JPH043059B2 - - Google Patents

Info

Publication number
JPH043059B2
JPH043059B2 JP57105513A JP10551382A JPH043059B2 JP H043059 B2 JPH043059 B2 JP H043059B2 JP 57105513 A JP57105513 A JP 57105513A JP 10551382 A JP10551382 A JP 10551382A JP H043059 B2 JPH043059 B2 JP H043059B2
Authority
JP
Japan
Prior art keywords
phosphor screen
reading
radiation image
image conversion
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57105513A
Other languages
Japanese (ja)
Other versions
JPS58223245A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57105513A priority Critical patent/JPS58223245A/en
Publication of JPS58223245A publication Critical patent/JPS58223245A/en
Publication of JPH043059B2 publication Critical patent/JPH043059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/49Pick-up adapted for an input of electromagnetic radiation other than visible light and having an electric output, e.g. for an input of X-rays, for an input of infrared radiation

Description

【発明の詳細な説明】 発明の技術分野 本発明は放射線を用いて医療診断等を行なう新
しい放射線像変換装置に関する。さらに詳しくは
電子管の内部に第1の蓄積性蛍光面を設けて、こ
れに放射線像を蓄積し、第2の読取蛍光面を電子
ビームで走査して第2の螢光を発し、上記放射線
像を第1の螢光として読出してその光で光電面を
励起して光電子を放出させこの光電子により電気
信号に変換し、この電気信号を直接または電気的
に画像処理して、テレビモニターやフイルムに画
像再生して診断等を行なう装置である。 発明の技術的背景と問題点 従来放射線画像を得るために増感紙と銀塩フイ
ルムを用いる直接撮影法や、X線イメージインテ
ンシフアイア(I.I)を用いてその出力面光像を
100ミリや35ミリの銀塩フイルムに撮影するI.I間
接撮影法等が用いられていた。 また最近では、蓄積性蛍光面に放射線潜像を形
成せしめ、しかる後レーザ光線をこの螢光面上に
走査して、集光装置、フオトマルチプライヤを用
いて電気信号に変換して、これをテレビモニター
やフイルムに再生して診断を行なう方法が提案さ
れている。これはUSP 3859527や、特開昭55−
15025号公報、「映像情報」誌、1982年4月号
(P409)などに開示されている。しかるに、上記
直接撮影法では、地球規模における銀資源の枯渇
等の問題が提起されており、またI.I間接撮影法
に於ては、X線I.IのX線入射面形状が曲面であ
り、かつ有効面が四角形や長方形に出来にくいと
いう問題があつた。 これに対し前述の蓄積形(または輝尽性ともい
う)螢光面に放射線潜像を形成せしめ、レーザ光
線を照射して発光させこれを読取る方式は、患者
の被曝線量が少なく、X線入射面は平面で、有効
面は四角形でも長方形でも任意に出来るという利
点があるが、他方以下に述べるような不都合があ
る。 すなわちまずこの方式について前記「映像情
報」誌から原理を引用すると第1図乃至第3図に
示す如きものである。第1図でX線管1より放出
されたX線2は人体3を透過後、イメージングプ
レート4すなわち蓄積性螢光板に到達しX線の潜
像を形成する。このイメージングプレートは第3
図に示すように支持体31上に蓄積性螢光体のハ
ロゲン化物結晶を高充填に塗布したもので、全体
が暗箱に納められて撮影が行なわれる。X線潜像
が記録されたイメージングプレートは、第2図に
示すように暗室中で超精密送り台21の上にのせ
られ、He−Neレーザー(波長約6330Å)23を
振動ミラー24により一次元的に走査される。す
るとイメージングプレートから青色の螢光が放
出されるので、この光を光フアイバー25により
一点に集め、フオトマルチプライヤ26で電気信
号27に変換して時系列的に取出される。ここで
イメージングプレート4から青色の蛍光が放出さ
れる原理について述べると、輝尽性蛍光体は第1
の励起源例えばX線で励起しても結晶内のエネル
ギー状態が変化するのみでほとんど発光せず、第
2の励起源例えばHe−Neレーザ光(発光波長
630nm)によりこの第2の励起スペクトルより短
波長(ピーク波長370nm)の発光をする現象によ
る。イメージングプレートのもう一方の走査
は、超精密送り台21のローラー22を一定速度
で回転することにより行なわれる。 このようにして読み取られた電気信号は高速画
像処理機6、コンピユーター7、磁気メモリー8
で処理されて、適当なフイルム10に高精密画像
記録機9で記録され、自動現像機11で処理され
て診断用X線写真12が得られる。 イメージングプレートの記録、読取、消去の
プロセスは第3図a〜eで説明される。第3図a
は未使用のイメージングプレート4で、同図bは
X線像が記録された状態を表わす。 X線量子34が蓄積性螢光面32に入射すると
結晶内にそのエネルギーが一担蓄積される。33
は未蓄積35は蓄積された状態を図式的に示す。
次に同図cに示すごとく約6330Åのレーザ光36
を照射すると蓄積螢光面32に蓄積されたX線エ
ネルギーが青色光の螢光37として取り出され
る。読取りの終つたイメージングプレートは、
全面に同図dの如く再度光38を当てられること
によりX線潜像は完全に消去され、同図eのよう
に同図aと同じ未使用状態に戻る。 このような従来の方式においては下記のような
不都合がある。 ○イ 撮影即読取りが出来ない。 ○ロ 読取手段に機械的な方法を用いるため、1枚
を読取るのに数10秒という長時間を要し、非能
率的である。 ○ハ 読取装置の精度管理が非常に複雑になり、か
つ高価である。 発明の目的 本発明は上記の如き不都合を解消し、撮影即読
取りができて高速撮像が可能であり、放射線像変
換部を平面で角形有効面になしうるし、しかも全
てを電気的に変換できて精度管理が容易である放
射線像変換装置を提供するものである。 発明の概要 本発明は真空容器が放射線入射窓を有する径大
部をそれに対向する部分が径小部よりなるテレビ
用ブラウン管に類似の電子管であつて、放射線像
を蓄積する蓄積性(輝尽性)螢光面、該蓄積性螢
光面より放射線蓄積像を螢光として読出す読取螢
光面を有する放射線像変換パネルを上記径大部に
内蔵し、上記蓄積性螢光面の近傍に位置し、読取
螢光面によつて、読出された放射線蓄積像の螢光
を光電子に変換する光電面を有し、上記光電面よ
り放出された光電子を集めて二次電子増培し、電
気信号として管外へ取り出す二次電子増倍装置を
上記光電面の近傍に配置し、上記読取螢光面を順
次に発光させるための電子ビームを発生する電子
銃と偏向手段とを、上記径小部に備え、径大部面
に入射した放射線像を電気信号に変換することを
特徴とした放射線像増強管装置である。なお放射
線像の蓄積は第1図乃至第3図に示した如き特性
の蓄積性螢光面を使用しこれを真空容器内に配置
する。但し従来方式では蓄積性螢光面に記録され
た放射線潜像を数10秒間かけて読出すのに対し
て、本発明の装置では電子ビーム走査により高速
で、例えば1秒以内で読取るので、蓄積性螢光面
の残光は出来るだけ短かい方が良い。また読取螢
光面についても同様のことが言える。さらに、従
来方式では蓄積性螢光面を暗室中でレーザー光線
により機械的操作で読出していたのに対し、本発
明は電子ビームを電気的偏向装置で高速に走査
し、読取蛍光面を励起して長波長の蛍光を発光せ
しめ、この光により蓄積性蛍光面を励起して放射
線像に対応した比較的短波長の蛍光を発光せし
め、さらにこの発光を光電面で光電子に変換し、
この光電子を時系列化された電気信号として管外
へ取出すことを特徴とする。 発明の実施例 第4図は本発明の一実施例である。同一部分は
同一符号であらわす。真空容器101は放射線透
過の良いアルミニウム、チタニウム、ステンレス
あるいはそれらの合金等の薄いメタル板またはX
線透過の良い硼珪酸ガラスよりなる径大部の放射
線入射窓102と、ガラスよりなる径小部のネツ
ク部105、および上記放射線入射窓102とネ
ツク部105の間をつなぐ胴部103、錐部10
4よりなる。胴部103と錐部104とは機械的
強度が充分とれるステンレス、KOV、アルミニ
ウム等のメタル、またはガラスよりなる。放射線
入射窓102の内部には、メタルの支持枠125
に固定された放射線像変換パネル110と、その
放射線入射窓102側の面に形成された光電面1
15、放射線像変換パネル110の有効径外で上
記光電面115を望む場所に配置された1個また
は複数個の二次電子増倍装置122のような光電
子検出素子がある。ネツク部105には電子銃1
20が内蔵され、その外部には偏向手段の一つで
ある偏向ヨーク121が配置されている。第5図
は放射線像変換パネル110と光電面115の説
明図である。硼珪酸ガラスよりなる例えば厚さ2
mmの長方形のガラス基板111上に電子銃120
側へ向つて色選択フイルター膜116、蓄積性螢
光面112、読取螢光面113、アルミニウム薄
膜114が順次形成されている。 そしてガラス基板111のX線入射窓側には
Sb−Cs、Sb−Cs−K、Sb−Cs−K−Na等の材
料よりなる光電面115が形成されている。蓄積
性螢光面112としてはハロゲン化物の結晶を結
合剤を用いて厚さ100〜500μm程度に高充填に塗
布したもので、ハロゲン化物としては、BaFCl:
Eu(10-3)、BaFCl:Ce(10-8)、BaFBr:Eu(8
×10-4)、(Ba0.9、Mg0.1)FBr:Eu(10-3)、
(Ba0.7、Ca0.3)FBr:Eu(3×10-3)、BaFBr:
Ce(10-4)、Tb(10-4)等があり、例えばBaFCl:
Eu(10-3)は第7図に符号140で示すようにピ
ーク波長3800Åで残光も数100μsecである。読取
螢光面113は短残光のフライングスポツト用螢
光体で、発光スペクトルが長波長に寄つたものが
適当で、結合剤を用いて厚さ5〜20μm程度上に
上記蓄積性螢光面112上に塗布する。これに適
する螢光体としては、ZnO:Zn、(Zn,Cd)
S:Ag、Ni、Gd2O2S:(Tb,La)2O2S:Tb、
(Y,Gd)2O2S:Tb、Y3Al5O12:Ce等があり、
例えばY2Al5O12:Ce螢光体の発光スペクトルは
第7図に符号141で示すようにピーク波長5300
Åで残光も数100nsecである。他の例として
ZnO:Znの発光スペクトルは同図に符号143
で示すようにピーク波長5100Åで残光は数μsecで
ある。アルミニウム薄膜114は通常のブラウン
管にメタルバツクと称して使用されるのと同じ
で、厚さ500〜5000Å程度で読取蛍光面113の
表面電位を安定させることとイオン衝撃による螢
光面の保護の役目をもつ。 色選択フイルター116は青色の無機着色剤例
えばコバルトブルー、セルリアンブルー、酸化ク
ロム、TiO2−ZnO−CoO−NiO系顔料等がある。
