JPH0430424B2 - - Google Patents

Info

Publication number
JPH0430424B2
JPH0430424B2 JP58214098A JP21409883A JPH0430424B2 JP H0430424 B2 JPH0430424 B2 JP H0430424B2 JP 58214098 A JP58214098 A JP 58214098A JP 21409883 A JP21409883 A JP 21409883A JP H0430424 B2 JPH0430424 B2 JP H0430424B2
Authority
JP
Japan
Prior art keywords
charge
formula
substance
photoreceptor
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58214098A
Other languages
Japanese (ja)
Other versions
JPS60106860A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58214098A priority Critical patent/JPS60106860A/en
Publication of JPS60106860A publication Critical patent/JPS60106860A/en
Publication of JPH0430424B2 publication Critical patent/JPH0430424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は新規なヒドラゾン化合物及びその製造
法に関し、さらに詳細には、電荷発生材及び電荷
移動材を含む電子写真感光体において、電荷移動
材として有効に機能するヒドラゾン化合物及びそ
の製造法に関する。 従来技術 従来、電子写真方式において使用される感光体
の光導電性素材として用いられているものにセレ
ン、硫化カドミウム、酸化亜鉛などの無機物質が
ある。ここにいう「電子写真方式」とは一般に光
導電性の感光体を、まず暗所で例えばコロナ放電
によつて帯電せしめ、次いで像露光し、露光部の
みの電荷を選択的に逸散せしめて静電潜像を得、
この潜像部をトナーと呼ばれる染料、顔料などの
着色材と高分子物質などの結合剤よりなる検電微
粒子などを用いた現像手段で可視化して画像を形
成するようにした画像形成法の一つである。この
ような電子写真法において、感光体に要求される
基本的な特性としては、(1)暗所で適当な電位に帯
電できること、(2)暗所において電荷の逸散が少な
いこと、(3)光照射によつて速やかに電荷を逸散せ
しめうることなどがあげられる。 従来用いられている前記無機感光体は多くの長
所を持つていると同時にさまざまの欠点を持つて
いるため、近年、多くの有機物質を用いた電子写
真用感光体が提案され、実用に供されているもの
がある。中でも光を吸収し、電荷担体を発生する
物質(以下電荷発生物質と呼ぶ)と、発生した電
荷担体を受け入れこれを移動する物質(以下電荷
移動物質と呼ぶ)とからなる感光体が、電荷体体
発生と電荷担体移動を同一物質で行う感光体に比
較し、各機能に適した材料が巾広く選べるため、
従来にない高感度を与えることが知られている。
この種の感光体に用いられる材料の要件は、電荷
発生物質は所望の光を吸収して電荷担体を発生す
ること、電荷担体の発生効率が高いこと、感光体
作製上加工しやすいことなどが挙げられる。一
方、電荷移動物質は、電荷発生物質から電荷担体
を受け入れやすいこと、電荷担体の移動が速やか
であること、電荷発生物質の感光域に吸収を持た
ないことが挙げられる。又、特に留意すべきこと
は、電荷発生物質によつて、これに適する電荷移
動物質が異ることである。電荷発生物質と電荷移
動物質との組合せが適当でないと、暗所での帯
電々位が十分得られなかつたり、光照射時、電荷
の逸散が十分でないため、得られる画像の濃度が
低かつたり、地肌が汚れたりする。一般には暗所
での帯電々位が高いものは電荷の逸散が悪く、電
荷の逸散が良いものは帯電々位が低いという傾向
にあり、これは、電荷発生物質により、又、電荷
移動物質により異なる。実用的には地肌が汚れな
い程度に電荷の逸散がよく、十分な画像濃度が得
られる程度の帯電々位が得られる適宜な組合せが
選ばれる。 前記電荷発生物質としては非常に多くのものが
提案されており特に有効なものとして例えばシー
アイピグメントブルー25(カラーインデツクス
21180)、カルバゾール骨核を有するアゾ顔料(特
開昭53−95033)、トリフエニルアミン骨核を有す
るアゾ顔料(特開昭53−132347)、スチリルスチ
ルベン骨核を有するアゾ顔料(特開昭53−
133445)ジフエニルオキサジアゾール骨核を有す
るアゾ顔料(特開昭54−12742)、フルオレノン骨
核を有するアゾ顔料(特開昭54−22834)などが
あげられるが、前記の理由により、これら電荷発
生物質に適する電荷移動物質はそれぞれ異なるも
のである。 目 的 本発明の目的は、電子写真感光体において電荷
移動物質として有効に機能する化合物、即ち種々
の電荷発生物質と共に用いた時、暗所にて適宜な
帯電電位を有し、かつ光照射により速やかに電荷
が逸散するヒドラゾン化合物及びその製造法を提
供する所にある。 構 成 本発明は、一般式() (式中、Arはフエニル基、Rは低級アルキル基
またはベンジル基を表わす。) で示されるヒドラゾン誘導体に関し、更に一般式
() (式中、Ar及びRは一般式()に同じ。) で示されるヒドラジン誘導体と式() で示されるアルデヒド化合物とを反応させること
を特徴とする一般式() (式中、Ar及びRは前記に同じ) で示されるヒドラゾン誘導体の製造法に関する。 本発明の前記ヒドラゾン化合物は、常温におい
て無色又は淡黄色の結晶体であり、一般式()
のヒドラジン誘導体と式()のアルデヒド化合
物とを等モル比で適当な有機溶剤中で反応せしめ
ることにより容易に得られる。この脱水縮合反応
は、一般に知られているように酸を添加するとに
より促促進することができ、例えば塩酸、希硫酸
などの無機酸及び酢酸のような有機酸が用いられ
る。反応溶媒として用いられる有機溶剤として
は、前記反応系が溶解するものであれば、ほとん
どの有機溶媒が使用可能であり、メタノール、エ
タノールなどの低級アルコール、1,4−ジオキ
サン、テトラヒドロフランなどの環状エーテル、
メチルセロソルブ、エチルセロソルブなどのセロ
ソルブ類、N,N−ジメチルホルムアミド、酢酸
などが挙げられる。反応温度は反応溶媒によつて
異なり、反応系の溶解性が良いN,N−ジメチル
ホルムアミドなどを用いる場合には室温で反応は
進行し、反応系が室温で難溶なエタノールなどを
用いる場合には加熱還流することが望ましい。い
ずれの場合も反応は1〜5時間で終了する。 こうして得られる一般式()で表わされるヒ
ドラゾン化合物の具体例(No.1及び2)は下記に
示す通りである。 効 果 本発明のヒドラゾン化合物は、電子写真感光体
において電荷移動物質として有効に機能するもの
であつて、種々の電荷発生物質と共に用いた時、
暗所にて適宜な帯電電位を有し、かつ光照射によ
り速やかに電荷が逸散するものである。 以下、実施例(本発明に係るヒドラゾン化合物
の製造例)及び応用例(電子写真感光体への応
用)により本発明の効果を具体的に示す。 実施例 4−N,N−ジフエニルアミノナフトアルデヒ
ド32.4g(0.1モル)をN,N−ジメチルホルム
アミド100mlに溶解し、これに1規定の塩酸5ml
加え撹拌しつつ、1−メチル−1−フエニルヒド
ラジン14.7g(0.12モル)を30分間滴下した。更
に室温で1時間撹拌した後、水200ml加えて析出
する沈殿を取・乾燥し、酢酸エチル−エタノー
ルから再結晶して目的物(化合物No.1)を得た。 他に、上記1−メチル−1−フエニルヒドラジ
ンに代えて1−ベンジル−1−フエニルヒドラジ
ンを用いて化合物No.2のヒドラゾン化合物を得
た。 各々のヒドラゾン化合物の収率、融点及び元素
分析値は下表の通りである。なおNo.1のヒドラゾ
ン化合物の赤外線吸収スペクトル(KBr錠剤法)
を図に示した。
