JPH0430494Y2 - - Google Patents

Info

Publication number
JPH0430494Y2
JPH0430494Y2 JP1255985U JP1255985U JPH0430494Y2 JP H0430494 Y2 JPH0430494 Y2 JP H0430494Y2 JP 1255985 U JP1255985 U JP 1255985U JP 1255985 U JP1255985 U JP 1255985U JP H0430494 Y2 JPH0430494 Y2 JP H0430494Y2
Authority
JP
Japan
Prior art keywords
string
strings
base shaft
inclinometer
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1255985U
Other languages
Japanese (ja)
Other versions
JPS61129109U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1255985U priority Critical patent/JPH0430494Y2/ja
Publication of JPS61129109U publication Critical patent/JPS61129109U/ja
Application granted granted Critical
Publication of JPH0430494Y2 publication Critical patent/JPH0430494Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 この考案は、傾斜計、特に測定範囲が広く、か
つ高精度な測定が可能な傾斜計に関する。
[Detailed description of the invention] (a) Industrial application field This invention relates to an inclinometer, particularly an inclinometer that has a wide measurement range and can perform highly accurate measurements.

(ロ) 従来の技術 従来、例えば地震予知のため海底でのプレート
移動に伴う微小変位を傾斜として検出するのに、
箱体内にジンバル機構を介して、フラツクスゲー
ト等の高感度磁気センサが吊設されてなる傾斜計
がよく使用される。
(b) Conventional technology Conventionally, for example, in order to predict earthquakes, small displacements caused by plate movement on the ocean floor are detected as inclinations.
Inclinometers are often used in which a high-sensitivity magnetic sensor, such as a flux gate, is suspended inside a box via a gimbal mechanism.

(ハ) 考案が解決しようとする問題点 上記従来の傾斜計では、フラツクスゲート等の
高感度磁気センサを用いているので、精度の良い
測定が可能であるが、ジンバル機構を用いている
ため、機器設置時の初期傾斜角に制約があり、測
定範囲は広く取れないという問題があつた。
(c) Problems that the invention aims to solve The conventional inclinometers mentioned above use high-sensitivity magnetic sensors such as flux gates, so accurate measurements are possible; however, they use a gimbal mechanism. However, there was a problem that the initial tilt angle at the time of equipment installation was limited, and a wide measurement range could not be obtained.

この考案は、上記に鑑み、高精度で、しかも測
定範囲の広い傾斜計を提供することを目的として
いる。
In view of the above, the purpose of this invention is to provide an inclinometer with high accuracy and a wide measurement range.

(ニ) 問題点を解決するための手段 この考案の傾斜計は、下端が固定部1に取付け
られて立設される板バネ4,5と、この板バネの
上端に、上端が連設されると基軸3と、この基軸
に設けられる錘6と、基軸の下端部と固定部間に
対称に支持張設される一対の弦9,10と、この
一対の弦をそれぞれ個別に含む第1及び第2の発
振部13,14と、この第1及び第2の発振部の
発振周波数の差に応じた信号を導出する出力回路
手段15,16,17とから構成されている。
(d) Means for Solving the Problems The inclinometer of this invention has leaf springs 4 and 5 which are erected with their lower ends attached to the fixed part 1, and whose upper ends are connected to the upper ends of the leaf springs. Then, the base shaft 3, the weight 6 provided on the base shaft, a pair of strings 9 and 10 symmetrically supported and tensioned between the lower end of the base shaft and the fixed part, and a first string including each of the pair of strings individually. and second oscillation sections 13, 14, and output circuit means 15, 16, 17 for deriving a signal according to the difference in oscillation frequency between the first and second oscillation sections.

