JPH04305564A - Production of cumene hydroperoxide - Google Patents

Production of cumene hydroperoxide

Info

Publication number
JPH04305564A
JPH04305564A JP6811291A JP6811291A JPH04305564A JP H04305564 A JPH04305564 A JP H04305564A JP 6811291 A JP6811291 A JP 6811291A JP 6811291 A JP6811291 A JP 6811291A JP H04305564 A JPH04305564 A JP H04305564A
Authority
JP
Japan
Prior art keywords
weight
reaction
reaction solution
reactor
cumene hydroperoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6811291A
Other languages
Japanese (ja)
Other versions
JP3107409B2 (en
Inventor
Yuzo Ono
有三 小野
Takashi Okawa
尚 大川
Masanori Dobashi
正典 土橋
Yuri Izumi
泉 由里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP03068112A priority Critical patent/JP3107409B2/en
Publication of JPH04305564A publication Critical patent/JPH04305564A/en
Application granted granted Critical
Publication of JP3107409B2 publication Critical patent/JP3107409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce cumene hydroperoxide in high concentration efficiently and stably for a long period of time. CONSTITUTION:In continuous production of cumene hydroperoxide by oxidizing cumene in the presence of oxygen or an oxygen-containing gas, the reaction is carried out by two or more multi-stage reactors connected in series in the absence of an alkali salt and a catalyst, total retention time of the reaction solution and temperature of the reaction solution in a range of <=25wt.% concentration of cumene hydroperoxide in the reaction solution are 0.1-25 hours and 100-120 deg.C, respectively, total retention time of the reaction solution and temperature of the reaction solution in a range of >25wt.% concentration are 0.1-10 hours and 90-115 deg.C, total retention of the reaction solution of cumene hydroperoxide is 3-16 hours and reaction pressure is 2-10kg/cm<2> gauge pressure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、クメンを液相酸化して
クメンハイドロパーオキサイド(以下CHPと称する)
を製造する方法に関する。
[Industrial Application Field] The present invention produces cumene hydroperoxide (hereinafter referred to as CHP) by liquid phase oxidation of cumene.
Relating to a method of manufacturing.

【0002】0002

【従来の技術】クメンを酸化してCHPを合成する反応
は、クメン法フェノールプロセスの重要な行程であり、
又CHPも各種反応の酸化剤として多く利用されている
[Prior Art] The reaction of oxidizing cumene to synthesize CHP is an important step in the cumene phenol process.
CHP is also widely used as an oxidizing agent in various reactions.

【0003】クメンの酸化は、液相状態で酸素又は酸素
含有ガスの存在下に、一般的には数気圧の加圧下で行わ
れる。反応により生成する物質はCHP以外では、ジメ
チルフェニルカルビノール(以下C’nolと称する)
とアセトフェノン(以下A’noneと称する)が大半
を占めるが、ギ酸、酢酸等の有機酸も一部副生する。C
HPは酸性領域では分解し易い物質であり、従って有機
酸の生成による反応液pHの低下は反応収率上好ましく
ないと言う事が従来の常識であった。また、アルカリ領
域においてもCHPは分解する。それ故、クメンの液相
酸化反応は中性−弱アルカリ性域に於いて行われるのが
一般的である。そこで従来の方法に於いては、炭酸ナト
リウム、炭酸カリウム等のアルカリ塩類を添加する事に
より、反応液を中性−弱アルカリ性域に保った状態で反
応が行われていた。
The oxidation of cumene is carried out in the liquid phase in the presence of oxygen or an oxygen-containing gas, generally under pressure of several atmospheres. The substance produced by the reaction, other than CHP, is dimethylphenyl carbinol (hereinafter referred to as C'nol).
and acetophenone (hereinafter referred to as A'none) account for the majority, but some organic acids such as formic acid and acetic acid are also produced as by-products. C
HP is a substance that easily decomposes in an acidic region, and it has been conventional wisdom that a decrease in the pH of the reaction solution due to the production of organic acids is unfavorable in terms of reaction yield. Furthermore, CHP decomposes even in an alkaline region. Therefore, the liquid phase oxidation reaction of cumene is generally carried out in a neutral to weakly alkaline region. Therefore, in conventional methods, the reaction was carried out in a state where the reaction solution was kept in the neutral to slightly alkaline range by adding alkali salts such as sodium carbonate and potassium carbonate.

【0004】しかし、近年アルカリ塩類及び分散剤の役
目をする水の添加は反応収率上必ずしも有利ではない事
が判明した。特公昭54− 9185号及び特公昭55
− 8502号には、これら第三物質及び水の添加を行
わない酸化反応方法が開示されているが、特公昭54−
 9185号の方法では、有機酸生成に大きな影響を及
ぼすCHP 濃度と反応液の滞留時間の関係は明確にさ
れておらず、したがって高CHP 濃度域においても反
応時間は長く、また実施例の方法では反応圧力が低く低
酸化速度となっており、工業生産上改善が必要であり、
また特公昭55− 8502号の方法では、酸化反応器
内におけるCHP 濃度が低く、この濃度のものをその
まま濃縮工程で濃縮するには効率が悪く、濃縮工程に入
る前に予備濃縮塔において減圧下に反応熱を利用したC
HPの事前濃縮を行わなければならず、予備濃縮塔の設
置が必要であると共にCHP の濃縮度にも限界があり
、いずれの方法も工業上満足できるものではなかった。
However, in recent years it has been found that the addition of alkali salts and water, which acts as a dispersant, is not necessarily advantageous in terms of reaction yield. Special Publication No. 54-9185 and Special Publication No. 55
- Japanese Patent Publication No. 8502 discloses an oxidation reaction method that does not involve the addition of these third substances and water;
In the method of No. 9185, the relationship between the CHP concentration and the residence time of the reaction solution, which has a large effect on organic acid production, is not clarified, and therefore the reaction time is long even in the high CHP concentration range. The reaction pressure is low and the oxidation rate is low, which requires improvement in industrial production.
In addition, in the method of Japanese Patent Publication No. 55-8502, the CHP concentration in the oxidation reactor is low, and it is inefficient to concentrate this concentration directly in the concentration step, so it is necessary to use a preconcentration column under reduced pressure before entering the concentration step. C using the heat of reaction to
HP must be pre-concentrated, a pre-concentration column must be installed, and there is a limit to the degree of concentration of CHP, and neither method is industrially satisfactory.

