JPH0430798A - Counting of viable microorganism and device therefor - Google Patents
Counting of viable microorganism and device thereforInfo
- Publication number
- JPH0430798A JPH0430798A JP13757390A JP13757390A JPH0430798A JP H0430798 A JPH0430798 A JP H0430798A JP 13757390 A JP13757390 A JP 13757390A JP 13757390 A JP13757390 A JP 13757390A JP H0430798 A JPH0430798 A JP H0430798A
- Authority
- JP
- Japan
- Prior art keywords
- image
- filter
- viable bacteria
- atp
- reagent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 244000005700 microbiome Species 0.000 title abstract description 25
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 18
- 230000010354 integration Effects 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 239000011259 mixed solution Substances 0.000 claims abstract description 8
- 102000004190 Enzymes Human genes 0.000 claims abstract description 7
- 108090000790 Enzymes Proteins 0.000 claims abstract description 7
- 210000000170 cell membrane Anatomy 0.000 claims abstract description 6
- 241000894006 Bacteria Species 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 43
- 230000035945 sensitivity Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 238000003384 imaging method Methods 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 4
- 230000001464 adherent effect Effects 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims description 3
- 230000002776 aggregation Effects 0.000 claims description 3
- 238000004020 luminiscence type Methods 0.000 abstract description 7
- 239000000243 solution Substances 0.000 abstract description 4
- 230000001420 bacteriolytic effect Effects 0.000 abstract 1
- 230000003612 virological effect Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 239000002609 medium Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003814 drug Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000002847 impedance measurement Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000003908 quality control method Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000005089 Luciferase Substances 0.000 description 2
- 238000005415 bioluminescence Methods 0.000 description 2
- 230000029918 bioluminescence Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 229950006790 adenosine phosphate Drugs 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 101150046681 atp5if1 gene Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- -1 clinical practice Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は液体または気体中の微生物や体細胞の数を計測
する生菌計数方法とその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a viable bacteria counting method and apparatus for counting the number of microorganisms and somatic cells in a liquid or gas.
ここでは生国を体細胞、細菌、微生物などを含めたこれ
らの総称として取り扱うが、これら生菌数を計測するこ
とは、食品、醸造、薬品、臨床および半導体などの各分
野において、品質管理や環境管理などの面で極めて重要
である。Here, country of origin is treated as a general term for somatic cells, bacteria, microorganisms, etc., but measuring the number of viable bacteria is used for quality control and in various fields such as food, brewing, medicine, clinical practice, and semiconductors. This is extremely important in terms of environmental management, etc.
従来、例えば微生物の菌数または微生物活性の計測には
、次のような方法が用いられている。Conventionally, the following methods have been used to measure, for example, the number of microorganisms or the activity of microorganisms.
(1)コロニー計数法
寒天培地に生したコロニーを肉眼的に計測して微生物菌
数を測定する方法。(1) Colony counting method A method in which the number of microorganisms is determined by visually counting colonies grown on an agar medium.
+2+ i!i度計数法
培養液中に浮遊する遺体による光散乱現象を光学的に測
定し、その濁度から微生物菌数を求める方法。+2+ i! I-degree counting method A method of optically measuring the light scattering phenomenon caused by corpses floating in a culture solution and determining the number of microorganisms from the turbidity.
(3)AT’P(アデノシン三リン酸)測定法ATPを
ルシフェリン−ルシフェラーゼなどの生物発光を利用じ
てその発光量から微生’IIFI菌数を測定する方法。(3) AT'P (adenosine triphosphate) measurement method A method of measuring the number of microorganisms 'IIFI from the amount of luminescence of ATP using bioluminescence such as luciferin-luciferase.
(4)インピーダンス測定法
微生物の物質代謝による発酵培地中の電気的インピーダ
ンスの変化を測定し、微生物活性を測定する方法。(4) Impedance measurement method A method of measuring microbial activity by measuring changes in electrical impedance in a fermentation medium due to the metabolism of microorganisms.
しかし、上記(1)〜(4)の方法には次のような問題
がある。However, the methods (1) to (4) above have the following problems.
(1)コロニー計数法
操作が煩雑で培地に散布後、成育に長時間(24〜48
時間)を要し、しかも測定精度が悪い。(1) Colony counting method The operation is complicated and it takes a long time to grow (24 to 48
time) and the measurement accuracy is poor.
(2)濁度計数法
試料液が分光学的に吸収の少ないものでなければなろな
いのに対して、実際には固形分を含む培地や高着色度の
培地を使う例が多く、正確な測定が困難である。(2) Turbidity counting method Although the sample solution must have low spectroscopic absorption, in practice, a medium containing solids or a medium with a high degree of coloration is often used, and accurate Difficult to measure.
(31A T P測定法
培地中に共存する螢光物質やATPが背景光となったり
、微生物または細胞1個当たりに含まれるATP量が種
類や状態により異なるために、正確な菌数を末めること
が困難である。(31A TP measurement method: Fluorescent substances and ATP coexisting in the culture medium may cause background light, and the amount of ATP contained in each microorganism or cell varies depending on the type and condition, making it difficult to accurately determine the number of bacteria.) It is difficult to
(4)インピーダンス測定法
通気攪拌のある条件下では測定することができず、また
試料溶液中に塩類など導電性?Ifが存在するときも測
定することができない。(4) Impedance measurement method Impedance measurement cannot be performed under conditions with aeration and agitation, and there may be salts in the sample solution that are conductive. It also cannot be measured when If is present.
本発明は上述の点に鑑みてなされてものであり、その目
的は簡便な操作で迅速かつ正確に、そして高感度に生菌
数を計測することが可能な方法とその装置を提供するこ
とにある。The present invention has been made in view of the above-mentioned points, and its purpose is to provide a method and an apparatus for measuring the number of viable bacteria quickly, accurately, and with high sensitivity using simple operations. be.