(ホ) 作用 この傾斜計では、ベースつまり固定部が傾斜す
ると、それに応じて基軸も傾斜し、錘により一対
の弦に±の張力が生じ、これにより第1と第2の
発振周波数に差が生じる。この周波数差は、傾斜
角θに比例する。それゆえ出力回路手段により発
振周波数差に応じた信号を導出することにより、
傾斜角θが検出できる。板バネは、計器本体が傾
斜しても基軸を一対の弦の中央に保持し、また弦
に過度の張力が印加されたときに、それらが破断
しないように保護する。
(E) Effect In this inclinometer, when the base, that is, the fixed part, tilts, the base axis also tilts accordingly, and the weight creates ± tension on the pair of strings, which causes a difference between the first and second oscillation frequencies. arise. This frequency difference is proportional to the tilt angle θ. Therefore, by deriving a signal according to the oscillation frequency difference using the output circuit means,
The tilt angle θ can be detected. The leaf spring maintains the base shaft in the center of the pair of strings even when the instrument body is tilted, and also protects the strings from breaking when excessive tension is applied to them.

(ヘ) 実施例 以下実施例より、この考案をさらに詳細に説明
する。
(f) Examples This invention will be explained in more detail with the following examples.

この考案の一実施例傾斜計は、第1図,第2図
に示すように、図示外のケースに一体的に形成さ
れる固定部1に、ベース2が支持され、このベー
ス2に帯板状の基軸3が挿通され、またベース2
の両端に、このベース2に、その下端が連設され
る一対の板バネ4,5が立設され、この板バネ
4,5の上端に、基軸3の上端が連設されてい
る。また、基軸3の下端に錘6が設けられ、基軸
3の中央部には穴7が設けられ、この穴7に永久
磁石8が嵌設されている。さらに、基軸3の板面
の表裏に、基軸3と離隔して、ベース2と錘6間
に一対の弦9,10を張設している。
As shown in FIGS. 1 and 2, an inclinometer according to an embodiment of this invention has a base 2 supported by a fixed part 1 formed integrally with a case (not shown), and a band plate attached to the base 2. The base shaft 3 of the shape is inserted, and the base 2
A pair of leaf springs 4 and 5 are erected at both ends of the base 2, and the lower ends thereof are connected to each other, and the upper end of the base shaft 3 is connected to the upper ends of the leaf springs 4 and 5. Further, a weight 6 is provided at the lower end of the base shaft 3, a hole 7 is provided in the center of the base shaft 3, and a permanent magnet 8 is fitted into the hole 7. Furthermore, a pair of strings 9 and 10 are stretched between the base 2 and the weight 6 on the front and back sides of the plate surface of the base shaft 3, spaced apart from the base shaft 3.

また第1図、第2図では図示していないが、弦
9,10は両端がそれぞれ個別の発振器の回路部
に接続され、弦9,10にはそれぞれ電流が流れ
るようになつている。
Although not shown in FIGS. 1 and 2, both ends of the strings 9 and 10 are connected to respective oscillator circuits, so that current flows through the strings 9 and 10, respectively.

この発振器は、弦重力計の原理を利用したもの
であり、以下、弦重力計の原理を説明する。細い
弦の下におもりを吊るすと、その横方向の振動の
周波数fは、f=SQR(F/σ)/(2L)で与え
られる。なお、Fは弦の張力、Lは弦の長さ、σ
は弦の線密度、SQRはルート記号である。
This oscillator utilizes the principle of a string gravimeter, and the principle of the string gravimeter will be explained below. When a weight is suspended under a thin string, the frequency f of its transverse vibration is given by f=SQR(F/σ)/(2L). In addition, F is the tension of the string, L is the length of the string, and σ
is the linear density of the string, and SQR is the root symbol.

そして、おもりを吊るした弦に対して、永久磁
石などを用いて弦と直角方向の直流磁界を与える
と、この磁界と弦の振動によつて弦の両端に電圧
が発生するが、この電圧を増幅器で増幅してその
増幅出力を弦の両端に正帰還すると、この系は弦
の固有周波数で発振することになる。
When a permanent magnet or the like is used to apply a direct current magnetic field perpendicular to the string on which a weight is suspended, a voltage is generated at both ends of the string due to this magnetic field and the vibration of the string. When amplified by an amplifier and the amplified output is fed back positively to both ends of the string, this system will oscillate at the string's natural frequency.