またガラス基板111に上記色選択フイルター1
16を被着する代りに、ガラス基板111そのも
のを青色ガラスフイルター材で構成してもよくこ
の一例としては、保谷硝子社の“B−370”があ
り、その透過スペクトルを第7図に符号144で
示す。 次に二次電子増倍装置122は通常のフオトマ
ルチプライヤのダイノードと同じものでよく、複
数のNi板にSb−Cs膜を形成したもので、外部供
給端子123より300〜1500Vの正電圧を印加す
る。 次に本発明の装置動作原理について、第4図、
第5図、第7図を用いて説明する。 () X線潜像記録:人体(図示せず)を透過
した放射線束34は入射窓10 2、ガラス基
板111を透過して蓄積性螢光面112に入射
し、第3図bに示すと同様に放射線エネルギー
が蓄積性螢光体結晶に一担蓄積される。 () 読取り:カソード電圧が約−20KVに設
定された電子銃120より放出され集束作用を
受けた電子ビーム131は偏向ヨーク121に
よつて磁界による偏向作用を受け、放射線像変
換パネル110の読取螢光面113の一点を励
起して、明るい黄または赤色光を発光させる。
この光は蓄積性螢光面112に入射し、さきに
放射線によりエネルギーを蓄積された結晶に作
用してこの部分から青色の螢光が放出される。
そしてこの青色光はガラス基板111を透過し
て光電面115に作用し、光電面115より光
電子132が放出される。光電子132は光電
面より電位の高い二次電子増倍装置122に引
寄せられ、増倍作用を受けて、信号出力端子1
24より電気信号として取り出される。 上記のプロセスで読取螢光面113の発光ス
ペクトルが第7図141または142であり、
蓄積性螢光面112の発光スペクトルが14
0、光電面115の感度特性が142の場合、
読取螢光面113の光の一部が蓄積性螢光面1
12、ガラス基板111を透過して光電面11
5に到達するようなことがあると、第7図に1
42で示すように光電面の感度領域が広いので
光電子32にノイズ成分として含まれることに
なる。この欠点を除去するため、例えば第7図
に144で示すような透過特性を有する色選択
光学フイルター膜116を蓄積性螢光面112
とガラス基板111の間に形成することにより
上記ノイズ成分を除去出来る。また前述したよ
うにガラス基板111に色選択フイルター膜1
16を被着する代りに、ガラス基板111その
ものを第7図に144で示すような青色選択フ
イルターガラスにしてもよい。 さらに光電子流132を出来るだけ多く収集
出来るように、二次電子増倍装置122は複数
個設けた方がよく、その各々の信号引出端子を
並列に接続すれば、ノイズの少ない、且つ高い
レベルの信号が得られS/N比が改善される。
上記電子ビーム131は偏向ヨーク121によ
り放射線像変換パネルを二次元的に走査する訳
で、この走査の速度は読取螢光面113と蓄積
性螢光面112の残光特性によつて選択する。
即ち例えばA点からその隣のB点に電子ビーム
が移つた時にA点の蓄積性螢光面からの螢光は
消滅していないと解像度特性を悪くしてしま
う。いま残光が10μsec(仮に1%残光とする)
の場合について考えると、有効面全体の画素数
が500×500個として、一画面の読出し時間は、
2.5secである。 () 消去:電子ビーム131を出来るだけ増
しデフオーカス状態にして、偏向ヨーク121
で放射線像変換パネルの読取螢光面全面を1回
または数回走査することにより消去される。な
お電子ビームのエネルギーをこの消去時だけ高
めてもよいし、また電子ビーム量を増してもよ
い。 第6図は放射線像変換パネル110の別の実施
例を示すもので、読取螢光面113蓄積性螢光面
112の各螢光材料の化学的相互反応を防止する
保護膜117を備えたもので、保護膜117は両
螢光面物質の化学的相互作用を防止し、読取螢光
面の光に対して透明でなければならない。このよ
うな材料としてはAl2O3、In2O3、あるいは水ガ
ラス等が使用しうる。 第8図は本発明の別の実施例を示すものであ
る。この実施例に於ては、放射線像変換パネル
10は、第9図に示すように放射線透過の良い基
板例えばアルミニウム(厚さ1mm)の平板151
に、蓄積性螢光面112、読取螢光面113を順
次積層してなり、この電子銃側面に光電面115
が被着されている。そして二次電子像倍装置12
2は上記光電面115を臨む胴部103と錐部1
04の近傍に配置されている。放射線34によつ
て記録された放射線潜像は、電子ビーム(読取ビ
ーム)131で放射線像変換パネル110の読取
螢光面113を刺激し黄色または赤色の螢光を出
して、この螢光が蓄積性螢光面112に入射して
これを励起し、青色の螢光を読出す。この青色の
螢光は逆に読取螢光面113を透過し、光電面1
15に達して光電子132を発生せしめる。その
他の動作は前に第4を用いて説明した通りであ
る。 第10図と第11図は、第8図の実施例に使用
する放射線像変換パネル110の変形例である。
第10図では読取螢光面113と光電面115の
間に色選択フイルター層116を設けたものであ
り、第11図では、さらに色選択光学フイルター
層116と光電面115との間に透明導電性被膜
152を設けたものである。上記したように第8
図の実施例では光電面115や二次電子増倍装置
122の製作が極めて容易となる。なおこの場合
は、光電面115が電子ビーム131で直接衝撃
を受けるので、電子線衝撃に強い光電面を用いる
必要がある。 第12図、第13図は本発明のさらに他の実施
例を示すもので、第13図に示すように放射線像
変換パネル110は厚さ100〜500μm程度のうす
い透明ガラス基板161の放射線入射窓側に蓄積
性螢光面112を、その反対側に読取螢光面11
3、アルミニウム薄膜114を設けたものであ
り、光電面115は放射線入射窓102の内壁面
上に形成されている。二次電子増倍装置122は
放射線像変換パネル110と放射線入射窓102
との間の有効径の外側にあつて光電面115を望
む位置に配置されている。読取ビーム131によ
り読取螢光面113が励起されて黄色または赤色
光が放射される。この光はガラス基板161を通
して反対側にある蓄積螢光面の放射線潜像を読出
す。読出された青色光は、放射線入射窓102の
内面に形成された光電面115を刺激し、光電面
115より光電子132が放出され二次電子増倍
装置122に引き寄せられて増倍された電気信号
となる。但し本実施例に於ては読取螢光面113
と蓄積性螢光面112との間にガラス基板161
が介在されているので、このガラス基板161を
できるだけうすく好ましくは300μm以下にする
ことが望ましい。また第14図に示すように色選
択光学フイルター116を蓄積螢光面112の裏
面に設けてもよい。 なおガラス基板を光学繊維板(ガラスフアイバ
ープレート)で形成してもよく、これによつて光
の不所望な拡散が抑制されて、さらにノイズレベ
ルを下げることができる。とくに蓄積性螢光面と
読取螢光面との間の光路にこの光学繊維板を介在
させるとよく、これによつて解像度が高まる。 発明の効果 上記したように本発明装置により、以下の効果
を得ることができる。 撮影即読取りが出来る。 読取時間は短時間で出来る。したがつて比較
的高速度の撮像ができる。 放射線像変換部は平面にでき、しかも角形有
効面にできる。 画像変換の全てを電気的に行なうので、精度
管理が容易でかつ安価である。 蓄積性螢光面は高感度であるので患者への放
射線被曝線量が極めて少なくてすむ。 ほゞすべての構成要素をブラウン管に類似の
形状の真空容器の内部およびその周辺にとりつ
けているので、コンパクトであり且つ取扱いが
容易である。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a new radiation image conversion apparatus for performing medical diagnosis and the like using radiation. More specifically, a first stimulable phosphor screen is provided inside the electron tube to accumulate a radiation image, and a second reading phosphor screen is scanned with an electron beam to emit a second fluorescent light to generate the radiation image. is read out as the first fluorescence, the photocathode is excited with the light, it emits photoelectrons, the photoelectrons are converted into electrical signals, and the electrical signals are directly or electrically processed into images to be displayed on television monitors or films. This is a device that reproduces images and performs diagnosis, etc. Technical Background and Problems of the Invention Conventionally, to obtain radiographic images, there has been a direct imaging method using an intensifying screen and a silver halide film, and an X-ray image intensifier (II) has been used to capture the output surface optical image.
II indirect photography, which takes pictures on 100mm or 35mm silver halide film, was used. Recently, a radiation latent image is formed on a stimulable phosphor screen, and then a laser beam is scanned onto this phosphor screen and converted into an electrical signal using a condensing device and a photomultiplier. A method has been proposed in which the image is played back on a television monitor or film for diagnosis. This is USP 3859527 and JP-A-55-