上記の&!題を解決するために、本発明の方法は、あら
かじめ一定量の試料液体または気体を濾過して生菌を付
着させたフィルターに、細胞膜を溶解する試薬およびア
デノシン三リンPII(ATP)の存在下で発光する酵
素および基質の混合溶液を含浸させ、生菌の付着位置に
8いて生菌由来のATPこfllK−基質による発光反
応を起こさせ、フィルターの生菌付着面における光子の
分布像を二次元光子検出手段を用いて電気的映像信号に
変換し、この映像信号を所定の時間画像積分して得られ
た画像で高輝度の画素またはその集合を計数し、または
上記の映像信号をあらかじめ設定した所定の時間間隔で
繰り返し画像積分して得た複数の光子積分画像をそれぞ
れ同一の方法で二値化し、時間的に連続した二つ以上の
二値画面間で順次一画面づつ移動しながら論理積演算を
行ない、これらの演算結果の画面の重ね合わせもしくは
論理和演算により一つの画面に表示し、最後に得られた
画像で高輝度の画素またはその集合を計数するものであ
り、この計数法に通した本発明の装置としてフィルター
のほかに、混合溶液をフィルターに含浸させる試薬注入
手段、フィルター〇生菌付着面の少なくとも一部を結像
させる結像光学手段、この結像光学手段により得ちれた
光子の分布像を二次元的二二高感度に増幅する二次元光
子検出手段、この二次元光子検出手段から出力される光
子の二次元分布像を電気的映像信号に変換する撮像手段
、この撮像手段から出力される映像信号を所定の時間積
分する画像積分回路、この回路から得られた積分画像デ
ータを演算処理して高輝度画素またはその集合を抽出し
て計数する画像処理回路、抽出画像と計数結果を表示す
る出力手段とを備える。above&! In order to solve this problem, the method of the present invention involves filtering a predetermined amount of sample liquid or gas and applying live bacteria to the filter in the presence of a reagent for dissolving cell membranes and adenosine triphosphate PII (ATP). A mixed solution of an enzyme and a substrate that emits light is impregnated onto the surface of the filter where live bacteria are attached, and a luminescence reaction is caused by ATP derived from the live bacteria and the flllK-substrate. Convert it into an electrical video signal using a dimensional photon detection means, and count high brightness pixels or a set of pixels in the image obtained by integrating this video signal for a predetermined time, or set the above video signal in advance. A plurality of photon integral images obtained by repeating image integration at predetermined time intervals are each binarized using the same method, and the logical This counting method involves performing a product operation, displaying the results of these operations on one screen by superimposing the screens or performing a logical sum operation, and then counting high-intensity pixels or a set of pixels in the final image obtained. In addition to the filter, the apparatus of the present invention includes, in addition to the filter, a reagent injection means for impregnating the filter with a mixed solution, an imaging optical means for imaging at least a part of the viable bacteria adhesion surface of the filter, and Two-dimensional photon detection means that amplifies the distribution image of scattered photons to a two-dimensional high sensitivity, and imaging means that converts the two-dimensional distribution image of photons output from the two-dimensional photon detection means into an electrical video signal. , an image integration circuit that integrates the video signal output from the imaging means for a predetermined time; an image processing circuit that performs arithmetic processing on the integrated image data obtained from this circuit to extract and count high-luminance pixels or a set thereof; It includes an output means for displaying the extracted image and the counting results.
本発明では、あらかじめ一定量の試料液体または気体を
濾過して生菌を付着させたフィルターに、細胞膜を溶解
する試薬およびATPの存在下で発光する酵素および基
質の混合溶液を含浸させ、微生物由来のATPと前記酵
素−基質による発光反応を生菌の付着位置で起こさせ、
発生する光子を一次元光子検出手段を用いて電気的映像
信号に変換し、生菌の存在を二次元的分布としてi!劃
する。In the present invention, a filter obtained by filtering a certain amount of sample liquid or gas in advance and adhering live bacteria is impregnated with a reagent that dissolves cell membranes and a mixed solution of an enzyme and a substrate that emit light in the presence of ATP. causing a luminescent reaction between ATP and the enzyme-substrate to occur at the attachment position of the living bacteria,
The generated photons are converted into electrical video signals using a one-dimensional photon detection means, and the presence of viable bacteria is detected as a two-dimensional distribution of i! fraction.
即ち画素単位で光子を積電することによって、試薬中の
螢光物質による背景光や高感度カメラのランダムノイズ
に対するSN比を向上させている。That is, by accumulating photons on a pixel-by-pixel basis, the S/N ratio against background light caused by fluorescent substances in reagents and random noise from a high-sensitivity camera is improved.
最終的に生菌の付着位置を中心とした高輝度な検出光子
数の多い画素群が付着した生菌の数だけ現れることにな
り、それらを計数することによって菌数を求めることが
可能となる。また、本発明では二次元的にランダムかつ
単発的に発生するショットノイズを除去し、発光反応に
よる同一場所から反応時間継続して発生する光子像から
生菌のみを抽出するために、所定の時間間隔で繰り返し
画像積分し複数の光子積分画像を得て、これらの光子積
分画像をそれぞれ同一の方法で二硫化し、時間的に連続
した二つの二値画面間で逐次論理積演算を行ない、これ
らの演算結果の画面の重ね合わせるかもしくは論理和演
算により一つの画面に表示し、最後に得られた画像で高
輝度の画素またはその集合を計数することもできる。Eventually, a group of high-intensity pixels with a large number of detected photons centered around the attached position of viable bacteria will appear for the number of attached viable bacteria, and by counting them, it is possible to determine the number of bacteria. . In addition, in the present invention, in order to remove shot noise that occurs two-dimensionally and randomly, and to extract only live bacteria from photon images that are continuously generated from the same location due to a luminescent reaction, Repeat image integration at intervals to obtain multiple photon integrated images, disulfide each of these photon integrated images using the same method, perform a sequential AND operation between two temporally consecutive binary screens, and It is also possible to display the results of the calculations on one screen by superimposing them or by performing a logical sum operation, and then count high-intensity pixels or a set of pixels in the finally obtained image.
