JPH04306500A - Highly maneouverable missile - Google Patents

Highly maneouverable missile

Info

Publication number
JPH04306500A
JPH04306500A JP6846591A JP6846591A JPH04306500A JP H04306500 A JPH04306500 A JP H04306500A JP 6846591 A JP6846591 A JP 6846591A JP 6846591 A JP6846591 A JP 6846591A JP H04306500 A JPH04306500 A JP H04306500A
Authority
JP
Japan
Prior art keywords
propulsive
steering
combustion
auxiliary
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6846591A
Other languages
Japanese (ja)
Inventor
Hideyuki Matsuoka
秀幸 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6846591A priority Critical patent/JPH04306500A/en
Publication of JPH04306500A publication Critical patent/JPH04306500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly maneuverable missile capable of generating a high maneuvering acceleration even upon flying with a low speed by deviating a propulsive force without any loss of the propulsive force by a method wherein the steering wings of the missile are provided with auxiliary propulsive devices or auxiliary propulsive nozzles to steer the steering wings in the same manner as aeronautical steering under the combustion of a main propulsive device. CONSTITUTION:The title missile is provided with auxiliary propulsive devices 3 on steering wings 2 and auxiliary propulsive nozzles 13 on steering wings 12 as well as an auto-pilot switching device 5, switching auto-pilot operating devices 7, 8 effecting the control of propulsive charge 9 during the combustion and after the combustion of the propulsive charge 9, whereby necessary maneuvering acceleration, given by a target detecting device 4, can be obtained by propulsive force deviating method during the combustion of propulsive charge and by aeronautical method after the combustion of the same charge. In this case, a control system is required to provide the steering wings with a steering command only same as the control system so far and, therefore, any special actuator for deviating the propulsive force like as so far is not necessitated and the loss of a thrust after deviating the propulsive force can be eliminated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は推進力偏向方式により
高旋回運動する飛しょう体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flying object that performs high turning motion using a propulsion deflection method.

【0002】0002

【従来の技術】図5(a)は推進力偏向方式により旋回
する飛しょう体の飛しょう軌跡の概要であり、図中14
は飛しょう体、15は偏向後の推力のベクトル方向、1
6は機軸に対して垂直方向の推力のベクトル方向、17
は速度ベクトル方向、18は飛しょう軌跡である。図5
(b)は推進力偏向方式と空力操舵方式による旋回時の
飛しょう軌跡の比較であり、図中19は推進力偏向方式
の場合、20は空力操舵方式の場合の飛しょう軌跡をそ
れぞれ示したものである。また、図6は従来の推進力偏
向方式の代表例を示したものであり、図中9は推進薬、
10はノズル、21は燃焼ガスを偏向させるベーン、2
2はベーンを駆動させるアクチュエータ、25は推進力
偏向方式のオートパイロット装置である。
[Prior Art] Figure 5(a) shows an outline of the flight trajectory of a flying object that turns using the propulsion deflection method.
is the projectile, 15 is the thrust vector direction after deflection, 1
6 is the thrust vector direction perpendicular to the machine axis, 17
is the velocity vector direction, and 18 is the flight trajectory. Figure 5
(b) is a comparison of flight trajectories when turning with the propulsion deflection method and the aerodynamic steering method, and in the figure, 19 shows the flight trajectory in the case of the propulsion deflection method and 20 shows the flight trajectory in the case of the aerodynamic steering method. It is something. In addition, FIG. 6 shows a typical example of the conventional propulsion deflection system, and 9 in the figure shows the propellant,
10 is a nozzle, 21 is a vane that deflects combustion gas, 2
2 is an actuator that drives the vane, and 25 is a propulsive force deflection type autopilot device.