It is disclosed in Publication No. 15025, "Eizo Information" magazine, April 1982 issue (P409), etc. However, with the above-mentioned direct imaging method, problems such as the depletion of silver resources on a global scale have been raised, and in the II indirect imaging method, the shape of the X-ray entrance surface of X-ray II is a curved surface, and There was a problem that it was difficult to create square or rectangular surfaces. On the other hand, the above-mentioned method in which a latent radiation image is formed on a storage type (also called stimulable) fluorescent surface and is read by emitting light by irradiating a laser beam, the patient's exposure dose is small and the X-ray incident Although the surface is flat and the effective surface can be arbitrarily square or rectangular, there are disadvantages as described below. That is, first of all, the principle of this system is as shown in FIGS. 1 to 3, quoting from the above-mentioned "Eizo Information" magazine. In FIG. 1, X-rays 2 emitted from an X-ray tube 1 pass through a human body 3, reach an imaging plate 4, that is, a stimulable phosphor plate, and form an X-ray latent image. This imaging plate is the third
As shown in the figure, halide crystals of a stimulable phosphor are coated in a highly packed manner on a support 31, and the whole is placed in a dark box for photographing. The imaging plate on which the latent X-ray image has been recorded is placed on an ultra-precision feed table 21 in a dark room, as shown in FIG. is scanned. Blue fluorescent light is then emitted from the imaging plate 4 , and this light is collected at one point by an optical fiber 25, converted into an electrical signal 27 by a photomultiplier 26, and extracted in time series. Here, to explain the principle of blue fluorescence emitted from the imaging plate 4, the stimulable phosphor is
Even if the crystal is excited by an excitation source such as X-rays, the energy state within the crystal changes and almost no light is emitted.
630 nm), this is due to the phenomenon that light is emitted at a shorter wavelength (peak wavelength 370 nm) than this second excitation spectrum. The other scanning of the imaging plate 4 is performed by rotating the roller 22 of the ultra-precision feed table 21 at a constant speed. The electrical signals read in this way are sent to a high-speed image processor 6, a computer 7, and a magnetic memory 8.
The image is then processed, recorded on a suitable film 10 by a high-precision image recorder 9, and processed by an automatic processor 11 to obtain a diagnostic X-ray photograph 12. The process of recording, reading and erasing the imaging plate 4 is illustrated in FIGS. 3a-e. Figure 3a
1 is an unused imaging plate 4, and FIG. 1b shows a state in which an X-ray image has been recorded. When the X-ray quantum 34 is incident on the stimulable fluorescent surface 32, its energy is stored in the crystal. 33
35 schematically shows an unaccumulated state and an accumulated state.
Next, as shown in figure c, a laser beam 36 of approximately 6330 Å
When irradiated with , the X-ray energy accumulated on the storage fluorescent surface 32 is extracted as blue fluorescent light 37 . The imaging plate 4 that has been read is
The X-ray latent image is completely erased by irradiating the entire surface with the light 38 again as shown in FIG. Such conventional methods have the following disadvantages. ○B Immediate reading after shooting is not possible. ○B Since a mechanical method is used as the reading means, it takes a long time of several tens of seconds to read one sheet, which is inefficient. ○C Accuracy control of the reading device becomes extremely complicated and expensive. Purpose of the Invention The present invention solves the above-mentioned inconveniences, enables immediate reading, enables high-speed imaging, allows the radiation image converting section to be formed into a flat, rectangular effective surface, and converts everything electrically. An object of the present invention is to provide a radiation image conversion device whose accuracy can be easily controlled. Summary of the Invention The present invention is an electron tube similar to a television cathode ray tube, in which the vacuum container has a large-diameter portion having a radiation entrance window, and a portion opposite thereto has a small-diameter portion. ) A radiation image conversion panel having a fluorescent surface and a reading fluorescent surface for reading out radiation accumulated images from the stimulable fluorescent surface as fluorescent light is built into the large diameter portion, and is located near the stimulable fluorescent surface. It has a photocathode that converts the fluorescence of the radiation accumulation image read out into photoelectrons using a readout fluorescent surface, and collects the photoelectrons emitted from the photocathode to multiply secondary electrons and generate electrical signals. A secondary electron multiplier that takes out the electrons outside the tube is arranged near the photocathode, and an electron gun and deflection means that generate electron beams for sequentially emitting light from the readout fluorescent surface are connected to the small diameter section. This radiation image intensifier tube device is characterized by converting a radiation image incident on its large-diameter surface into an electrical signal in preparation for the Incidentally, to accumulate the radiation image, a stimulable fluorescent surface having the characteristics