以下、本発明を実施例に基づき説明する。 Hereinafter, the present invention will be explained based on examples.
本発明の方法の第一段階は例えば微生物を含む一定量の
試料液体または気体を微生物が通過しない程度のフィル
ターで濾過した後、フィルター上に付着した最生物の纏
胞膜を試薬によってfJ M L、細胞内部の高エネル
ギー物質であるATPを抽出し、その後、速やかに螢抽
出のルシフェリン−ルシフェラーゼ混合溶液をフィルタ
ー上に静かに添加または含浸させ、次式に示すような生
物発光を起こさせることである。In the first step of the method of the present invention, for example, a certain amount of sample liquid or gas containing microorganisms is filtered through a filter that does not allow microorganisms to pass through. , ATP, which is a high-energy substance inside cells, is extracted, and then a luciferin-luciferase mixture solution extracted from fireflies is gently added or impregnated onto the filter to cause bioluminescence as shown in the following formula. be.
アデニルルシフェリン+0!−オキジルシフエリン十A
MP +CIJz +光但し、PPはビロリン酸、 A
MPはアデノシン−リン酸このとき、上記の発光反応は
ATPi1度の高い付着細胞を中心にその近傍で起こる
ために、フィルター上では付着細胞と一致した位置で発
光点が分散することになる。Adenylluciferin +0! -Oxydylsiferin 10A
MP + CIJz + light However, PP is birophosphoric acid, A
MP is adenosine-phosphate At this time, since the above luminescent reaction occurs mainly in the vicinity of adherent cells with a high ATPi degree of 1, luminescent points will be dispersed on the filter at positions that coincide with adherent cells.
本発明の方法の第二段階は、上述の発光過程を高感度カ
メラで二次元的に観測することである。The second step of the method of the present invention is to two-dimensionally observe the above-mentioned light emission process using a high-sensitivity camera.
細胞1個当たりの発光量は8ii+微弱であるため、こ
こ の
のカメラは超高感度を要する。 −g品実施例では、次
元光子計数管と呼ばれる超高感度イメージインテンシフ
ァイア−とCODビデオカメラを組み合わせて用いた。Since the amount of light emitted per cell is 8ii+ weak, the camera here needs to be extremely sensitive. In the -g product example, a combination of an ultra-high sensitivity image intensifier called a dimensional photon counter and a COD video camera was used.
このイメージインテンシファイア−はマルチチャンフル
プレー) (MCP)を2枚内内截しており、lO°〜
108光子/ f1259−の検出感度を持ち、数光子
しヘルの掻漱弱画像を通常のCCDカメラの感度でも十
分に映像化できる程度まで増幅することが可能である。This image intensifier has Multi-Champful Play (MCP) cut out within two pages, and is
It has a detection sensitivity of 108 photons/f1259-, and is capable of amplifying Hell's abrasive images by a few photons to the extent that they can be visualized sufficiently even with the sensitivity of a normal CCD camera.
したがって、上述の発光点はある特定の点がろの連続し
た光子として観測することができる。Therefore, the above-mentioned light-emitting point can be observed as a series of photons at a certain point.
本発明の方法の第三段階は、上記の細胞付着位置から発
する連続した光子を十分に小さいi!素隼位で時間的に
積分して画像化することである。これによって、穐々の
電気的なランダムノイズ(ショットノイズ)や試薬中に
含まれる螢光物質による背景光に対するSN比を向上さ
せることができる。積分時間は、上述の発光反応時間に
合わせればよく、1〜2分程度で十分である。The third step of the method of the present invention involves converting successive photons emanating from the above-mentioned cell attachment sites into sufficiently small i! The process is to integrate temporally and create an image at the falcon's position. This makes it possible to improve the S/N ratio with respect to electrical random noise (shot noise) and background light due to fluorescent substances contained in the reagent. The integration time may be adjusted to the above-mentioned luminescence reaction time, and approximately 1 to 2 minutes is sufficient.
最後に、得られた積分画像を二値化して細胞がら抽出し
たATPによる発光点を画像処理して計数すればよい。Finally, the obtained integral image may be binarized and the luminescent points due to ATP extracted from the cells may be counted through image processing.
次に本発明の方法が適用される装置とその動作について
述べる。第1図は本発明の方法が適用される装置の測定
部の構成を一部断面図で示じた模式図である。第1図に
おいて、測定部は基台l上に設置され、あらかじめ試料
液または気体を一定量濾過したフィルター2を載置した
試料ステージ3の内部に、2本の試薬注入路4が遣って
いるが。Next, the apparatus to which the method of the present invention is applied and its operation will be described. FIG. 1 is a schematic diagram showing, in partial cross-section, the configuration of a measuring section of an apparatus to which the method of the present invention is applied. In Fig. 1, the measurement unit is installed on a base l, and two reagent injection paths 4 are connected to the inside of a sample stage 3 on which a filter 2, which has previously filtered a certain amount of sample liquid or gas, is mounted. but.
試薬注入路4は第1図では1本のみ示しである。Only one reagent injection path 4 is shown in FIG.
これら試薬注入路4のうちの一つはATP抽出試薬用で
あり、他の一つは酸素−基質混合溶液用である。試料ス
テージ3には中心部に、試料ステージ3上部の洗浄のた
めの排水路5を通しである。One of these reagent injection paths 4 is for the ATP extraction reagent, and the other is for the oxygen-substrate mixed solution. A drainage channel 5 for cleaning the upper part of the sample stage 3 runs through the center of the sample stage 3.