【0005】[0005]

【発明が解決しようとする課題】酸素または酸素含有ガ
スの存在下におけるクメンの液相酸化反応に於いては、
C’nol やA’noneといった主要副生物の他に
、ギ酸や酢酸等の有機酸も一部副生する。従来のアルカ
リ塩類を添加する方法に於いては副生した有機酸は中和
され、反応液は弱アルカリ性〜中性域に保たれている。 これ故、反応液中のCHP は分解する事もなく、安定
した反応操作が行われる。しかし、本発明の様にアルカ
リ塩類や触媒の添加もなく酸化反応を行う場合に於いて
は、副生した有機酸は中和される事も無く反応液中に存
在し、反応液はCHP が分解し易い酸性域となる。中
でも、高CHP 濃度下や高反応温度における反応では
こうした有機酸の副生量が多くなる。副生した有機酸は
反応液のpHを低下させ、CHP の酸分解を促進して
酸化禁止剤であるフェノールを副生し、酸化速度の低下
とCHP収率の低下を招く事となる。
[Problem to be Solved by the Invention] In the liquid phase oxidation reaction of cumene in the presence of oxygen or oxygen-containing gas,
In addition to major byproducts such as C'nol and A'none, some organic acids such as formic acid and acetic acid are also produced. In the conventional method of adding alkali salts, by-produced organic acids are neutralized and the reaction solution is maintained in a weakly alkaline to neutral range. Therefore, CHP in the reaction solution does not decompose, and stable reaction operation is performed. However, when the oxidation reaction is carried out without the addition of alkaline salts or catalysts as in the present invention, the by-produced organic acid remains in the reaction solution without being neutralized, and the reaction solution contains CHP. It becomes an acidic region where it is easy to decompose. Among these, reactions at high CHP concentrations or at high reaction temperatures produce a large amount of such organic acids as by-products. The organic acid produced as a by-product lowers the pH of the reaction solution, promotes the acid decomposition of CHP, and produces phenol, which is an oxidation inhibitor, as a by-product, leading to a decrease in the oxidation rate and CHP yield.

【0006】そこで、一般的には最終反応液中のCHP
 濃度を20〜25重量%またはそれ以下の低い濃度で
酸化反応を行う、及び/又は反応温度を低くする方法に
より、有機酸ひいてはフェノールの副生を低くする努力
がなされていた。また反応圧力を低下する方法も、例え
ば低沸点の有機酸やその前駆体を反応器流出ガスと共に
反応器外に流出させ、反応液への有機酸の蓄積を防止す
る効果が考えられる。しかし、工業的見地からすると前
者の低CHP 濃度下で反応する方法は、後に続くCH
P 濃縮行程での設備費及び濃縮に要する用役費面から
好ましくない。また、後者の二つの方法では酸化速度が
遅くなり、所要反応器容積が大きくなるといった弊害を
招く。
Therefore, in general, CHP in the final reaction solution is
Efforts have been made to reduce the by-product of organic acids and, ultimately, phenol, by carrying out the oxidation reaction at a low concentration of 20 to 25% by weight or lower, and/or by lowering the reaction temperature. Furthermore, a method of lowering the reaction pressure is also considered to have the effect of preventing the organic acid from accumulating in the reaction solution, for example, by causing the low-boiling point organic acid or its precursor to flow out of the reactor together with the reactor outflow gas. However, from an industrial standpoint, the former method of reacting at low CHP concentrations is
P: Unfavorable from the viewpoint of equipment costs in the enrichment process and utility costs required for enrichment. Furthermore, the latter two methods have the disadvantage that the oxidation rate is slow and the required reactor volume is large.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記問題点
につき鋭意検討した結果、本発明を完成させるに至った
[Means for Solving the Problems] As a result of intensive study on the above-mentioned problems, the present inventors have completed the present invention.

【0008】即ち本発明は、クメンを酸素または酸素含
有ガス存在下に液相酸化して、クメンハイドロパーオキ
サイドを連続的に製造する方法に於いて、該反応を2個
以上の直列に繋いだ多段反応器によりアルカリ塩類や触
媒の不存在下に行い、反応液中のクメンハイドロパーオ
キサイドの濃度が25重量%以下の領域に於けるトータ
ルの反応液滞留時間及び反応液温度をそれぞれ0.1 
〜15時間、100 〜120 ℃、また25重量%を
越える領域に於けるトータルの反応液滞留時間及び反応
液温度をそれぞれ0.1 〜10時間、90〜115 
℃とし、且つクメンハイドロパーオキサイドの反応液の
全滞留時間が3 〜16時間であり、また反応圧力が2
〜10kg/cm2ゲージ圧力のもとに反応を行うこと
を特徴とするクメンハイドロパーオキサイドの製造方法
である。
That is, the present invention provides a method for continuously producing cumene hydroperoxide by oxidizing cumene in a liquid phase in the presence of oxygen or an oxygen-containing gas, in which two or more reactions are connected in series. The reaction was carried out in the absence of alkali salts or catalysts using a multistage reactor, and the total reaction solution residence time and reaction solution temperature were each 0.1 in the region where the concentration of cumene hydroperoxide in the reaction solution was 25% by weight or less.
~15 hours, 100 ~ 120 °C, and the total reaction solution residence time and reaction solution temperature in the region exceeding 25% by weight, respectively, for 0.1 ~ 10 hours, 90 ~ 115 °C.
℃, the total residence time of the cumene hydroperoxide reaction solution was 3 to 16 hours, and the reaction pressure was 2.
This is a method for producing cumene hydroperoxide, characterized in that the reaction is carried out under a gauge pressure of ~10 kg/cm2.

【0009】本発明はかかる方法をとる事により、有機
酸やフェノールの副生を抑制し、これら副生物による酸
化阻害を受ける事もなく、高酸化速度及び高収率でCH
P を製造する方法を提供するものである。
By adopting such a method, the present invention suppresses the by-products of organic acids and phenols, and achieves high oxidation rate and high yield of CH without being inhibited by oxidation by these by-products.
The present invention provides a method for producing P.