as shown in FIGS. 1 to 3 is used and placed in a vacuum container. However, in the conventional method, the radiation latent image recorded on the stimulable fluorescent surface is read out over several tens of seconds, whereas in the device of the present invention, the radiation latent image recorded on the stimulable fluorescent surface is read out at high speed, for example within 1 second, so It is better for the afterglow of the fluorescent surface to be as short as possible. The same can be said of the reading fluorescent surface. Furthermore, in the conventional method, the stimulable phosphor screen was mechanically read out using a laser beam in a dark room, whereas in the present invention, the electron beam is scanned at high speed using an electrical deflection device to excite the read phosphor screen. It emits long-wavelength fluorescence, this light excites a stimulable phosphor screen to emit relatively short-wavelength fluorescence corresponding to a radiation image, and the emitted light is further converted into photoelectrons by a photocathode.
It is characterized by extracting these photoelectrons outside the tube as time-series electrical signals. Embodiment of the Invention FIG. 4 shows an embodiment of the invention. Identical parts are represented by the same symbols. The vacuum container 101 is made of a thin metal plate made of aluminum, titanium, stainless steel, or an alloy thereof that has good radiation transparency, or
A large-diameter radiation entrance window 102 made of borosilicate glass with good radiation transmission, a small-diameter neck portion 105 made of glass, and a body portion 103 and a conical portion that connect the radiation entrance window 102 and the neck portion 105. 10
Consists of 4. The body portion 103 and the conical portion 104 are made of metal such as stainless steel, KOV, aluminum, etc., which have sufficient mechanical strength, or glass. Inside the radiation entrance window 102, a metal support frame 125 is provided.
A radiation image conversion panel 110 fixed to
15. There is a photoelectron detection element such as one or more secondary electron multipliers 122 located outside the effective diameter of the radiation image conversion panel 110 at a location where the photocathode 115 is viewed. The electron gun 1 is installed in the network section 105.
20 is built in, and a deflection yoke 121, which is one of the deflection means, is disposed outside of the deflection yoke 121. FIG. 5 is an explanatory diagram of the radiation image conversion panel 110 and the photocathode 115. Made of borosilicate glass, for example, thickness 2
An electron gun 120 is mounted on a rectangular glass substrate 111 of mm.
A color selection filter film 116, a stimulable fluorescent surface 112, a reading fluorescent surface 113, and an aluminum thin film 114 are formed in this order from the side. And on the X-ray entrance window side of the glass substrate 111
A photocathode 115 made of a material such as Sb-Cs, Sb-Cs-K, or Sb-Cs-K-Na is formed. The stimulable fluorescent surface 112 is made of halide crystals coated with a binder to a thickness of about 100 to 500 μm, and the halide includes BaFCl:
Eu( 10-3 ), BaFCl:Ce( 10-8 ), BaFBr:Eu(8
×10 -4 ), (Ba 0.9 , Mg 0.1 ) FBr: Eu (10 -3 ),
( Ba0.7 , Ca0.3 ) FBr: Eu (3×10 -3 ), BaFBr:
Ce (10 -4 ), Tb (10 -4 ), etc., such as BaFCl:
Eu(10 -3 ) has a peak wavelength of 3800 Å and an afterglow of several 100 μsec, as shown by reference numeral 140 in FIG. The reading phosphor surface 113 is suitably a short afterglow phosphor for flying spots, with an emission spectrum that leans toward long wavelengths, and is coated with a binder to a thickness of approximately 5 to 20 μm. 112. Suitable phosphors for this include ZnO:Zn, (Zn, Cd)
S: Ag, Ni, Gd 2 O 2 S: (Tb, La) 2 O 2 S: Tb,
(Y, Gd) 2 O 2 S: Tb, Y 3 Al 5 O 12 : Ce, etc.
For example, the emission spectrum of Y 2 Al 5 O 12 :Ce phosphor has a peak wavelength of 5300, as shown by reference numeral 141 in FIG.
The afterglow is also several 100 nanoseconds. As another example
ZnO: The emission spectrum of Zn is shown at 143 in the same figure.
As shown, the peak wavelength is 5100 Å and the afterglow is several μsec. The aluminum thin film 114 is the same as the metal back used in ordinary cathode ray tubes, and has a thickness of about 500 to 5000 Å, and serves to stabilize the surface potential of the reading phosphor screen 113 and protect the phosphor surface from ion bombardment. Motsu. The color selection filter 116 includes a blue inorganic coloring agent such as cobalt blue, cerulean blue, chromium oxide, TiO2 -ZnO-CoO-NiO pigment, and the like.
The color selection filter 1 is also mounted on the glass substrate 111.
16, the glass substrate 111 itself may be made of a blue glass filter material. An example of this is "B-370" manufactured by Hoya Glass Co., Ltd., whose transmission spectrum is shown at 144 in FIG. Indicated by Next, the secondary electron multiplier 122 may be the same as the dynode of a normal photomultiplier, and is made by forming an Sb-Cs film on a plurality of Ni plates. Apply. Next, regarding the operating principle of the device of the present invention, FIG.