フィルター2の上方に、フィルター2の方から見てフー
ド6、カメラレンズ7、接写リング8の順に設けた部分
を、測定中完全な暗状態にするために暗箱9で覆い、さ
らにその上方に、カメラレンズ7、接写リング8ととも
に二次元光子検出システムを構成する超高感度イメージ
インテンシファイア−10,リレーレンズ11およびC
CDカメラ12とを連結し、超高感度イメージインテン
シファイア−10に可動ステージ13を取り付け、可動
ステージ13は支柱14に画定される。カメラレンズ7
および接写リング8は超高感度イメージインテンシファ
イア−10の光電面15ヘフイルター2の面を所定の倍
率で結像させるものである。光電面15に到達した光子
は、超高感度イメージインテンシファイア−10の内部
で光電変換および電子増幅され、螢光面16で一定の輝
度を持った輝点として再生する。螢光面16での画像即
ちフィルター2上における光子の分布像は、リレーレン
ズ11によってCCDカメラ12の揚傷素子17へ伝達
され、映像信号として出力することができる。Above the filter 2, the hood 6, camera lens 7, and close-up ring 8 are placed in this order when viewed from the filter 2, and covered with a dark box 9 to keep it completely dark during measurement. Ultra-high sensitivity image intensifier 10, relay lens 11 and C, which together with camera lens 7 and close-up ring 8 constitute a two-dimensional photon detection system
A movable stage 13 is connected to the CD camera 12 and attached to the ultra-high sensitivity image intensifier 10, and the movable stage 13 is defined by a support 14. camera lens 7
A close-up ring 8 forms an image of the surface of the filter 2 onto the photocathode 15 of the ultra-high sensitivity image intensifier 10 at a predetermined magnification. The photons reaching the photocathode 15 are photoelectrically converted and electronically amplified inside the ultra-high-sensitivity image intensifier 10, and reproduced on the fluorescent surface 16 as a bright spot with constant brightness. The image on the fluorescent surface 16, that is, the photon distribution image on the filter 2, is transmitted by the relay lens 11 to the damage element 17 of the CCD camera 12, and can be output as a video signal.
第2図は本発明の生菌計数装置の電気系統の概要を表わ
すシステムブロック図である。第2図のように、この装
置は第1図に示した測定部長、測定部Uから出力される
映像信号を積分して記憶する古傷積分部19.超高感度
イメージインテンシファイア−10の感Iを!IN節す
る高圧電源部20およびこれら全体のコントロール、二
値化や発光点の抽出、計数など画像処理、結果の表示や
記録を行なうII III演夏出力部且かろ構成されて
いる。測定部18fJ−p出力された映像信号18A
はビデオカメラコントコーラ−22によってビデオ信号
に変換され、′N像積分圃路23に伝えられる。ここで
は、ビデオ信号の1[度信号をA/D変換し、ビデオフ
レームメモリ24に記憶させ、lii!i面づつ加算し
てメモリ内容を書き換える。あらかじめ設定された時間
の積分が終了すると、マイクロコンピュータ25はビデ
オフレームメモIJ24の積分画像データに対して、平
滑化2画像補正、二値化などの画像処理を施し、CRT
26上に表示する。さらに、マイクロ波コンピュータ2
5は、画像処理された二値画像について後述する基準で
発光点を計数し、プリンター27に出力させる。また、
キイボード28による操作で最終二値画像、計数結果を
外部記憶装置29によって記憶媒体に記録することがで
きる。FIG. 2 is a system block diagram showing an outline of the electrical system of the viable bacteria counting device of the present invention. As shown in FIG. 2, this device includes the measurement section shown in FIG. Ultra-high sensitivity image intensifier-10 sensations! It is comprised of a high-voltage power supply section 20 for the IN section, overall control of these, image processing such as binarization, extraction of light-emitting points, and counting, and a II/III output section for displaying and recording the results. Video signal 18A output from measuring section 18fJ-p
is converted into a video signal by the video camera controller 22 and transmitted to the 'N image integration field 23. Here, the 1 degree signal of the video signal is A/D converted, stored in the video frame memory 24, and lii! Add each i side and rewrite the memory contents. When the integration for the preset time is completed, the microcomputer 25 performs image processing such as smoothing two-image correction and binarization on the integrated image data of the video frame memo IJ24, and displays the integrated image data on the CRT.
26. Furthermore, the microwave computer 2
5 counts the light emitting points of the image-processed binary image based on the criteria described later, and causes the printer 27 to output the counted light-emitting points. Also,
By operating the keyboard 28, the final binary image and the counting results can be recorded on a storage medium by the external storage device 29.
次に、最終的に得られた二値画像から発光点を計数する
判断方法について述べる。メモリー内に格納され出力さ
れる画像の有効函素数は縦480x横512である。第
3図は二値画像の一部を拡大して示′−た模式図であり
、
正方形で囲まれた一つ一
つが′、画素に対りする。これらの中で斜線を施し1こ
部分の、!!ii素が高輝度部分である。本発明の装!
によn、よ、細胞1個当たりの発光点が占める画素数は
、このように数画素のばらつきがある。これは第1fA
に示した測定部の撮像光学系の解像層や、細胞からに浸
み出したATPの広がりの程度を反映するものである。Next, a determination method for counting light emitting points from the finally obtained binary image will be described. The effective function number of the image stored in the memory and output is 480 (vertical) x 512 (horizontal). FIG. 3 is a schematic diagram showing an enlarged part of a binary image, and each square surrounded by a square corresponds to a pixel. Of these, the one shaded part is! ! The element ii is a high brightness part. The outfit of the present invention!
In this way, the number of pixels occupied by a light emitting point per cell varies by several pixels. This is the 1st fA
This reflects the resolution layer of the imaging optical system of the measurement unit shown in 2 and the degree of spread of ATP seeped out from the cells.
そこで、本発明の装置を用いるとき、隣接した高輝度画
素の集合は、一つの発光点として判断することにする。Therefore, when using the device of the present invention, a set of adjacent high-intensity pixels is determined to be one light-emitting point.
以上、本発明の生菌計数装置を用いて一般細菌を測定し
た結果、10’〜10’までの範囲でコロニ計数法と良
好な相関が得られ、とくに菌数の低い試料については、
高い精度で測定することができる。As described above, as a result of measuring general bacteria using the viable bacteria counting device of the present invention, a good correlation with the colony counting method was obtained in the range of 10' to 10', especially for samples with low bacterial counts.