【0003】次に従来の装置の動作について説明する。 ベーン21により燃焼ガスを偏向させ、推力ベクトル1
6を発生させることにより、飛しょうにモーメントを発
生させる。このモーメントにより飛しょう体が回転し、
推力のベクトル方向15が所要の旋回方向に向けられる
ことによって18で示すような旋回運動を行なわせる。 図7は飛しょう時の動圧(Q)と発生する旋回加速度(
g)の関係を示したもので、図中23は推進力偏向方式
の場合、24は空力操舵方式の場合である。このように
空力操舵方式の場合は飛しょう中の動圧に旋回加速度が
依存する一方で推進力偏向方式では発生する旋回加速度
が飛しょう中の動圧に依存しないため、低速時や高空飛
しょう時の場合には19及び20で説明した様に推進力
偏向方式の方が空力操舵方式よりもれた旋回性能優を有
している。しかし従来の推進力偏向方式の飛しょう体で
は図6で示した様な装置が必要となり、このような方式
では耐熱性のあるベーンの開発リスク、推力総推力の損
失、また偏向のオートパイロットと空力操舵のオートパ
イロットが2つ存在するために全体の制御系が複雑にな
るなどの問題点がある。
Next, the operation of the conventional device will be explained. The combustion gas is deflected by the vane 21, and the thrust vector 1
By generating 6, a moment is generated in the flight. This moment causes the projectile to rotate,
By directing the thrust vector direction 15 in a desired turning direction, a turning movement as shown at 18 is performed. Figure 7 shows the dynamic pressure (Q) during flight and the turning acceleration (
g), in which 23 indicates the case of the propulsion deflection system, and 24 indicates the case of the aerodynamic steering system. In this way, in the case of the aerodynamic steering method, the turning acceleration depends on the dynamic pressure during flight, while with the propulsion deflection method, the turning acceleration generated does not depend on the dynamic pressure during flight. In this case, as explained in 19 and 20, the propulsion deflection system has better turning performance than the aerodynamic steering system. However, conventional propulsion deflection type aircraft require a device like the one shown in Figure 6, and with this type of system, there is a risk of developing heat-resistant vanes, loss of total thrust, and problems with the deflection autopilot. There are problems such as the presence of two aerodynamic steering autopilots, which makes the overall control system complex.

【0004】0004

【発明が解決しようとする課題】従来の推進力偏向方式
では空力操舵用の操舵装置やオートパイロット装置等と
は別に燃焼ガスを偏向させるための装置が必要であり、
このような装置を用いる場合にはベーンの開発リスクや
推進力の損失、さらに2種類のオートパイロットが存在
することによる制御系の複雑化などの問題点があった。
[Problems to be Solved by the Invention] Conventional propulsion force deflection systems require a device for deflecting combustion gas in addition to a steering device for aerodynamic steering, an autopilot device, etc.
When using such a device, there were problems such as the risk of vane development, loss of propulsion, and the complexity of the control system due to the presence of two types of autopilots.

【0005】この発明は上記の問題点を解決するために
、燃焼ガス偏向装置等を用いず、推進力偏向のオートパ
イロットも空力操舵のオートパイロットと共用にするこ
とにより推進力偏向方式による高旋回飛しょうを実現す
ることを目的とする。
[0005] In order to solve the above problems, the present invention does not use a combustion gas deflection device or the like and uses the propulsion deflection autopilot in common with the aerodynamic steering autopilot, thereby achieving a high turning angle using the propulsion deflection method. The purpose is to realize flight.

【0006】[0006]

【課題を解決するための手段】この発明に係る高旋回飛
しょう体は操舵翼に装着した推進力を偏向させるための
補助推進装置と、この補助推進装置の燃焼前と燃焼後で
オートパイロットゲインを切り換える切り換え装置とを
具備したものである。
[Means for Solving the Problems] A high turning flying vehicle according to the present invention includes an auxiliary propulsion device for deflecting propulsive force attached to a steering wing, and an autopilot gain before and after combustion of this auxiliary propulsion device. The device is equipped with a switching device for switching.

【0007】またこの発明の別の発明に係る高旋回飛し
ょう体は操舵翼に装着した推進力を偏向させるための補
助推進用ノズルと、主推進装置の燃焼ガスを補助推進用
ノズルの分配する分配装置と、主推進装置が燃焼前と燃
焼後でオートパイロットゲインを切り換える切り換え装
置とを具備したものである。
[0007] A high-turning flying vehicle according to another aspect of the present invention includes an auxiliary propulsion nozzle attached to a steering wing for deflecting the propulsive force, and a main propulsion device that distributes combustion gas to the auxiliary propulsion nozzle. The main propulsion device includes a distribution device and a switching device that switches the autopilot gain before and after the main propulsion device burns.

【0008】[0008]

【作用】この発明における高旋回飛しょう体は、操舵翼
に設けられた補助推進装置及び補助推進ノズルと燃焼ガ
スの燃焼前と燃焼後でオートパイロットゲインを切り換
える切り換え装置を設けた制御系により、操舵翼を操舵
することにより燃焼ガスが燃焼中は推進力偏向方式、燃
焼後は空力操舵による高旋回飛しょうを1組の操舵装置
とオートパイロットの作動により可能にすることができ
る。
[Operation] The high-turning flying vehicle of the present invention has a control system that includes an auxiliary propulsion device and an auxiliary propulsion nozzle provided on the steering blade, and a switching device that switches the autopilot gain before and after combustion of combustion gas. By steering the steering blades, a set of steering devices and an autopilot can enable a high turning flight using a propulsion deflection method while the combustion gas is being combusted and aerodynamic steering after combustion.