This will be explained using FIGS. 5 and 7. () X-ray latent image recording: The radiation flux 34 that has passed through the human body (not shown) passes through the entrance window 102 and the glass substrate 111 and enters the stimulable fluorescent surface 112, as shown in FIG. 3b. Similarly, radiation energy is stored in a stimulable phosphor crystal. () Reading: The electron beam 131 emitted from the electron gun 120 whose cathode voltage is set to about -20 KV and focused is deflected by a magnetic field by the deflection yoke 121, and is read by the radiation image conversion panel 110 . A point on the light surface 113 is excited to emit bright yellow or red light.
This light enters the stimulable fluorescent surface 112, acts on the crystal that has previously accumulated energy due to the radiation, and blue fluorescent light is emitted from this area.
This blue light passes through the glass substrate 111 and acts on the photocathode 115, and photoelectrons 132 are emitted from the photocathode 115. The photoelectrons 132 are attracted to the secondary electron multiplier 122, which has a higher potential than the photocathode, and are multiplied by the signal output terminal 1.
24 as an electrical signal. In the above process, the emission spectrum of the reading fluorescent surface 113 is as shown in FIG. 7 141 or 142,
The emission spectrum of the stimulable fluorescent surface 112 is 14
0, when the sensitivity characteristic of the photocathode 115 is 142,
A part of the light from the reading fluorescent surface 113 is transmitted to the stimulable fluorescent surface 1.
12, Photocathode 11 transmitted through glass substrate 111
If 5 is reached, 1 appears in Figure 7.
Since the photocathode has a wide sensitivity range as shown by 42, the photoelectrons 32 are included as noise components. In order to eliminate this drawback, for example, a color selective optical filter film 116 having transmission characteristics as shown at 144 in FIG.
By forming the filter between the glass substrate 111 and the glass substrate 111, the above-mentioned noise component can be removed. Further, as mentioned above, the color selection filter film 1 is placed on the glass substrate 111.
16, the glass substrate 111 itself may be a blue selective filter glass as shown at 144 in FIG. Furthermore, in order to collect as much photoelectron flow 132 as possible, it is better to provide a plurality of secondary electron multipliers 122, and if the signal extraction terminals of each of them are connected in parallel, a high-level signal with less noise can be obtained. A signal is obtained and the S/N ratio is improved.
The electron beam 131 scans the radiation image conversion panel two-dimensionally by the deflection yoke 121, and the scanning speed is selected depending on the afterglow characteristics of the reading fluorescent surface 113 and the stimulable fluorescent surface 112.
That is, for example, when the electron beam moves from point A to the adjacent point B, if the fluorescence from the stimulable fluorescent surface at point A is not extinguished, the resolution characteristics will deteriorate. The afterglow is now 10μsec (temporarily assuming 1% afterglow)
Considering the case of , assuming that the number of pixels on the entire effective surface is 500 x 500, the readout time for one screen is:
It is 2.5 seconds. () Erasing: Increase the electron beam 131 as much as possible, put it in a defocus state, and then move the deflection yoke 121
The data is erased by scanning the entire reading fluorescent surface of the radiation image conversion panel once or several times. Note that the energy of the electron beam may be increased only during this erasing, or the amount of the electron beam may be increased. FIG. 6 shows another embodiment of the radiation image conversion panel 110 , which is provided with a protective film 117 to prevent chemical interaction between the fluorescent materials of the readout fluorescent surface 113 and the stimulable fluorescent surface 112. The protective film 117 must prevent chemical interaction between the two phosphor materials and must be transparent to the light from the reading phosphor surface. As such a material, Al 2 O 3 , In 2 O 3 , water glass, or the like can be used. FIG. 8 shows another embodiment of the invention. In this embodiment, the radiation image conversion panel 1
As shown in FIG. 9, 10 is a flat plate 151 of a substrate with good radiation transmission, such as aluminum (thickness: 1 mm).
A stimulable fluorescent surface 112 and a reading fluorescent surface 113 are laminated in this order, and a photocathode 115 is provided on the side surface of the electron gun.
is covered. and secondary electron image magnification device 12
2 is a body portion 103 facing the photocathode 115 and a conical portion 1;
It is located near 04. The radiation latent image recorded by the radiation 34 stimulates the reading fluorescent surface 113 of the radiation image conversion panel 110 with an electron beam (reading beam) 131 to emit yellow or red fluorescent light, and this fluorescent light is accumulated. The light enters the fluorescent surface 112 to excite it, and blue fluorescent light is read out. This blue fluorescent light is transmitted through the reading fluorescent surface 113 and the photocathode 1