Can be measured with high accuracy.
ところで、この方法で検出器として用いている二次元光
子検出手段のノラ7)ノイズは、検出器を冷却した場合
でも確率的に画像として残り、計測誤差を生ずることが
ある。CCDカメラで捕らえる光子像には(11生菌か
ら出る光子121iiiii像充電面かろノイズとして
出る光子3(3)溶液から発する螢光から出る光子の3
壜類があり、これaのうち(1)のみを!!!測し、シ
ョットノイズの影響を低減して正確かつ高感度に生1数
を計測しなければならない。By the way, noise in the two-dimensional photon detection means used as a detector in this method may stochastically remain as an image even when the detector is cooled, and may cause measurement errors. The photon image captured by the CCD camera includes (11 photons emitted from living bacteria121iiiiii image)3 photons emitted from the charging surface as noise (3)3 photons emitted from the fluorescence emitted from the solution
There are bottles, and only (1) of this a! ! ! It is necessary to measure the raw number accurately and with high sensitivity by reducing the influence of shot noise.
そのために既に述べた本発明の方法の第三段階では、微
生物付着位置から発する連続じだ光子を、十分に小さな
画素単位で所定の時間間隔で繰り返し画像積分して複数
の光子積分画像を得、これらの光子積分画像をそれぞれ
同一の方法で二値化し、時間的に連続した二つの二値画
面間で逐次論理積演算を行ない、これらの演算結果の画
面を重ね合わせるかまたは論理和演算によって一つの画
面に表示し、最後に得られた画像で高輝度の画素または
その集合を計数することにより、付着微生物の数とする
ことができる。To this end, in the third step of the method of the present invention already described, continuous photons emitted from the microorganism adhesion position are image-integrated repeatedly at predetermined time intervals in sufficiently small pixel units to obtain a plurality of photon integral images. Binarize each of these photon integral images using the same method, perform a logical product operation between two temporally consecutive binary images, and combine the results of these calculations by superimposing them or combining them by a logical sum operation. The number of attached microorganisms can be determined by displaying the image on one screen and counting the high-intensity pixels or aggregations thereof in the final image obtained.
第4図は二値画面から付着微生物のみを抽出する過程を
示した模式図である。第4図における大きな円がそれぞ
れ二値画面を表わし、OI〜0.はそれぞれ時刻o ”
”’tl+ t、〜F+ 5〜L3+ j3〜t4およ
びt4〜【、の闇で積分された画像を二値化した光子積
分二値画像であり、A、〜A#は0.〜OSを逐次zi
ii面づつ論理積演算した逐次論理積画像である。また
SはA1−A4を論理和で一つの画面に積算した論理和
画像である。各画面中に示したC印とこ印は、それぞれ
発光反応による光子像とシッノトノイズ像であり、一部
にa = iの記号を付しである。ショットノイズは二
次元的にランダムかつ単発的に発生するため、積分間隔
を短くすれば二つの画面において同一位置に輝点がくる
確率は著しく低い。FIG. 4 is a schematic diagram showing the process of extracting only attached microorganisms from a binary screen. The large circles in FIG. 4 each represent a binary screen, with OI to 0. are the respective times o”
``'tl+ t, ~F+ 5~L3+ j3~t4 and t4~[, is a photon integrated binary image obtained by binarizing the image integrated in the darkness, A, ~A# are 0.~OS sequentially zi
This is a sequential AND image obtained by performing an AND operation on each side. Further, S is a logical sum image in which A1-A4 are logically summed on one screen. The C mark and the mark shown in each screen are a photon image and a synotonoid image due to a luminescent reaction, respectively, and a symbol a=i is attached to some of them. Since shot noise occurs two-dimensionally randomly and sporadically, if the integration interval is shortened, the probability that a bright spot will appear at the same position on two screens is extremely low.
一方発光反応による同一場所からのある時間(反応時間
)継続して発生し微生物や細胞の付着位置に対応する光
子像は、積分時間を少なくとも発光反応時間以下にする
ことにより、2画面以上に亘って同一場所に輝点を持つ
ことになる0例えば画面01におけるショットノイズ像
a、dと画面0□におけるショットノイズ像f、jは異
なる位置にあり、発光反応による光子像す、cとg、h
は同一場所となる。したがって、これら二つの画面の論
理積をとれば、同一場所の点像b (またはg)と点像
C(またはh)以外は除去される二とにする。On the other hand, photon images generated continuously from the same place for a certain period of time (reaction time) due to a luminescence reaction and corresponding to the attachment position of microorganisms or cells can be generated over two or more screens by keeping the integration time at least equal to or less than the luminescence reaction time. For example, shot noise images a, d on screen 01 and shot noise images f, j on screen 0□ are at different positions, and photon images c, g, h
will be at the same location. Therefore, if these two images are logically multiplied, all other than point image b (or g) and point image C (or h) at the same location will be removed.
このように、本発明の生菌計数装置と計数方、去は、そ
の利用によって数分という短時間のうちに簡便な操作で
正確に生菌を計数することができるから、食品、醸造、
薬品および半導体などの各分野において、品質管理や環
境管理などの面で大きく貢献するものである。As described above, the viable bacteria counting device, counting method, and counting method of the present invention can be used to accurately count viable bacteria in a short period of just a few minutes with a simple operation, and can be used in foods, brewing, etc.
It will greatly contribute to quality control and environmental management in fields such as pharmaceuticals and semiconductors.