【0009】[0009]

【実施例】以下、この発明の一実施例を図について説明
する。図1は補助推進装置を操舵翼に装着した例を示し
たもので飛しょう体1の操舵翼2に補助推進装置3が装
着される。図2はオートパイロット切り換え装置の構成
を示したもので、4は目標位置検出装置、5はオートパ
イロット切り換え装置、6は補助推進装置又は補助推進
ノズルにおける推力計算装置、7は燃焼ガス燃焼時のオ
ートパイロット計算装置、8は燃焼ガス燃焼後のオート
パイロット計算装置、そして27は出力される舵角コマ
ンドである。さらに図3は操舵翼に補助推進ノズルを装
着した例を示したものである。図中、9は推進薬、10
は主推進装置のノズル、11は操舵翼を駆動するアクチ
ュエータ、12は操舵翼、13は補助推進ノズル、26
は主推進装置の燃焼ガスを分配する分配装置である。ま
た図4は推力の大きさと時間の関係の一例を示したもの
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an example in which an auxiliary propulsion device is attached to a steering wing, and an auxiliary propulsion device 3 is attached to a steering wing 2 of a flying object 1. Figure 2 shows the configuration of the autopilot switching device, where 4 is a target position detection device, 5 is an autopilot switching device, 6 is a thrust calculation device in the auxiliary propulsion device or the auxiliary propulsion nozzle, and 7 is when combustion gas is combusted. An autopilot calculation device, 8 is an autopilot calculation device after the combustion gas is combusted, and 27 is a steering angle command to be output. Furthermore, FIG. 3 shows an example in which an auxiliary propulsion nozzle is attached to the steering blade. In the figure, 9 is the propellant, 10
is a nozzle of the main propulsion device, 11 is an actuator that drives a steering blade, 12 is a steering blade, 13 is an auxiliary propulsion nozzle, 26
is a distribution device that distributes the combustion gas of the main propulsion device. Further, FIG. 4 shows an example of the relationship between the magnitude of thrust and time.

【0010】次に実施例の動作を説明する。目標検出装
置4によって検出された目標位置より操舵指令を計算す
る過程において、オートパイロット切り換え装置5は補
助推進装置3又は飛しょう体の機軸方向に生じる加速度
から主推進装置が燃焼中であるか否かを判定、つまり推
進力偏向方式で旋回するか空力操舵方式で旋回するかを
決定する。燃焼ガスが燃焼時には推力計算装置6で予め
メモリされている図4に示す様な推力と時間の関係と燃
焼開始からの時間を基に推力の大きさを推定計算する。 ここで計算された値をもとにオートパイロット計算装置
7では、時々刻々の推力を偏向することで発生するモー
メントを計算し一般的な制御ループにより、推力の偏向
角すなわち最適な操舵角を算出し、舵角コマンド27を
出力する。また、燃焼ガス燃焼後は5で空力操舵方式が
選択され、オートパイロット計算装置8で操舵翼に揚力
によって発生するモーメントを計算し、燃焼中と同様に
従来の一般的な制御ループで最適な操舵量を算出し、舵
角コマンド27を出力する。
Next, the operation of the embodiment will be explained. In the process of calculating a steering command from the target position detected by the target detection device 4, the autopilot switching device 5 determines whether the main propulsion device is in combustion based on the acceleration generated in the axial direction of the auxiliary propulsion device 3 or the aircraft. In other words, it is determined whether to turn using the propulsion deflection method or the aerodynamic steering method. When the combustion gas is combusted, the magnitude of the thrust is estimated and calculated based on the relationship between thrust and time as shown in FIG. 4, which is stored in advance in the thrust calculation device 6, and the time from the start of combustion. Based on the values calculated here, the autopilot calculation device 7 calculates the moment generated by momentarily deflecting the thrust, and uses a general control loop to calculate the thrust deflection angle, that is, the optimal steering angle. and outputs a steering angle command 27. In addition, after the combustion gas is combusted, the aerodynamic steering method is selected in step 5, and the autopilot calculation device 8 calculates the moment generated by the lift force on the steering blade, and the optimal steering is performed using the conventional general control loop as during combustion. The amount is calculated and a steering angle command 27 is output.