15 and generates photoelectrons 132. The other operations are as explained using the fourth example. 10 and 11 show modified examples of the radiation image conversion panel 110 used in the embodiment of FIG. 8.
In FIG. 10, a color selection filter layer 116 is provided between the reading fluorescent surface 113 and the photocathode 115, and in FIG. 11, a transparent conductive layer is further provided between the color selection optical filter layer 116 and the photocathode 115. A sexual coating 152 is provided. As mentioned above, the eighth
In the illustrated embodiment, the photocathode 115 and the secondary electron multiplier 122 can be manufactured extremely easily. In this case, since the photocathode 115 is directly impacted by the electron beam 131, it is necessary to use a photocathode that is resistant to electron beam impact. FIGS. 12 and 13 show still another embodiment of the present invention. As shown in FIG. 13, a radiation image conversion panel 110 is arranged on the radiation incident window side of a thin transparent glass substrate 161 with a thickness of about 100 to 500 μm. A stimulable fluorescent surface 112 is placed on one side, and a reading fluorescent surface 11 is placed on the opposite side.
3. An aluminum thin film 114 is provided, and a photocathode 115 is formed on the inner wall surface of the radiation entrance window 102. The secondary electron multiplier 122 includes the radiation image conversion panel 110 and the radiation entrance window 102.
The photocathode 115 is located outside the effective diameter between the photocathode 115 and the photocathode 115. The reading beam 131 excites the reading phosphor surface 113 to emit yellow or red light. This light passes through the glass substrate 161 and reads out the radiation latent image on the storage phosphor surface on the opposite side. The read blue light stimulates the photocathode 115 formed on the inner surface of the radiation entrance window 102, and photoelectrons 132 are emitted from the photocathode 115 and attracted to the secondary electron multiplier 122, resulting in a multiplied electrical signal. becomes. However, in this embodiment, the reading fluorescent surface 113
A glass substrate 161 is placed between the stimulable fluorescent surface 112 and
is present, it is desirable to make the glass substrate 161 as thin as possible, preferably 300 μm or less. Further, as shown in FIG. 14, a color selection optical filter 116 may be provided on the back side of the storage fluorescent surface 112. Note that the glass substrate may be formed of an optical fiber plate (glass fiber plate), which suppresses undesired diffusion of light and further reduces the noise level. In particular, it is preferable to interpose this optical fiber board in the optical path between the stimulable fluorescent surface and the reading fluorescent surface, thereby increasing the resolution. Effects of the Invention As described above, the following effects can be obtained by the apparatus of the present invention. Can be read immediately after shooting. Reading time can be shortened. Therefore, relatively high-speed imaging is possible. The radiation image converting section can be made into a flat surface or a rectangular effective surface. Since all image conversion is performed electrically, accuracy control is easy and inexpensive. The high sensitivity of the stimulable phosphor surface results in extremely low radiation exposure to the patient. Since almost all the components are installed inside and around a vacuum container with a shape similar to a cathode ray tube, it is compact and easy to handle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放射線像撮影装置の例を示すブ
ロツクダイアグラム、第2図および第3図a〜e
はその動作説明図、第4図は本発明の一実施例を
示す概略構成図、第5図はその放射線像変換部の
拡大断面図、第6図は本発明の他の実施例を示す
要部断面図、第7図はその光学特性図、第8図お
よび第9図は本発明のさらに他の実施例を示す概
略構成図および要部断面図、第10図乃至第14
図は各々本発明のさらに他の実施例を示す図であ
る。 101……真空容器、102……放射線入射
窓、110……放射線像変換パネル、112……
蓄積性螢光面、113……読取螢光面、115…
…光電面、116……色選択光学フイルター膜、
122……二次電子増倍装置、120……電子
銃、121……偏向ヨーク、34……X線量子、
131……電子ビーム、132……光電子。
FIG. 1 is a block diagram showing an example of a conventional radiographic imaging device, and FIGS. 2 and 3 a to e
4 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 5 is an enlarged sectional view of the radiation image converting section, and FIG. 6 is a schematic diagram showing another embodiment of the present invention. 7 is a diagram of its optical characteristics; FIGS. 8 and 9 are schematic configuration diagrams and sectional views of essential parts showing still other embodiments of the present invention; FIGS. 10 to 14
The figures are diagrams showing still other embodiments of the present invention. 101 ...Vacuum container, 102...Radiation entrance window, 110 ...Radiation image conversion panel, 112...
Accumulative fluorescent surface, 113...Reading fluorescent surface, 115...
...Photocathode, 116...Color selection optical filter film,
122... Secondary electron multiplier, 120... Electron gun, 121... Deflection yoke, 34... X-ray quantum,
131...electron beam, 132...photoelectron.