【0010】本発明の方法では、2個以上の反応器を直
列に接続し、その第1の反応器に原料クメンを供給する
。第2、第3と進むにつれて反応液のCHP 濃度は高
くなり、副生する有機酸やフェノール濃度も上昇してく
る。有機酸の生成量は、CHP 濃度に大きく依存する
。また反応液温度にも依存すると言われているが、これ
と同等又はそれ以上に反応器内滞留時間、即ち反応時間
に極めて大きく依存する。定かではないがこれは有機酸
がCHP より生成するアルコール及びアルデヒドの酸
化により生成され、この有機酸の促進作用によりCHP
 が酸分解してフェノールを生成するといった逐次反応
により生成する為であろうと思われる。そこで、有機酸
の生成し易い高CHP 濃度域、特に25重量%を越え
るCHP 濃度下での反応時間を短くして、有機酸が生
成する前に反応器外に流出させてしまうと都合が良い。
In the method of the present invention, two or more reactors are connected in series, and the raw material cumene is supplied to the first reactor. As the reaction progresses to the second and third stages, the CHP concentration of the reaction solution increases, and the concentrations of by-product organic acids and phenol also increase. The amount of organic acid produced is highly dependent on the CHP concentration. It is said that it depends on the temperature of the reaction solution, but it also depends on the residence time in the reactor, that is, the reaction time, to an equally or even greater extent. Although it is not clear, this is produced by the oxidation of alcohol and aldehyde produced by organic acids from CHP, and due to the accelerating action of this organic acid, CHP
This is thought to be due to the sequential reaction in which phenol is produced through acid decomposition. Therefore, it is convenient to shorten the reaction time in the high CHP concentration range where organic acids are likely to be generated, especially in CHP concentrations exceeding 25% by weight, so that the organic acids can flow out of the reactor before they are generated. .

【0011】本発明者らの検討によると、反応液中のC
HP 濃度が25重量%を越えるCHP 濃度領域に於
けるトータル反応時間を0.1 〜10時間とし、且つ
全CHP 濃度域でのトータル反応時間が3〜16時間
となる様に反応を行うと良い。25重量%以下の領域に
於いては反応時間の悪影響はさほど大きくはないが、工
業的見地からはトータル反応時間は0.1 〜15時間
が良好である。
According to the studies conducted by the present inventors, C in the reaction solution
The reaction should be carried out so that the total reaction time in the CHP concentration range where the HP concentration exceeds 25% by weight is 0.1 to 10 hours, and the total reaction time in the entire CHP concentration range is 3 to 16 hours. . In the range of 25% by weight or less, the adverse effect on reaction time is not so great, but from an industrial standpoint, a total reaction time of 0.1 to 15 hours is good.

【0012】また3個以上の反応器による多段反応方式
でかつ、最終反応器のCHP 濃度が35重量%を越え
る場合に於いては、反応液中のCHP濃度が25重量%
を越え35重量%以下の領域に於けるトータル反応時間
を0.1 〜6時間、35重量%を越える領域に於ける
トータル反応時間を0.1 〜4時間とし、且つ全CH
P 濃度域でのトータル反応時間が3〜15時間となる
様に反応を行うと良い。25重量%以下の領域に於いて
は、上述した理由によりトータル反応時間を0.1 〜
15時間とするのが良い。
[0012] In addition, in a multistage reaction system using three or more reactors, and when the CHP concentration in the final reactor exceeds 35% by weight, the CHP concentration in the reaction solution is 25% by weight.
The total reaction time in the range exceeding 35% by weight is 0.1 to 6 hours, the total reaction time in the range exceeding 35% by weight is 0.1 to 4 hours, and total CH
It is preferable to conduct the reaction so that the total reaction time in the P concentration range is 3 to 15 hours. In the region of 25% by weight or less, the total reaction time is 0.1 to 0.1% for the reasons mentioned above.
It is better to set it to 15 hours.

【0013】又、反応液温度は酸化速度等の観点より、
CHP 濃度が25重量%以下の領域に於いては100
 〜120 ℃、25重量%を越える領域に於いては9
0〜115 ℃とするのが良い。特に35重量%以上の
CHP 濃度域に於いては90〜110 ℃とするのが
好ましい。反応圧力は有機酸の蓄積防止面からは低い程
好ましい。しかし酸化速度を高いレベルに維持するため
には、2kg/cm2 ゲージ圧力以上、好ましくは2
〜10kg/cm2 ゲージ圧力が良い。
[0013] Also, the temperature of the reaction solution is determined from the viewpoint of oxidation rate, etc.
100 in the area where the CHP concentration is 25% by weight or less
~120℃, 9 in the area exceeding 25% by weight
The temperature is preferably 0 to 115°C. Particularly in the CHP concentration range of 35% by weight or more, the temperature is preferably 90 to 110°C. The lower the reaction pressure is, the more preferable it is from the viewpoint of preventing accumulation of organic acids. However, in order to maintain the oxidation rate at a high level, it is necessary to maintain the oxidation rate at a pressure of at least 2 kg/cm
~10kg/cm2 Gauge pressure is good.

【0014】こうした条件下で酸化反応を行うことによ
り、酸化速度を高いレベルに維持したままで有機酸の副
生を抑制し、ひいては酸化反応阻害物質であるフェノー
ルの副生を大きく低減することが可能となる。
[0014] By carrying out the oxidation reaction under these conditions, it is possible to suppress the by-product of organic acids while maintaining the oxidation rate at a high level, and further to greatly reduce the by-product of phenol, which is an oxidation reaction inhibitor. It becomes possible.

【0015】供給ガスは酸素及びまたは酸素含有ガスで
あり、通常は空気が使用される。またその量は、反応器
出口ガス中の酸素濃度が8vol %以下、好ましくは
2〜7vol %となるように供給される。
[0015] The feed gas is oxygen and/or an oxygen-containing gas, typically air. Further, the amount is supplied such that the oxygen concentration in the reactor outlet gas is 8 vol % or less, preferably 2 to 7 vol %.

【0016】また反応器は気泡塔タイプのものが一般的
であるが、撹拌槽や撹拌気泡塔タイプのものであっても
良い。ガスの吹き込み装置は、通常反応器内にガスが出
来る限り均一に分散する様に工夫されている。ガス分散
が不十分であると気液接触面積が減少し、反応液中への
酸素の供給が酸素消費速度に追いつかず、その結果反応
速度が大きく低下する事にもつながる。
[0016]Although the reactor is generally of the bubble column type, it may also be of the stirred tank or stirred bubble column type. Gas blowing devices are usually designed to distribute the gas as uniformly as possible within the reactor. If gas dispersion is insufficient, the gas-liquid contact area will decrease, and the supply of oxygen to the reaction solution will not be able to keep up with the oxygen consumption rate, resulting in a significant reduction in the reaction rate.

【0017】[0017]

【実施例】以下実施例により、本発明の方法を更に具体
的に説明する。
EXAMPLES The method of the present invention will be explained in more detail with reference to Examples below.