Technical Field The present invention relates to a novel hydrazone compound and a method for producing the same, and more particularly, to a hydrazone compound that effectively functions as a charge transfer material in an electrophotographic photoreceptor containing a charge generation material and a charge transfer material, and a method for producing the same. . Prior Art Conventionally, inorganic materials such as selenium, cadmium sulfide, and zinc oxide have been used as photoconductive materials for photoreceptors used in electrophotography. The "electrophotographic method" referred to here generally refers to a method in which a photoconductive photoreceptor is first charged in a dark place by, for example, corona discharge, and then exposed imagewise to selectively dissipate the charge only in the exposed areas. Obtain an electrostatic latent image,
One of the image forming methods in which an image is formed by visualizing this latent image area using a developing means using electrostatic fine particles called toner, which is made of a coloring material such as a dye or pigment and a binder such as a polymeric substance. It is one. In such electrophotography, the basic characteristics required of the photoreceptor are (1) the ability to be charged to an appropriate potential in the dark, (2) less dissipation of charge in the dark, and (3) the ability to charge to an appropriate potential in the dark. ) The charge can be quickly dissipated by light irradiation. The conventionally used inorganic photoreceptors have many advantages but also have various drawbacks, so in recent years, electrophotographic photoreceptors using many organic materials have been proposed and put into practical use. There are things that are. Among them, a photoreceptor is composed of a substance that absorbs light and generates charge carriers (hereinafter referred to as a charge generation substance) and a substance that accepts the generated charge carriers and moves them (hereinafter referred to as a charge transfer substance). Compared to photoreceptors that use the same material for charge carrier generation and charge carrier transfer, a wide range of materials suitable for each function can be selected.
It is known to provide unprecedented high sensitivity.
Requirements for the materials used in this type of photoreceptor include that the charge-generating substance absorbs the desired light and generates charge carriers, that the charge carrier generation efficiency is high, and that it is easy to process to produce the photoreceptor. Can be mentioned. On the other hand, the charge transfer substance has the following characteristics: it easily accepts charge carriers from the charge generation substance, the charge carriers move quickly, and it does not absorb in the photosensitive region of the charge generation substance. What should be noted in particular is that suitable charge transfer substances differ depending on the charge generation substance. If the combination of the charge-generating material and the charge-transfer material is not appropriate, a sufficient charge potential may not be obtained in the dark, or the charge may not dissipate sufficiently during light irradiation, resulting in low density and low-density images. or the scalp becomes dirty. In general, objects with a high charge potential in the dark tend to have poor charge dissipation, and objects with good charge dissipation tend to have a low charge potential.This is due to charge generation substances and charge transfer. Depends on the substance. Practically speaking, an appropriate combination is selected that provides sufficient charge dissipation to the extent that the background is not smudged and provides a sufficient charge level to provide sufficient image density. A large number of charge-generating substances have been proposed, and one particularly effective one is, for example, CI Pigment Blue 25 (Color Index).
21180), an azo pigment with a carbazole bone core (Japanese Patent Application Laid-open No. 53-95033), an azo pigment with a triphenylamine bone core (Japanese Patent Publication No. 53-132347), an azo pigment with a styrylstilbene bone core (Japanese Patent Publication No. 53-1999) −