第3図に示す傾斜計の回路部は、この弦重力計
の原理を利用したものであつて、弦9,10は、
増幅回路と正帰還回路とからなる発振器11,1
2に接続され、全体として弦発振部13,14を
構成している。従つて、弦発振部13は、弦9の
張力で決まる固有振動数f1で発振し、また弦発振
部14は、弦10の張力で決まる固有周波数f2
発振する。
The circuit section of the inclinometer shown in FIG. 3 utilizes the principle of this string gravimeter, and the strings 9 and 10 are
Oscillator 11, 1 consisting of an amplifier circuit and a positive feedback circuit
2, and constitute string oscillation sections 13 and 14 as a whole. Therefore, the string oscillator 13 oscillates at a natural frequency f 1 determined by the tension of the string 9, and the string oscillator 14 oscillates at a natural frequency f 2 determined by the tension of the string 10.

発振器11及び発振器12よりの周波数f1,f2
の発振信号が周波数−電圧変換器15,16に加
えられ、各周波数に対応した電圧に変換される。
この周波数−電圧変換器15,16の出力電圧
は、さらに差動増幅器17に入力され、両電圧の
差、すなわち発振器11,12の出力信号の周波
数差に応じた信号を導出するようになつている。
Frequencies f 1 and f 2 from oscillator 11 and oscillator 12
The oscillation signals are applied to frequency-voltage converters 15 and 16, and converted into voltages corresponding to each frequency.
The output voltages of the frequency-voltage converters 15 and 16 are further input to a differential amplifier 17, which derives a signal corresponding to the difference between the two voltages, that is, the frequency difference between the output signals of the oscillators 11 and 12. There is.

次に、上記実施例傾斜計の原理及び動作につい
て説明する。
Next, the principle and operation of the inclinometer according to the above embodiment will be explained.

実施例傾斜計の弦9,10の長さを、錘6の
重量を2Mとし、ベース2が、第4図に示すよう
に、弦9,10を含む方向にθだけ傾斜したとす
ると、錘6により弦9には、 Mgcosθ+Mgsinθ・・A/Z 弦10には、 Mgcosθ−Mgsinθ・・A/Z の張力が生じる。
Example If the length of the strings 9 and 10 of the inclinometer is 2M and the weight of the weight 6 is 2M, and the base 2 is tilted by θ in the direction including the strings 9 and 10 as shown in FIG. 6, a tension of Mgcosθ+Mgsinθ...A/Z is generated in the string 9, and a tension of Mgcosθ−Mgsinθ··A/Z is generated in the string 10.

尚、上式の第2項は、曲げモーメントMb、張
力T、弦の断面積A、弦の断面係数Zが T=Mb×A/Z=M×g×SINθ××A/Z の関係にあることを利用した。
The second term in the above equation is expressed as follows: bending moment M b , tension T, cross-sectional area A of the string, and section modulus Z of the string are T=M b ×A/Z=M×g×SINθ××A/Z. I took advantage of being in a relationship.

傾斜計がθだけ傾いたことによつて、上記のよ
うに、弦9と弦10の張力が変化するので、弦発
振部13,14の発振周波数f1,f2は、 f1=1/2√σ√+・
・ Z また、マクローリンの展開式を利用すると f1≒√Mgcosθ/2√σ〔1+1/2・sinθ・・
A/cosθ・Z −1/8(sinθ・・A/cosθ・Z)2〕 f2=1/2√σ√−・
・ Z 前式と同様に近似して f2≒√Mgcosθ/2√σ〔1−1/2・sinθ・・
A/cosθ・Z −1/8(sinθ・・A/cosθ・Z)2〕 但し g:重力加速度、σ:弦の線密度 A:弦の断面積、Z:弦の断面係数 b:弦の幅、 h:弦の厚み で表せる。従つて両周波数の差f1−f2を求める
と、 f1−f2=√Mgcosθ・sinθ・・A/2√σ・cos
θ・Z となり、この式より、 tanθ√=2Z√σ(f1−f2)/A√Mg ここで、弦9、弦10は、断面積Aがb×hの
矩形のスプリツトを用いるので、断面係数ZはZ
=bh2/6=hA/6となる。
As the inclinometer is tilted by θ, the tension of the strings 9 and 10 changes as described above, so the oscillation frequencies f 1 and f 2 of the string oscillation units 13 and 14 are f 1 = 1/ 2√σ√+・
・Z Also, using Maclaurin's expansion formula, f 1 ≒√Mgcosθ/2√σ[1+1/2・sinθ・・
A/cosθ・Z −1/8 (sinθ・・A/cosθ・Z) 2 〕 f 2 = 1/2√σ√−・
・Z Approximating in the same way as the previous equation, f 2 ≒√Mgcosθ/2√σ[1-1/2・sinθ・・
A/cosθ・Z −1/8 (sinθ・・A/cosθ・Z) 2 ] However, g: gravitational acceleration, σ: linear density of the string A: cross-sectional area of the string, Z: section modulus of the string b: Width, h: Can be expressed by the thickness of the string. Therefore, finding the difference f 1f 2 between both frequencies, f 1 − f 2 =√Mgcosθ・sinθ・・A/2√σ・cos
θ・Z, and from this formula, tanθ√=2Z√σ(f 1 − f 2 )/A√Mg Here, strings 9 and 10 use rectangular splits with cross-sectional area A of b x h. , the section modulus Z is Z
= bh 2 /6 = hA/6.