【0018】実施例1 内径30cm、液深2.7 mのステンレス製の第1反
応器に、CHP を 2.6重量%含有したクメンを毎
時38kgの速度で連続的に供給した。また、反応器流
出ガス中の酸素濃度が5vol %になる様に空気を1
00 μm の焼結板より連続的に供給し、108℃、
6kg/cm2ゲージ圧力のもとで反応を行った。反応
液の滞留時間は4時間であり、CHP  、有機酸及び
フェノール濃度はそれぞれ、23重量%、125 mg
/L、11mg/Lであった。
Example 1 Cumene containing 2.6% by weight of CHP was continuously supplied to a first reactor made of stainless steel with an inner diameter of 30 cm and a liquid depth of 2.7 m at a rate of 38 kg/hour. In addition, 1 vol.% of air was added so that the oxygen concentration in the reactor outflow gas was 5 vol%.
Continuously supplied from a 00 μm sintered plate at 108℃,
The reaction was carried out under 6 kg/cm2 gauge pressure. The residence time of the reaction solution was 4 hours, and the CHP, organic acid, and phenol concentrations were 23% by weight and 125 mg, respectively.
/L, and 11 mg/L.

【0019】この反応液を内径20cm、液深2.7 
mのステンレス製の第2反応器に毎時29kgの速度で
連続的に供給した。反応温度100 ℃、圧力及び流出
ガス中の酸素濃度は第1反応器と同じ値で反応を行った
。第2反応液の滞留時間及びCHP 、有機酸、フェノ
ールの濃度はそれぞれ、2.5 時間、30重量%、1
75 mg/L、16mg/Lであった。
[0019] This reaction solution was poured into a tube with an inner diameter of 20 cm and a depth of 2.7 cm.
29 kg/h was continuously fed to a second reactor made of stainless steel. The reaction was carried out at a reaction temperature of 100° C. and at the same pressure and oxygen concentration in the outflow gas as in the first reactor. The residence time of the second reaction solution and the concentrations of CHP, organic acid, and phenol were 2.5 hours, 30% by weight, and 1% by weight, respectively.
They were 75 mg/L and 16 mg/L.

【0020】続いて第2の反応液を内径15cm、液深
2.7 mのステンレス製の第3反応器に毎時25kg
の速度で連続的に供給した。反応温度98℃、圧力及び
流出ガス中の酸素濃度は第1反応器と同じ値で反応を行
った。第3反応液の滞留時間及びCHP、有機酸、フェ
ノールの濃度はそれぞれ、2.0 時間、35重量%、
230 mg/L、22mg/Lであった。
[0020] Subsequently, the second reaction solution was transferred to a third stainless steel reactor with an inner diameter of 15 cm and a liquid depth of 2.7 m at a rate of 25 kg per hour.
was fed continuously at a rate of The reaction was carried out at a reaction temperature of 98° C. and at the same pressure and oxygen concentration in the effluent gas as in the first reactor. The residence time and concentration of CHP, organic acid, and phenol of the third reaction solution were 2.0 hours and 35% by weight, respectively.
They were 230 mg/L and 22 mg/L.

【0021】続いて第3の反応液を内径10cm、液深
2.7 mのステンレス製の第4反応器に毎時10kg
の速度で連続的に供給した。反応温度98℃、圧力及び
流出ガス中の酸素濃度は第1反応器と同じ値で反応を行
った。第4反応液の滞留時間及びCHP 、有機酸、フ
ェノールの濃度はそれぞれ、2.0 時間、40重量%
、310 mg/L、31mg/Lであった。以上の条
件で約2週間連続運転を続けたが、いずれの反応器も安
定した運転が出来た。
[0021] Subsequently, the third reaction solution was transferred to a fourth stainless steel reactor with an inner diameter of 10 cm and a liquid depth of 2.7 m at a rate of 10 kg per hour.
was fed continuously at a rate of The reaction was carried out at a reaction temperature of 98° C. and at the same pressure and oxygen concentration in the effluent gas as in the first reactor. The residence time and concentration of CHP, organic acid, and phenol of the fourth reaction solution were 2.0 hours and 40% by weight, respectively.
, 310 mg/L, and 31 mg/L. Continuous operation was continued for about two weeks under the above conditions, and all reactors were able to operate stably.

【0022】実施例2 内径30cm、液深2.7 mのステンレス製の第1反
応器に、CHP を 2.6重量%含有したクメンを毎
時60kgの速度で連続的に供給した。また、反応器流
出ガス中の酸素濃度が5vol %になる様に空気を1
00 μm の焼結板より連続的に供給し、108℃、
6kg/cm2ゲージ圧力の元で反応を行った。反応液
の滞留時間は2.5 時間であり、CHP、有機酸及び
フェノール濃度はそれぞれ、14重量%、65mg/L
、6mg/Lであった。
Example 2 Cumene containing 2.6% by weight of CHP was continuously supplied at a rate of 60 kg/hour to a first reactor made of stainless steel with an inner diameter of 30 cm and a liquid depth of 2.7 m. In addition, 1 vol.% of air was added so that the oxygen concentration in the reactor outflow gas was 5 vol%.
Continuously supplied from a 00 μm sintered plate at 108℃,
The reaction was carried out under 6 kg/cm2 gauge pressure. The residence time of the reaction solution was 2.5 hours, and the CHP, organic acid, and phenol concentrations were 14% by weight and 65mg/L, respectively.
, 6 mg/L.

【0023】この反応液を内径20cm、液深2.7 
mのステンレス製の第2反応器に毎時31kgの速度で
連続的に供給した。反応温度104 ℃、圧力及び流出
ガス中の酸素濃度は第1反応器と同じ値で反応を行った
。第2反応液の滞留時間およびCHP、また有機酸、フ
ェノールの濃度はそれぞれ、2.2時間、23重量%、
120 mg/L、11mg/Lであった。
[0023] This reaction solution was poured into a tube with an inner diameter of 20 cm and a depth of 2.7 cm.
The mixture was continuously fed to a second reactor made of stainless steel at a rate of 31 kg/hr. The reaction was carried out at a reaction temperature of 104° C., and the same pressure and oxygen concentration in the outflow gas as in the first reactor. The residence time and CHP of the second reaction solution, as well as the concentrations of organic acid and phenol, were 2.2 hours, 23% by weight, and 23% by weight, respectively.
They were 120 mg/L and 11 mg/L.

