーゼを接触させ
てエステル合成を行い、エステル合成で得られた
反応生成物を固定化リパーゼ不存在域に移動して
乾燥したガスと接触させ、反応生成物と接触した
後のガスを反応槽外に排出することにより反応生
成物から水分を除去し、乾燥したガスとの接触に
より水分を除去された反応生成物を固定化リパー
ゼ存在域に循環させて再びエステル合成を行わせ
ることを特徴とする高濃度トリグリセライドの製
造法。 2 反応槽を構成する外筒の内部に、外筒より高
さの低い内筒がその上下に空間を有するように設
置されており、外筒と内筒との間又は内筒内部の
いずれか一方の側に担体に固定化したリパーゼの
充填層を有し、且つ上記固定化したリパーゼの充
填層を有しない側に乾燥ガス吹込口、上部にガス
排出口を有することを特徴とする高濃度トリグリ
セライドの製造装置。 3 反応槽を構成する筒状容器の下半部に担体に
固定化したリパーゼの充填層を有し、該充填層を
有しない上半部の下部に乾燥ガス吹込口、上部に
ガス排出口を有し、且つ上半部における前記乾燥
ガス吹込口とガス排出口との間の位置から下半部
の担体に固定化したリパーゼの充填層の下部への
液循環管が設けられていることを特徴とする高濃
度トリグリセライドの製造装置。
[Scope of Claims] 1. An immobilized lipase-existing region consisting of a fixed bed filled with lipase immobilized on a carrier and an immobilized lipase-free region not filled with immobilized lipase are installed inside, and the immobilized lipase is A substrate containing a monoglyceride and/or diglyceride and a fatty acid is supplied to a reaction tank having a structure in which gas is introduced only into a lipase-free region and then discharged, and the substrate and immobilized lipase are brought into contact in an immobilized lipase-present region. By carrying out ester synthesis, moving the reaction product obtained from the ester synthesis to an area where no immobilized lipase exists and contacting it with dry gas, and discharging the gas after contacting with the reaction product to the outside of the reaction tank. Production of a highly concentrated triglyceride characterized by removing water from a reaction product and circulating the water-removed reaction product through contact with a dry gas to an area where immobilized lipase exists to perform ester synthesis again. Law. 2 Inside the outer cylinder constituting the reaction tank, an inner cylinder whose height is lower than the outer cylinder is installed with a space above and below it, and either between the outer cylinder and the inner cylinder or inside the inner cylinder. A highly concentrated product having a packed layer of lipase immobilized on a carrier on one side, a dry gas inlet on the side not having the packed layer of immobilized lipase, and a gas outlet on the top. Triglyceride production equipment. 3 A cylindrical container constituting the reaction tank has a packed layer of lipase immobilized on a carrier in the lower half, a dry gas inlet in the lower part of the upper half without the packed layer, and a gas outlet in the upper part. and a liquid circulation pipe is provided from a position between the dry gas inlet and the gas outlet in the upper half to the lower part of the packed bed of lipase immobilized on the carrier in the lower half. Highly concentrated triglyceride manufacturing equipment.
JP63296202A 1988-11-25 1988-11-25 Production of triglyceride in high concentration and appartus therefor Granted JPH02142485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296202A JPH02142485A (en) 1988-11-25 1988-11-25 Production of triglyceride in high concentration and appartus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296202A JPH02142485A (en) 1988-11-25 1988-11-25 Production of triglyceride in high concentration and appartus therefor

Publications (2)

Publication Number Publication Date
JPH02142485A JPH02142485A (en) 1990-05-31
JPH0430837B2 true JPH0430837B2 (en) 1992-05-22

Family

ID=17830494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296202A Granted JPH02142485A (en) 1988-11-25 1988-11-25 Production of triglyceride in high concentration and appartus therefor

Country Status (1)

Country Link
JP (1) JPH02142485A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284663B2 (en) * 2008-03-19 2013-09-11 株式会社Adeka Method for transesterification of fats and oils

Also Published As

Publication number Publication date
JPH02142485A (en) 1990-05-31

Similar Documents

Publication Publication Date Title
AU551956B2 (en) Fat processing
JP3853552B2 (en) Method for producing diglyceride
EP0322213B1 (en) Process for the preparation of fatty acid esters
CN101720821B (en) Process for producing oil and fat rich in diacylglycerol
JP2004528843A (en) Oil and fat production method
EP0257388A2 (en) Process for transesterifying fats
JP2005287510A (en) Method for enzymatically synthesizing triglyceride of unsaturated fatty acid
CN106906194A (en) A kind of enzyme process acid stripping method of partial glyceride lipase and the grease rich in PUFA
WO2020007335A1 (en) Method for lowering iodine value of glyceride
JPH0430837B2 (en)
CN108823255B (en) Preparation method of tri-saturated fatty acid glyceride
CN108795998B (en) Method for reducing iodine value of glyceride
US2442534A (en) Mono-and/or diglyceride preparation
JP2983655B2 (en) Diglyceride production method
JPH02142484A (en) Production of triglyceride in high concentration
JP2711391B2 (en) Method for producing reformed oil
JPH0529434B2 (en)
JPH10234391A (en) Production of diglycerides and reactor for the production process
JPH0365950B2 (en)
JPS63240790A (en) Production of symmetrical triglyceride with high-molecular weight lipase
JPH012588A (en) Modified oil manufacturing method
JPH0775549B2 (en) Enzymatic reaction method in fine water system
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol
JPH01137989A (en) Modification of oil and fat
JPH04258291A (en) Immobilized enzyme and its production