Claims (1)

【特許請求の範囲】 1 放射線を透過する材料からなる入射窓を有す
る径大部、テーパ部、径小部を順次形成してなる
真空容器と、 上記容器内の入射窓近傍に入射窓と対向して配
設された放射線透過性基板と、 この基板上に形成された放射線エネルギー蓄積
性蛍光面と、 この蓄積性蛍光面の上記径小部側の面に形成さ
れた読取蛍光面と、 上記蓄積性蛍光面に近接して設けられた光電面
と、 この光電面から発する光電子を捕捉するように
配置され捕捉光電子量に応じた電気信号に変換す
る光電子検出素子と、 上記真空容器の径小部に設けられ上記読取蛍光
面上に電子ビームを放出して読取蛍光面を発光さ
せる電子銃と、 上記電子ビームを読取蛍光面上に走査させるよ
うに管外部に設けられた電子ビーム偏向装置と、 を具備し、電子ビームを上記偏向装置で高速に走
査し、読取蛍光面を励起して長波長の蛍光を発光
せしめ、さらにこの発光を光電面で光電子に変換
し、この光電子を時系列化された電気信号として
管外へ取出すことを特徴とする放射線像変換装
置。 2 蓄積性蛍光面はハロゲン化物の結晶からな
り、蛍光のスペクトルの最大値が5000A以下の波
長域にある特許請求の範囲第1項記載の放射線像
変換装置。 3 入射窓、蓄積性蛍光面、読取蛍光面および光
電面の平面形状が概して角形をなしている特許請
求の範囲第1項記載の放射線像変換装置。 4 蓄積性蛍光面は光透過性ガラス基板の一面側
に形成されてなるとともに、このガラス基板の他
面側に光電面が形成されてなる特許請求の範囲第
1項記載の放射線像変換装置。 5 入射窓がアルミニウム、チタニウム、あるい
はステンレスもしくはそれらを主成分とする金属
薄板のうちから選択された少なくとも一種の薄板
で形成されてなる特許請求の範囲第1項記載の放
射線像変換装置。 6 蓄積性蛍光面と光電面との間に色選択光学フ
イルターを介在させてなる特許請求の範囲第1項
記載の放射線像変換装置。 7 放射線透過性基板がガラス基板からなり、こ
のガラス基板の一面側に色選択光学フイルターを
介して蓄積性蛍光面が付着されてなる特許請求の
範囲第1項記載の放射線像変換装置。 8 ガラス基板の面のうち入射窓側の面に光電面
が形成され、この光電面をのぞむ位置に光電子検
出素子が設けられてなる特許請求の範囲第1項記
載の放射線像変換装置。 9 ガラス基板が光学繊維板からなる特許請求の
範囲第4項記載の放射線像変換装置。 10 ガラス基板の電子銃側の面上に、色選択光
学フイルター、蓄積性蛍光面、読取蛍光面、アル
ミニウム薄膜の順に形成されてなる特許請求の範
囲第4項記載の放射線像変換装置。 11 蓄積性蛍光面と読取蛍光面との間に両蛍光
面材料が相互反応することを防止する保護層を介
在させてなる特許請求の範囲第1項記載の放射線
像変換装置。 12 入射窓側から電子銃側へ向つて、アルミニ
ウム基板、蓄積性蛍光面、読取蛍光面の順に設け
られ、且つ読取蛍光面に密接して光電面が形成さ
れてなる特許請求の範囲第1項記載の放射線像変
換装置。 13 読取蛍光面と光電面との間に読取蛍光面の
発光スペクトルを切る色選択光学フイルターを有
してなる特許請求の範囲第12項記載の放射線像
変換装置。 14 入射窓側から電子銃側へ向つて、蓄積性蛍
光面、ガラス薄板、読取蛍光面、アルミニウム薄
膜の順に形成されるとともに、光電面が入射窓の
内壁面上に形成されてなる特許請求の範囲第1項
記載の放射線像変換装置。 15 ガラス基板が青色フイルターガラスからな
り、その光透過特性は蓄積性蛍光面の蛍光をほと
んどすべて通し、読取蛍光面の蛍光はほとんどを
通さない特性を有してなる特許請求の範囲第4項
記載の放射線像変換装置。 16 色選択光学フイルターは読取蛍光面の発光
スペクトルの短波長側の強度5%以上のスペクト
ルを切る特性を有してなる特許請求の範囲第6項
記載の放射線像変換装置。 17 読取蛍光面はその発光スペクトルが蓄積性
蛍光面の発光スペクトルよりも長波長であり、そ
の10%残光が1msec以下である特許請求の範囲第
1項記載の放射線像変換装置。 18 光電子検出素子が二次電子増倍装置を含ん
でなる特許請求の範囲第1項記載の放射線像変換
装置。 19 光電子検出素子が複数個設けられそれらの
出力端子が互いに並列接続されてなる特許請求の
範囲第1項または第18項記載の放射線像変換装
置。 20 光電面の電位に対して光電子検出素子を正
電位で動作させる特許請求の範囲第1項記載の放
射線像変換装置。 21 蓄積性蛍光面と読取蛍光面との間に光学繊
維板が介在されて読取蛍光面の発光が上記光学繊
維板の繊維を通して蓄積蛍光面に照射されるよう
に構成された特許請求の範囲第1項記載の放射線
像変換装置。
[Scope of Claims] 1. A vacuum container having an entrance window made of a material that transmits radiation, in which a large diameter part, a tapered part, and a small diameter part are successively formed; a radiation-transparent substrate arranged as a radiation transmitting substrate; a radiation energy accumulating phosphor screen formed on this substrate; a reading phosphor screen formed on the surface of the stimulable phosphor screen on the side of the small diameter portion; a photocathode provided in close proximity to the stimulable phosphor screen; a photoelectron detection element arranged to capture photoelectrons emitted from the photocathode and converting them into an electrical signal according to the amount of captured photoelectrons; and a small-diameter vacuum container. an electron gun provided in the section and configured to emit an electron beam onto the reading phosphor screen to cause the reading phosphor screen to emit light; and an electron beam deflection device provided outside the tube to scan the electron beam onto the reading phosphor screen. , the electron beam is scanned at high speed by the above-mentioned deflection device, the reading fluorescent screen is excited to emit long-wavelength fluorescence, the emitted light is further converted into photoelectrons by the photocathode, and the photoelectrons are converted into a time series. A radiation image conversion device characterized in that the electrical signal is extracted outside the tube as an electrical signal. 2. The radiation image conversion device according to claim 1, wherein the stimulable phosphor screen is made of a halide crystal, and the maximum value of the fluorescence spectrum is in a wavelength range of 5000 A or less. 3. The radiation image conversion device according to claim 1, wherein the entrance window, the stimulable phosphor screen, the reading phosphor screen, and the photocathode have generally rectangular planar shapes. 4. The radiation image conversion device according to claim 1, wherein the stimulable phosphor screen is formed on one side of a light-transmitting glass substrate, and the photocathode is formed on the other side of the glass substrate. 5. The radiation image conversion device according to claim 1, wherein the entrance window is formed of at least one thin plate selected from aluminum, titanium, stainless steel, or a thin metal plate containing these as main components. 6. The radiation image conversion device according to claim 1, wherein a color selection optical filter is interposed between the stimulable phosphor screen and the photocathode. 7. The radiation image conversion device according to claim 1, wherein the radiation transparent substrate is a glass substrate, and a stimulable phosphor screen is attached to one side of the glass substrate via a color selection optical filter. 8. The radiation image conversion device according to claim 1, wherein a photocathode is formed on the surface of the glass substrate on the side of the entrance window, and a photoelectron detection element is provided at a position facing the photocathode. 9. The radiation image conversion device according to claim 4, wherein the glass substrate is made of an optical fiber board. 10. The radiation image conversion device according to claim 4, wherein a color selection optical filter, a stimulable phosphor screen, a reading phosphor screen, and an aluminum thin film are formed in this order on the electron gun side surface of the glass substrate. 11. The radiation image converting device according to claim 1, wherein a protective layer is interposed between the stimulable phosphor screen and the reading phosphor screen to prevent mutual reaction between the materials of the stimulable phosphor screen and the reading phosphor screen. 12. Claim 1, wherein an aluminum substrate, a stimulable phosphor screen, and a reading phosphor screen are provided in this order from the entrance window side toward the electron gun side, and a photocathode is formed in close contact with the reading phosphor screen. radiation image conversion device. 13. The radiation image conversion device according to claim 12, further comprising a color selection optical filter that cuts the emission spectrum of the reading phosphor screen between the reading phosphor screen and the photocathode. 14. A stimulable phosphor screen, a thin glass plate, a reading phosphor screen, and an aluminum thin film are formed in this order from the entrance window side toward the electron gun side, and a photocathode is formed on the inner wall surface of the entrance window. The radiation image conversion device according to item 1. 15. Claim 4, wherein the glass substrate is made of blue filter glass, and has a light transmission property that allows almost all of the fluorescence from the stimulable phosphor screen to pass therethrough, and almost no fluorescence from the reading phosphor screen to pass through. radiation image conversion device. 16. The radiation image conversion device according to claim 6, wherein the color selection optical filter has a property of cutting off a spectrum having an intensity of 5% or more on the short wavelength side of the emission spectrum of the reading phosphor screen. 17. The radiation image conversion device according to claim 1, wherein the reading phosphor screen has an emission spectrum having a wavelength longer than that of the stimulable phosphor screen, and has a 10% afterglow of 1 msec or less. 18. The radiation image conversion device according to claim 1, wherein the photoelectron detection element includes a secondary electron multiplier. 19. The radiation image conversion apparatus according to claim 1 or 18, wherein a plurality of photoelectron detection elements are provided and their output terminals are connected in parallel to each other. 20. The radiation image conversion device according to claim 1, wherein the photoelectron detection element is operated at a positive potential with respect to the potential of the photocathode. 21. Claim No. 2, wherein an optical fiber board is interposed between the stimulable phosphor screen and the reading phosphor screen so that the light emitted from the reading phosphor screen is irradiated onto the storable phosphor screen through the fibers of the optical fiber board. The radiation image conversion device according to item 1.
JP57105513A 1982-06-21 1982-06-21 Radiation image conversion equipment Granted JPS58223245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57105513A JPS58223245A (en) 1982-06-21 1982-06-21 Radiation image conversion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105513A JPS58223245A (en) 1982-06-21 1982-06-21 Radiation image conversion equipment