【0024】続いて第2の反応液を内径15cm、液深
2.7 mのステンレス製の第3反応器に毎時20kg
の速度で連続的に供給した。反応温度101 ℃、圧力
及び流出ガス中の酸素濃度は第1反応器と同じ値で反応
を行った。第3反応液の滞留時間及びCHP 、有機酸
、フェノールの濃度はそれぞれ、2.1 時間、30重
量%、170 mg/L、16mg/Lであった。
Next, the second reaction solution was transferred to a third stainless steel reactor with an inner diameter of 15 cm and a liquid depth of 2.7 m at a rate of 20 kg per hour.
was fed continuously at a rate of The reaction was carried out at a reaction temperature of 101° C., and the same pressure and oxygen concentration in the outflow gas as in the first reactor. The residence time and concentration of CHP, organic acid, and phenol in the third reaction solution were 2.1 hours, 30% by weight, 170 mg/L, and 16 mg/L, respectively.

【0025】続いて第3の反応液を内径10cm、液深
2.7 mのステンレス製の第4反応器に毎時10kg
の速度で連続的に供給した。反応温度98℃、圧力及び
流出ガス中の酸素濃度は第1反応器と同じ値で反応を行
った。第4反応液の滞留時間及びCHP 、有機酸、フ
ェノールの濃度はそれぞれ、1.9 時間、35重量%
、220 mg/L、21mg/Lであった。以上の条
件で約2週間連続運転を続けたが、いずれの反応器も安
定した運転が出来た。
[0025] Subsequently, the third reaction solution was transferred to a fourth stainless steel reactor with an inner diameter of 10 cm and a liquid depth of 2.7 m at a rate of 10 kg per hour.
was fed continuously at a rate of The reaction was carried out at a reaction temperature of 98° C. and at the same pressure and oxygen concentration in the effluent gas as in the first reactor. The residence time and concentration of CHP, organic acid, and phenol of the fourth reaction solution were 1.9 hours and 35% by weight, respectively.
, 220 mg/L, and 21 mg/L. Continuous operation was continued for about two weeks under the above conditions, and all reactors were able to operate stably.

【0026】実施例3 内径30cm、液深2.7 mのステンレス製の第1反
応器に、CHP を 2.6重量%含有したクメンを毎
時38kgの速度で連続的に供給した。また、反応器流
出ガス中の酸素濃度が5vol %になる様に空気を1
00 μm の焼結板より連続的に供給し、107℃、
6kg/cm2 ゲージ圧力のもとで反応を行った。反
応液の滞留時間は4時間であり、CHP 、有機酸及び
フェノール濃度はそれぞれ、22重量%、110 mg
/L、10mg/Lであった。
Example 3 Cumene containing 2.6% by weight of CHP was continuously supplied to a first reactor made of stainless steel with an inner diameter of 30 cm and a liquid depth of 2.7 m at a rate of 38 kg/hour. In addition, 1 vol.% of air was added so that the oxygen concentration in the reactor outflow gas was 5 vol%.
Continuously supplied from a 00 μm sintered plate, heated at 107°C,
The reaction was carried out under 6 kg/cm2 gauge pressure. The residence time of the reaction solution was 4 hours, and the CHP, organic acid, and phenol concentrations were 22% by weight and 110 mg, respectively.
/L, 10mg/L.

【0027】この反応液を内径20cm、液深2.7 
mのステンレス製の第2反応器に毎時29kgの速度で
連続的に供給した。反応温度103 ℃、圧力及び流出
ガス中の酸素濃度は第1反応器と同じ値で反応を行った
。第2反応液の滞留時間およびCHP 、また有機酸、
フェノールの濃度はそれぞれ、2.5 時間、30重量
%、170 mg/L、17mg/Lであった。
[0027] This reaction solution was poured into a tube with an inner diameter of 20 cm and a depth of 2.7 cm.
29 kg/h was continuously fed to a second reactor made of stainless steel. The reaction was carried out at a reaction temperature of 103° C., and the same pressure and oxygen concentration in the effluent gas as in the first reactor. Residence time and CHP of the second reaction solution, and organic acid,
The concentrations of phenol were 30% by weight, 170 mg/L, and 17 mg/L for 2.5 hours, respectively.

【0028】続いて第2の反応液を内径15cm、液深
2.7 mのステンレス製の第3反応器に毎時29kg
の速度で連続的に供給した。反応温度101 ℃、圧力
及び流出ガス中の酸素濃度は第1反応器と同じ値で反応
を行った。第3反応液の滞留時間及びCHP 、有機酸
、フェノールの濃度はそれぞれ、1.4 時間、34.
5重量%、235 mg/L、23mg/Lであった。
Subsequently, the second reaction solution was transferred to a third stainless steel reactor with an inner diameter of 15 cm and a liquid depth of 2.7 m at a rate of 29 kg per hour.
was fed continuously at a rate of The reaction was carried out at a reaction temperature of 101° C., and the same pressure and oxygen concentration in the outflow gas as in the first reactor. The residence time and concentration of CHP, organic acid, and phenol of the third reaction solution were 1.4 hours and 34 hours, respectively.
They were 5% by weight, 235 mg/L, and 23 mg/L.

【0029】続いて第3の反応液を内径10cm、液深
2.7 mのステンレス製の第4反応器に毎時17kg
の速度で連続的に供給した。反応温度99℃、圧力及び
流出ガス中の酸素濃度は第1反応器と同じ値で反応を行
った。第4反応液の滞留時間及びCHP 、有機酸、フ
ェノールの濃度はそれぞれ、1.1 時間、39.5重
量%、300 mg/L、30mg/Lであった。
Next, the third reaction solution was transferred to a fourth stainless steel reactor with an inner diameter of 10 cm and a liquid depth of 2.7 m at a rate of 17 kg per hour.
was fed continuously at a rate of The reaction was carried out at a reaction temperature of 99° C. and at the same pressure and oxygen concentration in the effluent gas as in the first reactor. The residence time and concentration of CHP, organic acid, and phenol in the fourth reaction solution were 1.1 hours, 39.5% by weight, 300 mg/L, and 30 mg/L, respectively.

【0030】続いて第4の反応液を内径10cm、液深
2.7 mのステンレス製の第5反応器に毎時15kg
の速度で連続的に供給した。反応温度98℃、圧力及び
流出ガス中の酸素濃度は第1反応器と同じ値で反応を行
った。第4反応液の滞留時間及びCHP 、また有機酸
、フェノールの濃度はそれぞれ、1.0 時間、42.
5重量%、340 mg/L、34mg/Lであった。 以上の条件で約2週間連続運転を続けたが、いずれの反
応器も安定した運転が出来た。
Subsequently, the fourth reaction solution was transferred to a fifth stainless steel reactor with an inner diameter of 10 cm and a liquid depth of 2.7 m at a rate of 15 kg per hour.
was fed continuously at a rate of The reaction was carried out at a reaction temperature of 98° C. and at the same pressure and oxygen concentration in the effluent gas as in the first reactor. The residence time and CHP of the fourth reaction solution, as well as the concentrations of organic acid and phenol, were 1.0 hour and 42.5 hours, respectively.
They were 5% by weight, 340 mg/L, and 34 mg/L. Continuous operation was continued for about two weeks under the above conditions, and all reactors were able to operate stably.