そこで、Z/A=h/6の関係とCOS≒1と
tanθ≒θの近似式を利用すると、 θ=h√σ(f1−f2)/3√Mg となる。ここでh√/3√=K(定数)と
おくと、 θ=K(f1−f2) となる。従つてこれより弦9,10の振動周波数
f1,f2を測定することにより、ベース2の傾斜角
θを求めることができる。板バネ4,5は計器本
体が傾斜しても基軸3を弦9,10の中央に保持
するとともに、弦9,10に過度の張力が印加さ
れたときに、それらが破断しないよう保護する。
なお板バネ4,5の反力は、傾斜に伴う弦9,1
0の張力変化に支障ないように設計されている。
Therefore, the relationship of Z/A=h/6 and COS≒1
Using the approximation formula of tanθ≒θ, θ=h√σ(f 1 −f 2 )/3√Mg. If we set h√/3√=K (constant) here, then θ=K(f 1 −f 2 ). Therefore, from this, the vibration frequency of strings 9 and 10
By measuring f 1 and f 2 , the inclination angle θ of the base 2 can be determined. The leaf springs 4, 5 hold the base shaft 3 in the center of the strings 9, 10 even if the instrument body is tilted, and protect the strings 9, 10 from breaking when excessive tension is applied to them.
Note that the reaction force of the leaf springs 4 and 5 is the chord 9 and 1 due to the inclination.
It is designed so that there is no problem with tension changes of 0.

この実施例傾斜計では、発振部13,14を周
波数f1,f2で発振させ、その周波数f1,f2を周波
数−電圧変換器15,16で電圧に変換し、その
差電圧を差動増幅器17の出力に得ており、差動
増幅器17より傾斜角θに応じた電圧が導出され
る。
In this example inclinometer, the oscillating units 13 and 14 are caused to oscillate at frequencies f 1 and f 2 , and the frequencies f 1 and f 2 are converted into voltages by frequency-voltage converters 15 and 16, and the difference voltage is The voltage is obtained from the output of the dynamic amplifier 17, and a voltage corresponding to the tilt angle θ is derived from the differential amplifier 17.

なお、上記実施例では、発振部13,14の発
振周波数の差の周波数に応じた信号を得るのに周
波数−電圧変換器を用いているが、カウンタと減
算器を用いてもよい。
In the above embodiment, a frequency-voltage converter is used to obtain a signal corresponding to the difference in the oscillation frequencies of the oscillation sections 13 and 14, but a counter and a subtracter may also be used.

(ト) 考案の効果 この考案の傾斜計によれば、原理的に機構上、
機械的な摩擦部がないので、高精度の測定を行う
ことができる。
(g) Effects of the invention According to the inclinometer of this invention, mechanically,
Since there are no mechanical friction parts, highly accurate measurements can be performed.