Publications (2)

Publication Number Publication Date
JPS58223245A JPS58223245A (en) 1983-12-24
JPH043059B2 true JPH043059B2 (en) 1992-01-21

Family

ID=14409676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105513A Granted JPS58223245A (en) 1982-06-21 1982-06-21 Radiation image conversion equipment

Country Status (1)

Country Link
JP (1) JPS58223245A (en)

Also Published As

Publication number Publication date
JPS58223245A (en) 1983-12-24

Similar Documents

Publication Publication Date Title
US4803359A (en) Method for detecting radiation image
US2555423A (en) Image intensifying tube
JP4208687B2 (en) Image sensor
JPH0616392B2 (en) Electron microscope image recording / reproducing method and apparatus
EP0955664A1 (en) Photoconductor-photocathode imager
US4140900A (en) Panel type x-ray image intensifier tube and radiographic camera system
US4933558A (en) X-ray sensitive area detection device
JPH0682858B2 (en) Radiation image detection method
US4300046A (en) Panel type X-ray image intensifier tube and radiographic camera system
US4598207A (en) Storage and reconstruction apparatus for radiation image
JPS58182572A (en) Two-dimensional radiant ray detector
US4186302A (en) Panel type X-ray image intensifier tube and radiographic camera system
US4447721A (en) Panel type X-ray image intensifier tube and radiographic camera system
CA1095188A (en) Panel type x-ray image intensifier tube and radiographic camera system
JPH0552624B2 (en)
EP0111837A2 (en) Method of x-ray imaging using slit scanning with controlled target erase
EP0178672B1 (en) Electron microscope
JPH0341935B2 (en)
JPH043059B2 (en)
JPH05208000A (en) Energy subtraction image forming device
USRE31691E (en) Panel type x-ray image intensifier tube and radiographic camera system
JPS5974545A (en) Reading method of radiation picture
US4801801A (en) Transmission-type electron microscope
JPH0693075B2 (en) Radiation image recording and reading method
Goetze et al. Recent applications of transmission secondary emission amplification