〔発明の効果〕
本発明によれば実施例で述べたように、あらがしめ一定
量の試料液体または気体を濾過して生菌を付着させたフ
ィルターに、細胞膜を溶解する試薬およびATPの存在
下で発光する酵素と基質の混合溶液を含浸させ、生菌由
来のATPと酵素基質による発光反応を生菌の付着位置
で起こさせ、発生する光子を二次元的に検出して、生菌
の存在を二次元的な光子分布として観測するために、細
胞の種類や状S(活性)の相違による細胞1個当たりの
ATP量のばらつきに影響されない生菌数の計数が可能
となた。[Effects of the Invention] According to the present invention, as described in the Examples, the presence of a reagent for dissolving cell membranes and ATP in a filter to which live bacteria are attached after filtering a certain amount of sample liquid or gas. A mixed solution of an enzyme and a substrate that emits light is impregnated in the bottom, and a luminescent reaction between ATP derived from the living bacteria and the enzyme substrate occurs at the attachment position of the living bacteria, and the photons generated are detected two-dimensionally to detect the presence of the living bacteria. Since the presence of bacteria is observed as a two-dimensional photon distribution, it is now possible to count the number of viable bacteria without being affected by variations in the amount of ATP per cell due to differences in cell type and shape S (activity).
生菌由来のATP発光は、ある時間継続的であつ乃)つ
同一場所で起こる一方、試薬中の螢光勧賞による背景光
や高!度のカメラのノイズは位I的シこランダムであり
、所定時間画素単位で光子数を積分する二とによって、
従来のフォトンカウント用光電子倍増管を用いたATP
測定法に比べてSN比を向上させることができる。また
は生菌付着位置から発する連続した光子を、十分に小さ
な画素単位で所定の時間間隔で繰り返し画像積分して複
数の光子積分画像を得、これらの光子積分画像をそれぞ
れ同一の方法で二値化し、時間的に連続した二つの二値
画面間で逐次論理積演算を行ない、これらの演算結果の
西面を重ね合わせるがまたは論理和演算により−っの画
面に表示し、最後に得られた画像で高輝度の画素または
その集合を計数して付着微生物の数とすることによって
SN比を格段に向上させることもできる。ATP luminescence derived from living bacteria occurs continuously for a certain period of time and at the same location, while background light due to fluorescent light in the reagent and high temperature. The noise of the camera is extremely random, and by integrating the number of photons for each pixel over a given period of time,
ATP using conventional photomultiplier for photon counting
The SN ratio can be improved compared to the measurement method. Alternatively, continuous photons emitted from the viable bacteria adhesion position are repeatedly image-integrated at predetermined time intervals in sufficiently small pixel units to obtain multiple photon-integrated images, and each of these photon-integrated images is binarized using the same method. , performs a sequential AND operation between two temporally consecutive binary screens, overlaps the west side of these operation results, or displays it on a second screen by a logical OR operation, and the final image obtained is By counting high-intensity pixels or aggregations thereof to determine the number of attached microorganisms, the S/N ratio can be significantly improved.
以上のように、本発明では光子レベルの高感度な検出を
行なうことにより、数個レベルの生国を増殖させること
なく検出することが可能である。As described above, in the present invention, by performing highly sensitive detection at the photon level, it is possible to detect several native countries without multiplying them.
即ち、従来数個レベルの生菌数を測定するには、コロニ
ー計数法で少なくとも24時間以上の培養時間を必要と
したが、本発明によればコロニーを形成させないままで
、数個レベルの生菌数を数分のうちに計測することがで
きるので、食品1m造、薬品および半導体などの各分野
において、品質管理や環境管理などの面で大きく貢献す
るものである。In other words, in order to measure the number of viable bacteria at the level of a few cells, conventionally, the colony counting method required at least 24 hours of culture time, but according to the present invention, the number of viable bacteria at the level of a few cells can be measured without forming colonies. Since the number of bacteria can be measured within a few minutes, it will greatly contribute to quality control and environmental control in various fields such as food production, pharmaceuticals, and semiconductors.
第1図は本発明の生国計数装置の測定部を一部断面で示
した模式図、第2図は本発明の生菌計数装置の電気系統
を示すシステムブロック図、第3図は本発明の方法にお
ける二値画像の一部を拡大した模式図、第4図は本発明
の方法における二値画面から付着微生物のみを抽出する
過程を示した模式図である。
1:基台、2:フィルター、3:試料ステージ、4:試
薬注入路、5:排水路、6:フード、7:カメラレンズ
、8:接写リング、9:暗箱、10・超高悪道イメージ
インテンシファイア−111:リレーレンズ、12:C
CDカメラ、13:可動ステージ、14:支柱、15:
光電面、16:螢光!、17:邊像素子、U、測定部、
18A :映像信号、朦:画像積分部、20:高圧電
源部、21.制J演夏出力部、22:ビデオカメラコン
トローラー、23;画像積分回路、24.ビデオフレー
ムメモリ、25:マイクロコンピュータ、26: CR
T、27:プリンター2日:キイボード、29:外部記
憶装置。
代理、′、斤埋士 山 口 巖
スFig. 1 is a schematic diagram showing a partial cross-section of the measuring section of the country of origin counting device of the present invention, Fig. 2 is a system block diagram showing the electrical system of the viable bacteria counting device of the present invention, and Fig. 3 is a schematic diagram showing the measuring section of the country of origin counting device of the present invention. FIG. 4 is a schematic diagram showing a partially enlarged binary image in the method of the present invention, and FIG. 4 is a schematic diagram showing the process of extracting only attached microorganisms from the binary screen in the method of the present invention. 1: Base, 2: Filter, 3: Sample stage, 4: Reagent injection channel, 5: Drain channel, 6: Hood, 7: Camera lens, 8: Close-up ring, 9: Dark box, 10. Super high road image in Tensifier-111: Relay lens, 12:C
CD camera, 13: Movable stage, 14: Support, 15:
Photocathode, 16: Fluorescence! , 17: side image element, U, measurement section,
18A: video signal, frame: image integration section, 20: high voltage power supply section, 21. 22: Video camera controller, 23; Image integration circuit, 24. Video frame memory, 25: Microcomputer, 26: CR
T, 27: Printer 2nd: Keyboard, 29: External storage device. Deputy, ′, Iwasu Yamaguchi
Claims (1)
生菌を付着させたフィルターに、細胞膜を溶解する試薬
およびアデノシン三リン酸(ATP)の存在下で発光す
る酵素および基質の混合溶液を含浸させ、生菌の付着位
置において生菌由来のATPと前記酵素−基質による発
光反応を起こさせ、前記フィルターの生菌付着面におけ
る光子の分布像を二次元光子検出手段を用いて電気的映