133445) Azo pigments with diphenyloxadiazole bone cores (Japanese Patent Application Laid-Open No. 12742/1982) and azo pigments with fluorenone bone cores (Japanese Patent Laid-Open No. 54-22834), etc. Different charge transfer materials are suitable for generation materials. Purpose The purpose of the present invention is to provide a compound that effectively functions as a charge transfer substance in an electrophotographic photoreceptor, that is, when used together with various charge generation substances, has an appropriate charging potential in a dark place, and when irradiated with light, It is an object of the present invention to provide a hydrazone compound whose charge quickly dissipates and a method for producing the same. Structure The present invention is based on the general formula () (In the formula, Ar represents a phenyl group, R represents a lower alkyl group or a benzyl group.) Regarding the hydrazone derivative represented by the general formula () (In the formula, Ar and R are the same as the general formula ().) A hydrazine derivative represented by the formula () General formula () characterized by reacting with an aldehyde compound represented by (In the formula, Ar and R are the same as above.) The present invention relates to a method for producing a hydrazone derivative represented by the following formula. The hydrazone compound of the present invention is a colorless or pale yellow crystal at room temperature, and has the general formula ()
It can be easily obtained by reacting a hydrazine derivative of formula (2) with an aldehyde compound of formula (2) in an equimolar ratio in a suitable organic solvent. This dehydration condensation reaction can be accelerated by adding an acid, as is generally known, and for example, inorganic acids such as hydrochloric acid and dilute sulfuric acid and organic acids such as acetic acid are used. As the organic solvent used as the reaction solvent, almost any organic solvent can be used as long as it dissolves the reaction system, including lower alcohols such as methanol and ethanol, and cyclic ethers such as 1,4-dioxane and tetrahydrofuran. ,
Examples include cellosolves such as methyl cellosolve and ethyl cellosolve, N,N-dimethylformamide, and acetic acid. The reaction temperature varies depending on the reaction solvent; when using N,N-dimethylformamide, etc., which has good solubility in the reaction system, the reaction proceeds at room temperature, and when using ethanol, etc., whose reaction system is poorly soluble at room temperature, the reaction proceeds. is preferably heated to reflux. In either case, the reaction is completed in 1 to 5 hours. Specific examples (Nos. 1 and 2) of the hydrazone compound represented by the general formula () thus obtained are as shown below. Effects The hydrazone compound of the present invention functions effectively as a charge transfer substance in an electrophotographic photoreceptor, and when used together with various charge generation substances,
It has an appropriate charging potential in a dark place, and the charge quickly dissipates when irradiated with light. Hereinafter, the effects of the present invention will be specifically illustrated by Examples (manufacturing examples of hydrazone compounds according to the present invention) and Application Examples (applications to electrophotographic photoreceptors). Example 4 - Dissolve 32.4 g (0.1 mol) of N,N-diphenylaminonaphthaldehyde in 100 ml of N,N-dimethylformamide, and add 5 ml of 1N hydrochloric acid to this.
While stirring, 14.7 g (0.12 mol) of 1-methyl-1-phenylhydrazine was added dropwise over 30 minutes. After further stirring at room temperature for 1 hour, 200 ml of water was added, and the precipitate precipitated was collected, dried, and recrystallized from ethyl acetate-ethanol to obtain the desired product (Compound No. 1). In addition, a hydrazone compound of Compound No. 2 was obtained by using 1-benzyl-1-phenylhydrazine in place of the above-mentioned 1-methyl-1-phenylhydrazine. The yield, melting point, and elemental analysis values of each hydrazone compound are shown in the table below. Infrared absorption spectrum of No. 1 hydrazone compound (KBr tablet method)
is shown in the figure.