【0031】比較例1 実施例1と同じ条件で第1の反応器を運転した。続いて
第2反応器は、第1反応液を毎時8.5kg の速度で
フィードした以外は、実施例1の第2反応器と同じ条件
で運転した。反応液の滞留時間は約12時間であり、反
応液中のCHP 濃度は一時的に約40wt%まで上昇
した。しかし、有機酸とフェノールが経時的に増加する
につれて、その後は逆にCHP 濃度は低下していった
。約2日間連続運転後のCHP 濃度は26重量%まで
低下していた。また有機酸及びフェノール濃度はそれぞ
れ1600mg/L、300 mg/Lにも達しており
、依然として安定化する傾向は見られなかった。
Comparative Example 1 The first reactor was operated under the same conditions as in Example 1. Subsequently, the second reactor was operated under the same conditions as the second reactor of Example 1, except that the first reaction liquid was fed at a rate of 8.5 kg/hour. The residence time of the reaction solution was about 12 hours, and the CHP concentration in the reaction solution temporarily rose to about 40 wt%. However, as organic acids and phenols increased over time, the CHP concentration subsequently decreased. After approximately 2 days of continuous operation, the CHP concentration had decreased to 26% by weight. Furthermore, the organic acid and phenol concentrations reached 1600 mg/L and 300 mg/L, respectively, and no tendency to stabilize was observed.

【0032】比較例2 第2反応器の反応温度を98℃とした以外は、比較例1
と同じ条件で反応を行った。比較例1と同様に反応液中
のCHP 濃度は一時的に約37wt%まで上昇した。 しかし、有機酸とフェノールが経時的に増加するにつれ
て、その後は逆にCHP 濃度は低下していった。約5
日間連続運転後のCHP 濃度は25重量%まで低下し
た。また、有機酸及びフェノール濃度はそれぞれ150
0mg/L、250 mg/Lにも達しており、依然と
して安定化する傾向は見られなかった。
Comparative Example 2 Comparative Example 1 except that the reaction temperature of the second reactor was 98°C.
The reaction was carried out under the same conditions. As in Comparative Example 1, the CHP concentration in the reaction solution temporarily rose to about 37 wt%. However, as organic acids and phenols increased over time, the CHP concentration subsequently decreased. Approximately 5
After continuous operation for one day, the CHP concentration decreased to 25% by weight. In addition, the organic acid and phenol concentrations were each 150
The concentrations reached 0 mg/L and 250 mg/L, and no tendency toward stabilization was observed.

【0033】比較例3 第2反応器の反応温度を120 ℃とした以外は、実施
例1と同じ条件で反応を行った。比較例1と同様に反応
液中のCHP 濃度は一時的に約39wt%まで上昇し
た。しかし、有機酸とフェノールが経時的に増加するに
つれて、その後は逆にCHP 濃度は低下していった。 約2日間連続運転後のCHP 濃度は26重量%まで低
下した。また、有機酸及びフェノール濃度はそれぞれ1
100mg/L、120 mg/Lにも達しており、依
然として安定化する傾向は見られなかった。
Comparative Example 3 A reaction was carried out under the same conditions as in Example 1, except that the reaction temperature of the second reactor was 120°C. As in Comparative Example 1, the CHP concentration in the reaction solution temporarily rose to about 39 wt%. However, as organic acids and phenols increased over time, the CHP concentration subsequently decreased. After about 2 days of continuous operation, the CHP concentration decreased to 26% by weight. In addition, the organic acid and phenol concentrations were each 1
The concentrations reached 100 mg/L and 120 mg/L, and no tendency toward stabilization was observed.

【0034】比較例4 反応圧力を0.7 kg/cm2 ゲージ圧力とした以
外は実施例1と同じ方法で第1反応器を運転した。運転
は安定していたが、反応液のCHP 濃度は17重量%
と実施例1に比べて低い値であった。
Comparative Example 4 The first reactor was operated in the same manner as in Example 1 except that the reaction pressure was 0.7 kg/cm2 gauge pressure. Although the operation was stable, the CHP concentration of the reaction solution was 17% by weight.
This value was lower than that of Example 1.

【0035】[0035]