像信号に変換し、この映像信号を所定の時間画像積分し
て得られた画像で輝度の高い画素またはその集合を計数
して付着生菌の数とすることを特徴とする生菌計数方法
。 2)請求項1)記載の映像信号をあらかじめ設定した所
定の時間間隔で繰り返し画像積分して得た複数の光子積
分画像をそれぞれ同一の方法で二値化し、時間的に連続
した二つ以上の二値画面間で順次一画面づつ移動しなが
ら論理積演算を行ない、これらの演算結果の画面の重ね
合わせもしくは論理和演算により一つの画面に表示し、
最後に得られた画像で輝度の高い画素またはその集合を
計数して付着生菌の数とすることを特徴とする生菌計数
方法。 3)a、あらかじめ一定量の試料液体または気体を濾過
して生菌を付着させたフィルター、 b、このフィルターを所定の位置に保持し細胞膜を溶解
する試薬およびアデノシン三リン酸(ATP)の存在下
で発光する酵素および基質の混合溶液を前記フィルター
に含浸させる試薬注入手段、c、前記フィルターの生菌
付着面の少なくとも一部を結像させる結像光学手段、 d、この結像光学手段により得られた光子の分布像を二
次元的に高感度に増幅する二次元光子検出手段と、この
二次元光子検出手段から出力される光子の二次元分布像
を電気的映像信号に変換する撮像手段、 e、この撮像手段から出力される映像信号を所定の時間
積分する画像積分回路、 f、この回路から得られた積分画像データを演算処理し
て高輝度画素またはその集合を抽出して計数する画像処
理回路、 g、抽出画像と計数結果を表示する出力手段、を備えた
ことを特徴とする生菌計数装置。[Scope of Claims] 1) A reagent for dissolving cell membranes and an enzyme that emits light in the presence of adenosine triphosphate (ATP) and A mixed solution of the substrate is impregnated to cause a luminescent reaction between ATP derived from the viable bacteria and the enzyme-substrate to occur at the position where the viable bacteria adhere, and a two-dimensional photon detection means is used to detect the photon distribution image on the surface of the filter to which the viable bacteria is attached. The method is characterized in that the video signal is integrated into an electrical video signal for a predetermined period of time, and high-luminance pixels or aggregations thereof are counted to determine the number of attached viable bacteria. Bacteria counting method. 2) A plurality of photon integral images obtained by repeatedly integrating the video signal according to claim 1 at a predetermined time interval are binarized using the same method, and two or more temporally consecutive images are obtained. Performs a logical product operation while sequentially moving one screen at a time between binary screens, and displays the results of these calculations on one screen by superimposing the screens or performing a logical sum operation,
A viable bacteria counting method characterized by counting pixels or groups of pixels with high brightness in the last obtained image to determine the number of adherent viable bacteria. 3) a. A filter that has previously filtered a certain amount of sample liquid or gas and has viable bacteria attached to it; b. The presence of a reagent and adenosine triphosphate (ATP) that holds this filter in place and dissolves cell membranes. a reagent injection means for impregnating the filter with a mixed solution of an enzyme and a substrate that emit light at the bottom; c. an imaging optical means for forming an image of at least a part of the viable bacteria adhesion surface of the filter; d. by the imaging optical means; A two-dimensional photon detection means that two-dimensionally amplifies the obtained photon distribution image with high sensitivity, and an imaging means that converts the two-dimensional photon distribution image output from the two-dimensional photon detection means into an electrical video signal. , e. An image integration circuit that integrates the video signal output from this imaging means for a predetermined time; f. Processes the integral image data obtained from this circuit to extract and count high-luminance pixels or a set thereof. A viable bacteria counting device comprising: an image processing circuit; g; output means for displaying an extracted image and counting results;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13757390A JPH0430798A (en) | 1990-05-28 | 1990-05-28 | Counting of viable microorganism and device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13757390A JPH0430798A (en) | 1990-05-28 | 1990-05-28 | Counting of viable microorganism and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0430798A true JPH0430798A (en) | 1992-02-03 |
Family
ID=15201880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13757390A Pending JPH0430798A (en) | 1990-05-28 | 1990-05-28 | Counting of viable microorganism and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0430798A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612850A2 (en) * | 1993-02-10 | 1994-08-31 | Nihon Millipore Kabushiki Kaisha | Method of determining a viable count using a hydrophobic membrane filter |
EP0974827A2 (en) * | 1998-07-09 | 2000-01-26 | Sapporo Breweries Ltd. | Sample preparation apparatus including spray apparatus |
EP1067199A1 (en) * | 1998-12-28 | 2001-01-10 | Sapporo Breweries Ltd. | Method of counting microorganisms and device for accomplishing the counting |
JP2003513292A (en) * | 1999-11-03 | 2003-04-08 | アメルシャム・バイオサイエンシーズ・アクチボラグ | Method for analyzing a cell sample by creating and analyzing a composite image |
JP2007228967A (en) * | 2006-02-24 | 2007-09-13 | Millipore Corp | High speed microbiological analyzer and method |
JP2009017852A (en) * | 2007-07-13 | 2009-01-29 | Hitachi Plant Technologies Ltd | Microorganism-measuring system |
WO2011099862A1 (en) * | 2010-02-12 | 2011-08-18 | Dutch Water Technologies B.V. | Automatic toxicological fluid sample preparation module, automatic analysis system and method for use thereof |
WO2011132480A1 (en) | 2010-04-19 | 2011-10-27 | Jnc株式会社 | Tetrazolium compound for detecting microorganisms, reagent for detecting microorganisms and method for detecting microorganisms |
JP5822054B1 (en) * | 2013-12-18 | 2015-11-24 | コニカミノルタ株式会社 | Image processing apparatus, pathological diagnosis support system, image processing program, and image processing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59113899A (en) * | 1982-07-21 | 1984-06-30 | パッカ−ド・インストメント・カンパニ−・インコ−ポレイテッド | Measurement of concentration of single cell organism |