【表】 応用例 電荷発生物質としてダイアンブルー(シーアイ
ピグメントブルー25、CI21180)76部、ポリエス
テル樹脂(バイロン200、(株)東洋紡績製)の2%
テトラヒドロフラン溶液1260部およびテトラヒド
ロフラン3700部をボールミル中で粉砕混合し、得
られた分散液を導電性支持体のアルミニウム面上
にドクターブレードを用いて塗布し、自然乾燥し
て厚さ約1μmの電荷発生層を形成した。 一方、電荷移動物質として合成例1のヒドラゾ
ン化合物2部、ポリカーボネート樹脂(パンライ
トK1300、(株)帝人製)2部およびテトラヒドロフ
ラン16部を混合溶解して溶液とした後、これを前
記電荷発生層上にドクターブレードを用いて塗布
し、80℃で2分間、ついで105℃で5分間乾燥し
て厚さ約20μmの電荷搬送層を形成せしめて感光
体No.1を作製した。 他に、電荷移動物質として合成例2のヒドラゾ
ン化合物及び電荷発生物質を代え、感光体No.2を
作製した。 なお、比較として電荷移動物質として式()
においてRがフエニル基を表わすヒドラゾン化合
物を用い、感光体No.1と同じ電荷発生物質を用い
て感光体No.3を作成した。
[Table] Application example 76 parts of Diane Blue (CI Pigment Blue 25, CI21180) as a charge generating substance, 2% of polyester resin (Vylon 200, manufactured by Toyobo Co., Ltd.)
1,260 parts of tetrahydrofuran solution and 3,700 parts of tetrahydrofuran were pulverized and mixed in a ball mill, and the resulting dispersion was applied onto the aluminum surface of a conductive support using a doctor blade and air-dried to generate a charge with a thickness of approximately 1 μm. formed a layer. On the other hand, as a charge transfer substance, 2 parts of the hydrazone compound of Synthesis Example 1, 2 parts of polycarbonate resin (Panlite K1300, manufactured by Teijin Ltd.), and 16 parts of tetrahydrofuran were mixed and dissolved to form a solution, and this was added to the charge generation layer. A charge transport layer having a thickness of about 20 μm was formed by coating the photoreceptor on top using a doctor blade and drying at 80° C. for 2 minutes and then at 105° C. for 5 minutes to prepare photoreceptor No. 1. In addition, photoreceptor No. 2 was prepared by replacing the hydrazone compound and charge generating substance of Synthesis Example 2 as charge transfer substances. For comparison, as a charge transfer substance, the formula ()
Photoreceptor No. 3 was prepared using a hydrazone compound in which R represents a phenyl group and using the same charge generating material as photoreceptor No. 1.