【発明の効果】本発明の方法によると、アルカリ塩類や
触媒の不存在下においても、有機酸やフェノールの副生
量が少ない。これ故、これら物質による酸化反応阻害を
受けること無く、高濃度CHP 下での長期安定運転が
可能となる。又、高CHP 濃度域での反応温度を比較
的高くとる事が出来る事から、酸化速度の上昇、ひいて
は反応器容積の低減につながる。更に、最終反応液中の
CHP 濃度を高く出来る事より、CHP 濃縮系での
所要エネルギーや濃縮装置の設備費が大幅に削減出来る
ので産業に寄与すること極めて大である。
[Effects of the Invention] According to the method of the present invention, even in the absence of alkali salts and catalysts, the amount of by-products of organic acids and phenols is small. Therefore, long-term stable operation under high concentration CHP is possible without being inhibited by the oxidation reaction due to these substances. In addition, since the reaction temperature can be set relatively high in a high CHP concentration region, the oxidation rate increases, which leads to a reduction in the reactor volume. Furthermore, since the CHP concentration in the final reaction solution can be increased, the energy required for the CHP concentration system and the equipment cost of the concentrator can be significantly reduced, making it extremely useful for industry.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  クメンを酸素または酸素含有ガス存在
下に液相酸化して、クメンハイドロパーオキサイドを連
続的に製造する方法に於いて、該反応を2個以上の直列
に繋いだ多段反応器によりアルカリ塩類や触媒の不存在
下に行い、反応液中のクメンハイドロパーオキサイドの
濃度が25重量%以下の領域に於けるトータルの反応液
滞留時間及び反応液温度をそれぞれ0.1〜15時間、
100〜120℃、また25重量%を越える領域に於け
るトータルの反応液滞留時間及び反応液温度をそれぞれ
0.1〜10時間、90〜115℃とし、且つクメンハ
イドロパーオキサイドの反応液の全滞留時間が3〜16
時間であり、また反応圧力が2〜10kg/cm2ゲー
ジ圧力のもとに反応を行うことを特徴とするクメンハイ
ドロパーオキサイドの製造方法。
Claim 1: A method for continuously producing cumene hydroperoxide by liquid-phase oxidation of cumene in the presence of oxygen or an oxygen-containing gas, in which two or more reactors are connected in series. The reaction was carried out in the absence of alkali salts or catalysts, and the total reaction solution residence time and reaction solution temperature in the region where the concentration of cumene hydroperoxide in the reaction solution was 25% by weight or less were 0.1 to 15 hours, respectively. ,
100 to 120°C, and the total reaction solution residence time and reaction solution temperature in the region exceeding 25% by weight were set to 0.1 to 10 hours, respectively, and 90 to 115°C, and the total reaction solution of cumene hydroperoxide was Residence time 3-16
1. A method for producing cumene hydroperoxide, characterized in that the reaction is carried out under a gauge pressure of 2 to 10 kg/cm2.
【請求項2】  反応を3個以上の直列に繋いだ多段反
応器により行い、反応液中のクメンハイドロパーオキサ
イドの濃度が25重量%以下の領域に於けるトータルの
反応液滞留時間及び反応液温度を0.1〜15時間、1
00〜120℃、25重量%を越え35重量%以下の領
域に於けるトータルの反応液滞留時間及び反応液温度を
0.1 〜6時間、90〜115℃、35重量%を越え
る領域に於けるトータルの反応液滞留時間及び反応液温
度をそれぞれ0.1〜4時間、90〜110℃とし、且
つクメンハイドロパーオキサイドの反応液の全滞留時間
が3〜16時間である請求項1記載の方法。
2. The reaction is carried out using three or more multi-stage reactors connected in series, and the total reaction solution residence time and reaction solution in a region where the concentration of cumene hydroperoxide in the reaction solution is 25% by weight or less. Temperature 0.1-15 hours, 1
The total reaction solution residence time and reaction solution temperature in the range of 00 to 120°C, exceeding 25% by weight and below 35% by weight were changed for 0.1 to 6 hours, and in the range of 90 to 115°C, exceeding 35% by weight. 2. The total residence time of the reaction solution and the temperature of the reaction solution are respectively 0.1 to 4 hours and 90 to 110° C., and the total residence time of the reaction solution of cumene hydroperoxide is 3 to 16 hours. Method.
【請求項3】  最終の反応器に於けるクメンハイドロ
パーオキサイドの濃度が50重量%以下である請求項1
又は2記載の方法。
Claim 3: Claim 1, wherein the concentration of cumene hydroperoxide in the final reactor is 50% by weight or less.
Or the method described in 2.
【請求項4】  反応を4個の直列に繋いだ多段反応器
により行い、第1反応器のクメンハイドロパーオキサイ
ド濃度、反応液滞留時間及び反応液温度をそれぞれ25
重量%以下、0.1〜15時間及び100〜120℃、
第2反応器のクメンハイドロパーオキサイド濃度及び反
応液温度をそれぞれ25重量%を越え30重量%以下及
び95〜115℃、第3反応器のクメンハイドロパーオ
キサイド濃度及び反応液温度をそれぞれ30重量%を越
え35重量%以下及び90〜110℃とし、第2反応器
と第3反応器のトータルの反応液滞留時間を0.1 〜
6時間、また第4反応器のクメンハイドロパーオキサイ
ド濃度、反応液滞留時間及び反応液温度をそれぞれ35
重量%を越え40重量%以下、0.1〜4時間及び90
〜110℃とし、且つクメンハイドロパーオキサイドの
反応液の全滞留時間が3〜16時間である請求項1記載
の方法。
4. The reaction is carried out in four multistage reactors connected in series, and the cumene hydroperoxide concentration, reaction solution residence time, and reaction solution temperature in the first reactor are each set at 25%.
weight% or less, 0.1 to 15 hours and 100 to 120°C,
The cumene hydroperoxide concentration and the reaction liquid temperature in the second reactor are respectively 25% by weight and 30% by weight or less and 95-115°C, and the cumene hydroperoxide concentration and the reaction liquid temperature in the third reactor are respectively 30% by weight. 35% by weight or less and 90 to 110°C, and the total residence time of the reaction liquid in the second reactor and third reactor is 0.1 to 35% by weight.
6 hours, and the cumene hydroperoxide concentration, reaction solution residence time, and reaction solution temperature in the fourth reactor were set at 35% each.
more than 40% by weight, 0.1 to 4 hours and 90% by weight
2. The method according to claim 1, wherein the temperature is 110 DEG C. and the total residence time of the cumene hydroperoxide reaction solution is 3 to 16 hours.
【請求項5】  反応を4個の直列に繋いだ多段反応器
により行い、第1反応器のクメンハイドロパーオキサイ
ド濃度及び反応液温度をそれぞれ18重量%以下及び1
00〜120℃、第2反応器のクメンハイドロパーオキ
サイド濃度及び反応液温度をそれぞれ18重量%を越え
25重量%以下及び95〜115℃とし、第1反応器と
第2反応器のトータルの反応液滞留時間を0.1〜15
時間、また第3反応器のクメンハイドロパーオキサイド
濃度及び反応液温度をそれぞれ25重量%を越え30重
量%以下及び90〜110℃、第4反応器のクメンハイ
ドロパーオキサイド濃度及び反応液温度をそれぞれ30
重量%を越え35重量%以下及び90〜105℃、第3
反応器と第4反応器のトータルの反応液滞留時間を0.
1〜10時間とし、且つクメンハイドロパーオキサイド
の反応液の全滞留時間が3〜 16時間である請求項1
記載の方法。
5. The reaction is carried out in four multi-stage reactors connected in series, and the cumene hydroperoxide concentration and reaction liquid temperature in the first reactor are set to 18% by weight or less and 1% by weight or less, respectively.
00 to 120°C, the cumene hydroperoxide concentration and the reaction liquid temperature in the second reactor were set to more than 18% by weight and less than 25% by weight, and 95 to 115°C, respectively, and the total reaction in the first and second reactors was Liquid residence time 0.1-15
In addition, the cumene hydroperoxide concentration and reaction liquid temperature in the third reactor were determined to be more than 25% by weight and less than 30% by weight and 90 to 110°C, respectively, and the cumene hydroperoxide concentration and reaction liquid temperature in the fourth reactor were determined respectively. 30
more than 35% by weight and 90-105℃, 3rd
The total residence time of the reaction liquid in the reactor and the fourth reactor is 0.
Claim 1: 1 to 10 hours, and the total residence time of the cumene hydroperoxide reaction solution is 3 to 16 hours.
Method described.
【請求項6】  反応を5個の直列に繋いだ多段反応器
により行い、第1反応器のクメンハイドロパーオキサイ
ド濃度、反応液滞留時間及び反応液温度をそれぞれ25
重量%以下、0.1〜15時間及び100〜120 ℃
、第2反応器のクメンハイドロパーオキサイド濃度及び
反応液温度をそれぞれ25重量%を越え30重量%以下
及び95〜115℃、第3反応器のクメンハイドロパー
オキサイド濃度及び反応液温度をそれぞれ30重量%を
越え35重量%以下及び90〜110℃とし、第2反応
器と第3反応器のトータルの反応液滞留時間を0.1〜
5時間、また第4反応器のクメンハイドロパーオキサイ
ド濃度、反応液滞留時間及び反応液温度をそれぞれ35
重量%を越え40重量%以下、0.1〜3時間及び90
〜110℃、第5反応器のクメンハイドロパーオキサイ
ド濃度、反応液滞留時間及び反応液温度をそれぞれ40
重量%を越え45重量%以下、0.1〜2時間及び90
〜110℃とし、且つクメンハイドロパーオキサイドの
反応液の全滞留時間が3〜16時間である請求項1記載
の方法。
6. The reaction is carried out using five multistage reactors connected in series, and the cumene hydroperoxide concentration, reaction solution residence time, and reaction solution temperature in the first reactor are each set at 25%.
% by weight or less, 0.1-15 hours and 100-120°C
, the cumene hydroperoxide concentration and the reaction liquid temperature in the second reactor are more than 25% by weight and less than 30% by weight and 95 to 115°C, and the cumene hydroperoxide concentration and the reaction liquid temperature in the third reactor are each 30% by weight. % to 35% by weight or less and 90 to 110°C, and the total residence time of the reaction liquid in the second reactor and third reactor is 0.1 to 35% by weight.
5 hours, and the cumene hydroperoxide concentration, reaction solution residence time, and reaction solution temperature in the fourth reactor were adjusted to 35 minutes, respectively.
More than 40% by weight, 0.1 to 3 hours and 90% by weight
~110°C, and the cumene hydroperoxide concentration, reaction liquid residence time, and reaction liquid temperature in the fifth reactor were set at 40°C, respectively.
more than 45% by weight, 0.1 to 2 hours and 90% by weight
2. The method according to claim 1, wherein the temperature is 110 DEG C. and the total residence time of the cumene hydroperoxide reaction solution is 3 to 16 hours.
JP03068112A 1991-04-01 1991-04-01 Method for producing cumene hydroperoxide Expired - Lifetime JP3107409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03068112A JP3107409B2 (en) 1991-04-01 1991-04-01 Method for producing cumene hydroperoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03068112A JP3107409B2 (en) 1991-04-01 1991-04-01 Method for producing cumene hydroperoxide