【0011】以上の推力偏向の際は補助推進装置2ある
いは主推進装置のノズル10後方の設けられた推力分配
装置26を介して操舵翼に設けられた補助推進ノズル1
3が舵角コマンドと連動して回転するため、操舵翼の操
舵により推力の損失もなく従来の方式に比べ、大きな推
進力の偏向が可能である。
In the case of the above thrust deflection, the auxiliary propulsion nozzle 1 provided on the steering blade is transmitted through the thrust distribution device 26 provided behind the nozzle 10 of the auxiliary propulsion device 2 or the main propulsion device.
3 rotates in conjunction with the rudder angle command, it is possible to deflect the propulsive force to a greater extent than in conventional systems without loss of thrust by steering the steering blades.

【0012】0012

【発明の効果】以上の様にこの発明によれば、従来のよ
うな複雑な推力偏向装置を使用することなく、操舵装置
の操舵装置及びオートパイロット制御系を最大限に共用
することにより、空力操舵方式と同様に操舵翼を操舵す
るだけで推進力偏向方式による高旋回を効率良く行うこ
とができる効果がある。
As described above, according to the present invention, aerodynamics can be improved by maximally sharing the steering device and autopilot control system of the steering device without using a complicated thrust deflection device as in the past. Similar to the steering system, it is possible to efficiently perform high turns using the propulsion deflection system simply by steering the control blades.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の飛しょう体の操舵翼に補助推進装置
を装着した例を示す図である。
FIG. 1 is a diagram showing an example in which an auxiliary propulsion device is attached to a steering wing of a flying object according to the present invention.

【図2】この発明のオートパイロット切り換え装置の概
要図である。
FIG. 2 is a schematic diagram of an autopilot switching device of the present invention.

【図3】この発明の主推進装置ノズル後方に設けた推力
分配装置及び操舵翼に設けた補助推進ノズルの概要図で
ある。
FIG. 3 is a schematic diagram of a thrust distribution device provided behind a main propulsion device nozzle and an auxiliary propulsion nozzle provided on a steering blade according to the present invention.

【図4】推進装置の燃焼時間と推進力の関係の例を示し
た図である。
FIG. 4 is a diagram showing an example of the relationship between combustion time and propulsive force of a propulsion device.

【図5】(a)は推進力偏向方式による飛しょう体の飛
しょう軌跡の説明図、(b)は推進力偏向方式と空力操
舵方式による飛しょう軌跡を比較した図である。
FIG. 5(a) is an explanatory diagram of a flight trajectory of a projectile based on a propulsion deflection method, and FIG. 5(b) is a diagram comparing flight trajectories obtained using a propulsion deflection method and an aerodynamic steering method.

【図6】従来の推進力偏向装置の概要を示す図である。FIG. 6 is a diagram showing an outline of a conventional propulsion deflection device.

【図7】飛しょう時の動圧と発生旋回加速度を推進力偏
向方式と空力操舵方式で比較した図である。
FIG. 7 is a diagram comparing the dynamic pressure and generated turning acceleration during flight between the propulsion deflection method and the aerodynamic steering method.

【符号の説明】[Explanation of symbols]

1  飛しょう体 2  操舵翼 3  補助推進装置 4  目標位置検出装置 5  オートパイロット切り換え装置 6  補助推進装置、補助推進ノズル、推力計算装置7
  燃焼ガス燃焼時オートパイロット計算装置8  燃
焼ガス燃焼後オートパイロット計算装置9  推進薬 10  主推進装置ノズル 11  アクチュエータ 12  操舵翼 13  補助推進用ノズル 14  飛しょう体 15  推力のベクトル方向 16  機軸に対して垂直方向の推力のベクトル方向1
7  速度ベクトル方向 18  飛しょう軌跡 19  推進力偏向方式の場合の飛しょう軌跡20  
空力操舵方式の場合の飛しょう軌跡21  ベーン 22  アクチュエータ 23  推進力偏向方式の場合の旋回加速度24  空
力操舵方式の場合の旋回加速度25  オートパイロッ
ト装置 26  燃焼ガス分配装置 27  舵角コマンド
1 Aircraft 2 Steering blade 3 Auxiliary propulsion device 4 Target position detection device 5 Autopilot switching device 6 Auxiliary propulsion device, auxiliary propulsion nozzle, thrust calculation device 7
Autopilot calculation device during combustion gas combustion 8 Autopilot calculation device after combustion gas combustion 9 Propellant 10 Main propulsion device nozzle 11 Actuator 12 Steering blade 13 Auxiliary propulsion nozzle 14 Spacecraft 15 Thrust vector direction 16 Perpendicular to the aircraft axis Direction thrust vector direction 1
7 Velocity vector direction 18 Flight trajectory 19 Flight trajectory in the case of propulsion deflection method 20
Flight trajectory 21 in case of aerodynamic steering method Vane 22 Actuator 23 Turning acceleration 24 in case of propulsion deflection method Turning acceleration 25 in case of aerodynamic steering method Autopilot device 26 Combustion gas distribution device 27 Rudder angle command