また、傾斜に伴う弦・錘等の可動量が微小なの
で、機器設置時の初期傾斜角を幅広く許容できる
上、測定範囲も広く取ることができる。
Furthermore, since the amount of movement of the string, weight, etc. due to inclination is minute, a wide range of initial inclination angles can be tolerated when installing the device, and a wide measurement range can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の一実施例を示す傾斜計の
要部正面図、第2図は、同傾斜計の側断面図、第
3図は同傾斜計の回路ブロツク図、第4図は、同
傾斜計の動作を説明するための側面図である。 1……固定部、2……ベース、3……基軸、
4,5……板バネ、6……錘、8……永久磁石、
9,10……弦、13,14……発振部、15,
16……周波数−電圧変換器、17……差動増幅
器。
Fig. 1 is a front view of the essential parts of an inclinometer showing an embodiment of this invention, Fig. 2 is a side sectional view of the inclinometer, Fig. 3 is a circuit block diagram of the inclinometer, and Fig. 4 is a , is a side view for explaining the operation of the inclinometer. 1... Fixed part, 2... Base, 3... Base shaft,
4, 5...plate spring, 6...weight, 8...permanent magnet,
9, 10... string, 13, 14... oscillation section, 15,
16... Frequency-voltage converter, 17... Differential amplifier.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 下端が固定部に取付けられて立設される板バネ
と、この板バネの上端に、上端が連設される基軸
と、この基軸の先端に設けられる錘と、前記基軸
の下端部と固定部間に対称に支持・張設される一
対の弦と、この一対の弦をそれぞれ個別に含む第
1と第2の発振部と、この第1及び第2の発振部
の発振周波数の差に応じた信号を導出する出力回
路手段とからなる傾斜計。
A leaf spring whose lower end is attached to a fixed part and stands upright; a base shaft whose upper end is connected to the upper end of the leaf spring; a weight provided at the tip of the base shaft; and a lower end of the base shaft and the fixed part. A pair of strings supported and stretched symmetrically between them, a first and a second oscillating section that individually include the pair of strings, and a oscillating section that responds to the difference in oscillation frequency between the first and second oscillating sections. and output circuit means for deriving a signal.
JP1255985U 1985-01-30 1985-01-30 Expired JPH0430494Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255985U JPH0430494Y2 (en) 1985-01-30 1985-01-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255985U JPH0430494Y2 (en) 1985-01-30 1985-01-30

Publications (2)

Publication Number Publication Date
JPS61129109U JPS61129109U (en) 1986-08-13
JPH0430494Y2 true JPH0430494Y2 (en) 1992-07-23

Family

ID=30495739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255985U Expired JPH0430494Y2 (en) 1985-01-30 1985-01-30

Country Status (1)

Country Link
JP (1) JPH0430494Y2 (en)

Also Published As

Publication number Publication date
JPS61129109U (en) 1986-08-13

Similar Documents

Publication Publication Date Title
US5392650A (en) Micromachined accelerometer gyroscope
US7243542B2 (en) Closed loop analog gyro rate sensor
US6848304B2 (en) Six degree-of-freedom micro-machined multi-sensor
US6155115A (en) Vibratory angular rate sensor
US6837107B2 (en) Micro-machined multi-sensor providing 1-axis of acceleration sensing and 2-axes of angular rate sensing
US6257057B1 (en) Epitaxial coriolis rate sensor
US7714584B2 (en) Gravity gradiometer
US7640803B1 (en) Micro-electromechanical system inertial sensor
US20100024548A1 (en) Scale Factor Measurement For Mems Gyroscopes And Accelerometers
JPH0513468B2 (en)
US6557415B2 (en) Counterbalanced silicon tuned multiple accelerometer-gyro
JPH0430494Y2 (en)
Kanda et al. Transfer function of a crossed wire pendulum isolation system
JPS61164109A (en) Vibration type angular velocity meter
US4821423A (en) Instrument producing electrical signals in response to acceleration forces
JPS61116612A (en) Measuring device for direction of bore hole
JPH0334829B2 (en)
JPH1151965A (en) Small-sized accelerometer of type using gravitational effect compensating spring and manufacture thereof
US3375722A (en) Linear and angular velocity and acceleration measuring instrument
JPH0131938Y2 (en)
RU2684427C1 (en) Sensitive element of a microelectromechanical angular speed sensor
GB2153074A (en) Multisensor
TWI272388B (en) Two-dimensional optical accelerometer
RU2176404C1 (en) Seismometer-clinometer-deformation meter
JPH0454912B2 (en)