Publications (2)

Publication Number Publication Date
JPH04305564A true JPH04305564A (en) 1992-10-28
JP3107409B2 JP3107409B2 (en) 2000-11-06

Family

ID=13364334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03068112A Expired - Lifetime JP3107409B2 (en) 1991-04-01 1991-04-01 Method for producing cumene hydroperoxide

Country Status (1)

Country Link
JP (1) JP3107409B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069586A1 (en) * 2008-12-17 2010-06-24 Borealis Ag Improving cumene oxidation
WO2010078934A1 (en) 2008-12-17 2010-07-15 Borealis Ag Multistage cumene oxidation
WO2013160420A1 (en) 2012-04-26 2013-10-31 Borealis Ag Method for reducing organic impurities in waste water
CN106554298A (en) * 2015-09-28 2017-04-05 万华化学集团股份有限公司 A kind of method that ethylbenzene oxidation prepares ethylbenzene hydroperoxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010069586A1 (en) * 2008-12-17 2010-06-24 Borealis Ag Improving cumene oxidation
WO2010078934A1 (en) 2008-12-17 2010-07-15 Borealis Ag Multistage cumene oxidation
CN102256940A (en) * 2008-12-17 2011-11-23 博瑞立斯有限公司 Improving cumene oxidation
US8952202B2 (en) 2008-12-17 2015-02-10 Borealis Ag Multistage cumene oxidation
US8975444B2 (en) 2008-12-17 2015-03-10 Borealis Ag Cumene oxidation
WO2013160420A1 (en) 2012-04-26 2013-10-31 Borealis Ag Method for reducing organic impurities in waste water
CN106554298A (en) * 2015-09-28 2017-04-05 万华化学集团股份有限公司 A kind of method that ethylbenzene oxidation prepares ethylbenzene hydroperoxide

Also Published As

Publication number Publication date
JP3107409B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
EP0612686B1 (en) A process for continuously producing chlorine dioxide
RU2141938C1 (en) Power saving and highly selective method of preparing phenol and acetone
JP4912870B2 (en) Method for producing alkylbenzene hydroperoxide
JPH0920699A (en) Production of phenol
KR20080037723A (en) Decomposition of cumene hydroperoxide
CN110845323A (en) Preparation method of hydroxylamine formate
JPH04305564A (en) Production of cumene hydroperoxide
US20070167658A1 (en) Process for producing alkyl aromatic hydroperoxide
US5091566A (en) Process for the manufacture of aqueous solutions of glyoxylic acid
EP1828090B1 (en) Process for decomposing cyclohexylhdroperoxide
US5237092A (en) Process for concurrently producing aryl formate and aromatic carboxylic acid
US4824992A (en) Process for producing pyromellitic acid
US4992600A (en) Process for the oxidation of benzene to phenol
JPH01190645A (en) Production of aromatic hydroxide derivative by reaction of baeyer-villiger reaction
JPH03287574A (en) Production of cumene hydroperoxide
JPH01180843A (en) Production of bisphenol a
EP0860420B1 (en) Process for producing 2-methyl-1,4-benzoquinone
US3832355A (en) Catalytic oxidation process
WO2010045423A1 (en) Method for producing phenol and acetone
US4503246A (en) Process for preparation of glyoxylic acid
US4463199A (en) Method for producing phloroglucin
JP2001097902A (en) Method for producing phenol
EP0008510A1 (en) Preparing o-chloranil by oxidising tetrachlorocatechol
EP1016657A1 (en) Method for producing peracetic acid
JPS6214534B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11