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  項旋回を行う飛しょう体において、操
舵翼に装着された補助推進装置と、補助推進装置が燃焼
前と燃焼後で飛しょう体の加速度を検出し、その加速度
によりオートパイロットゲインを切り換える切り換え装
置とを具備したことを特徴とする高旋回飛しょう体。
[Claim 1] In a flying vehicle that performs a vertical turn, the auxiliary propulsion device attached to the steering wing and the auxiliary propulsion device detect the acceleration of the flying object before and after combustion, and the autopilot gain is determined based on the acceleration. A high-turning flying object characterized by being equipped with a switching device for switching.
【請求項2】  高旋回を行う飛しょう体において、操
舵翼に装着された補助推進用ノズルと、主推進装置の燃
焼ガスを補助推進用ノズルへ分配する分配装置と、上記
主推進装置が燃焼前と燃焼後で飛しょう体の加速度を検
出し、その加速度によりオートパイロットゲインを切り
換える切り換え装置とを具備したことを特徴とする高旋
回飛しょう体。
Claim 2: In a flying vehicle that performs a high turn, an auxiliary propulsion nozzle attached to a steering wing, a distribution device that distributes combustion gas from a main propulsion device to the auxiliary propulsion nozzle, and a combustion A high-turning flying object characterized by being equipped with a switching device that detects the acceleration of the flying object before and after combustion, and switches the autopilot gain based on the detected acceleration.
JP6846591A 1991-04-01 1991-04-01 Highly maneouverable missile Pending JPH04306500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6846591A JPH04306500A (en) 1991-04-01 1991-04-01 Highly maneouverable missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6846591A JPH04306500A (en) 1991-04-01 1991-04-01 Highly maneouverable missile

Publications (1)

Publication Number Publication Date
JPH04306500A true JPH04306500A (en) 1992-10-29

Family

ID=13374468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6846591A Pending JPH04306500A (en) 1991-04-01 1991-04-01 Highly maneouverable missile

Country Status (1)

Country Link
JP (1) JPH04306500A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694398A (en) * 1992-09-10 1994-04-05 Tech Res & Dev Inst Of Japan Def Agency Missile
JPH06123599A (en) * 1992-10-09 1994-05-06 Tech Res & Dev Inst Of Japan Def Agency Missile
US9523562B2 (en) 2014-03-31 2016-12-20 Mitsubishi Heavy Industries, Ltd. Aerial vehicle and operating method of aerial vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694398A (en) * 1992-09-10 1994-04-05 Tech Res & Dev Inst Of Japan Def Agency Missile
JPH06123599A (en) * 1992-10-09 1994-05-06 Tech Res & Dev Inst Of Japan Def Agency Missile
US9523562B2 (en) 2014-03-31 2016-12-20 Mitsubishi Heavy Industries, Ltd. Aerial vehicle and operating method of aerial vehicle

Similar Documents

Publication Publication Date Title
US4280660A (en) Vectorable nozzle
US6695251B2 (en) Method and system for synchronized forward and Aft thrust vector control
US8387360B2 (en) Integral thrust vector and roll control system
Lin et al. Analytical solution of optimal trajectory-shaping guidance
KR870000134B1 (en) Rocket vehicle
US6308911B1 (en) Method and apparatus for rapidly turning a vehicle in a fluid medium
US4044970A (en) Integrated thrust vector aerodynamic control surface
US3870253A (en) Aircraft vectored flight control means
JP2009257629A (en) Side thruster device
JPH04306500A (en) Highly maneouverable missile
JP3336743B2 (en) Flight control device
Golan et al. Precursor interceptor guidance using sliding mode approach
WO2004097541B1 (en) Control system for craft and a method of controlling craft
JP3286969B2 (en) Flying object autopilot
RU2122511C1 (en) Control of aircraft by means of thrust vector control
RU2122963C1 (en) System of control of twin-engined aeroplane through control of thrust vector
JPH07133999A (en) Attitude controller for airframe
Shi et al. Lateral thrust and aerodynamics compound control system of missile based on adaptive fuzzy control
JP2008224115A (en) Guided missile, and guidance control device and method for guided missile
KR810001576B1 (en) Missile
Du et al. Trajectory optimization for agile-turn of vertically launched missile
JP2003114099A (en) Guiding missile
JP3010165B1 (en) Guided flying object
JPH0666500A (en) Missile
RU2122510C1 (en) Method of control of thrust vector of aircraft cruise engines