JPH0251063A (en) * | 1988-08-12 | 1990-02-21 | Hamamatsu Photonics Kk | Detection of specific antigen or fine object having the same |
-
1990
- 1990-05-28 JP JP13757390A patent/JPH0430798A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59113899A (en) * | 1982-07-21 | 1984-06-30 | パッカ−ド・インストメント・カンパニ−・インコ−ポレイテッド | Measurement of concentration of single cell organism |
JPH0251063A (en) * | 1988-08-12 | 1990-02-21 | Hamamatsu Photonics Kk | Detection of specific antigen or fine object having the same |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612850A3 (en) * | 1993-02-10 | 1995-06-28 | Nihon Millipore Kogyo Kk | Method of determining a viable count using a hydrophobic membrane filter. |
US5766868A (en) * | 1993-02-10 | 1998-06-16 | Millipore Corporation | Method of determining a viable count using a hydrophobic membrane |
EP0612850A2 (en) * | 1993-02-10 | 1994-08-31 | Nihon Millipore Kabushiki Kaisha | Method of determining a viable count using a hydrophobic membrane filter |
EP0974827A3 (en) * | 1998-07-09 | 2002-10-02 | Sapporo Breweries Ltd. | Sample preparation apparatus including spray apparatus |
EP0974827A2 (en) * | 1998-07-09 | 2000-01-26 | Sapporo Breweries Ltd. | Sample preparation apparatus including spray apparatus |
US6312943B1 (en) | 1998-07-09 | 2001-11-06 | Sapporo Breweries Ltd. | Sample preparation apparatus and spray apparatus for sample preparation |
EP1067199A4 (en) * | 1998-12-28 | 2006-09-27 | Sapporo Breweries | Method of counting microorganisms and device for accomplishing the counting |
EP1067199A1 (en) * | 1998-12-28 | 2001-01-10 | Sapporo Breweries Ltd. | Method of counting microorganisms and device for accomplishing the counting |
JP2003513292A (en) * | 1999-11-03 | 2003-04-08 | アメルシャム・バイオサイエンシーズ・アクチボラグ | Method for analyzing a cell sample by creating and analyzing a composite image |
JP2013033052A (en) * | 1999-11-03 | 2013-02-14 | Ge Healthcare Biosciences Ab | Method of analyzing cell samples, by creating and analyzing composite image |
JP2007228967A (en) * | 2006-02-24 | 2007-09-13 | Millipore Corp | High speed microbiological analyzer and method |
JP2009017852A (en) * | 2007-07-13 | 2009-01-29 | Hitachi Plant Technologies Ltd | Microorganism-measuring system |
WO2011099862A1 (en) * | 2010-02-12 | 2011-08-18 | Dutch Water Technologies B.V. | Automatic toxicological fluid sample preparation module, automatic analysis system and method for use thereof |
US20130059327A1 (en) * | 2010-02-12 | 2013-03-07 | Dutch Water Technologies B.V. | Automatic Toxicological Fluid Sample Preparation Module, Automatic Analysis System and Method for Use Thereof |
WO2011132480A1 (en) | 2010-04-19 | 2011-10-27 | Jnc株式会社 | Tetrazolium compound for detecting microorganisms, reagent for detecting microorganisms and method for detecting microorganisms |
US11022556B2 (en) | 2010-04-19 | 2021-06-01 | Jnc Corporation | Tetrazolium compound for detecting microorganisms, reagent for detecting microorganisms and method for detecting microorganisms |
JP5822054B1 (en) * | 2013-12-18 | 2015-11-24 | コニカミノルタ株式会社 | Image processing apparatus, pathological diagnosis support system, image processing program, and image processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU714874B2 (en) | Method and apparatus for detecting microorganisms | |
US5340747A (en) | Diagnostic microbiological testing apparatus and method | |
CA1296081C (en) | Method for detection of the presence of undesired microorganisms | |
JP4860822B2 (en) | Apparatus and method for susceptibility testing of microorganisms | |
US6263095B1 (en) | Imaging method and apparatus | |
US6385272B1 (en) | Method of counting microorganisms and device for accomplishing the counting | |
WO2006120924A1 (en) | Cell observation apparatus, method of cell observation and cell observation program | |
JP6550076B2 (en) | Method and sterility test apparatus for detecting microcolonies growing on a sample membrane or agarose medium | |
JPH0430798A (en) | Counting of viable microorganism and device therefor | |
AU706915B2 (en) | Multiple sample container | |
WO2016175626A1 (en) | Method for detecting, identifying, or counting microorganisms, and system using same | |
JP2008187935A (en) | Microorganism counter and chip for inspection | |
JP2008187935A5 (en) | ||
US9436866B2 (en) | High sensitivity flat panel microbiology detection and enumeration system | |
JP4590902B2 (en) | Filamentous fungus measurement method | |
JP2017169455A (en) | Method of detecting signal from bacteria in food using culture combined in situ hybridization method | |
JPH02500613A (en) | High sensitivity optical imager | |
JP2000270840A (en) | Colony counting system and usage thereof | |
JP3029760B2 (en) | Bacterial test equipment and test method | |
JP6692075B2 (en) | Microorganism detection device, microorganism detection program, and microorganism detection method | |
CN105717080A (en) | Detection method for upconversion fluorescence test strips | |
WO2007029821A1 (en) | Apparatus for counting the number of microorganisms | |
Hooper et al. | Quantitative luminescence imaging in the biosciences using the CCD camera: analysis of macro and micro samples | |
JPH0649195B2 (en) | Microorganism detection device | |
DE19930607C2 (en) | Method for obtaining data which provide information about the kinetics of the reactions of reactants in a large number of samples and device for carrying out the method |