【表】【table】

【表】 かくしてつくられた感光体No.1〜3について、
市販の静電複写紙試験装置(KK川口電機製作製
SP428型)を用いて−6KV又は+6KVのコロナ
放電を20秒間行なつて帯電せしめた後、20秒間暗
所に放置し、その時の表面電位Vpo(ボルト)を
測定し、ついでタングステンランプ光を感光体表
面の照度が4.5ルツクスになるよう照射してその
表面電位がVpoの1/2になるまでの時間(秒)を
求め、露光量E1/2(ルツクス・秒)を算出した。
また、光照射後30秒間放置した時の表面電位V30
(ボルト)すなわち残留電位を測定した。その結
果を表−3に示す。
[Table] Regarding the photoreceptors No. 1 to 3 made in this way,
Commercially available electrostatic copying paper testing device (manufactured by KK Kawaguchi Denki)
SP428 type) to perform corona discharge of -6KV or +6KV for 20 seconds to charge it, leave it in a dark place for 20 seconds, measure the surface potential Vpo (volt) at that time, and then expose it to tungsten lamp light. The body surface was irradiated with illuminance of 4.5 lux, and the time (seconds) until the surface potential became 1/2 of Vpo was determined, and the exposure amount E1/2 (lux/second) was calculated.
In addition, the surface potential V30 when left for 30 seconds after light irradiation
(volt), that is, the residual potential was measured. The results are shown in Table-3.

【表】 感光体1〜3は、初期電位Vpoが高く、感度E
1/2も高いものであつた。残留電位V30の特性に
関しては、本発明化合物を用いた感光体1および
2は充分低いのに対し、比較用感光体3は高く劣
つたものであつた。 次に、上記3種の感光体をそれぞれ用いて市販
の電子写真複写機を用いて帯電せしめた後、原画
を介して光照射を行なつて静電潜像を形成し、こ
れを湿式現像剤を用いて現像し、得られたトナー
画像を普通紙上に静電転写して複写画像を得た。
感光体1および2を用いた場合には画像濃度の高
い地肌汚れのない鮮明な画像が得られていたが、
感光体3を用いた場合には地肌汚れの目立つ複写
画像であつた。
[Table] Photoreceptors 1 to 3 have a high initial potential Vpo and a high sensitivity E.
It was also 1/2 as expensive. Regarding the characteristic of residual potential V30, photoreceptors 1 and 2 using the compound of the present invention were sufficiently low, whereas comparative photoreceptor 3 was high and inferior. Next, each of the above three types of photoreceptors is charged using a commercially available electrophotographic copying machine, and then light is irradiated through the original image to form an electrostatic latent image, which is then transferred to a wet developer. The resulting toner image was electrostatically transferred onto plain paper to obtain a copy image.
When photoreceptors 1 and 2 were used, clear images with high image density and no background stains were obtained; however,
When photoreceptor 3 was used, the copied image had noticeable background stains.

【図面の簡単な説明】[Brief explanation of drawings]

図は、No.1のヒドラゾン化合物の赤外線吸収ス
ペクトル(KBr錠剤法)を示すものである。
The figure shows the infrared absorption spectrum (KBr tablet method) of No. 1 hydrazone compound.

Claims (1)

【特許請求の範囲】 1 一般式() (式中、Arはフエニル基、Rは低級アルキル基、
またはベンジル基を表わす。) で示されるヒドラゾン誘導体。 2 一般式() (式中、Arはフエニル基、Rは低級アルキル基、
またはベンジル基を表わす。) で示されるヒドラジン誘導体と式() で示されるアルデヒド化合物とを反応させること
を特徴とする一般式() (式中、Ar及びRは一般式()に同じ) で示されるヒドラゾン誘導体の製造法。
[Claims] 1 General formula () (In the formula, Ar is a phenyl group, R is a lower alkyl group,
Or represents a benzyl group. ) A hydrazone derivative represented by 2 General formula () (In the formula, Ar is a phenyl group, R is a lower alkyl group,
Or represents a benzyl group. ) and the hydrazine derivatives shown by the formula () General formula () characterized by reacting with an aldehyde compound represented by (In the formula, Ar and R are the same as in the general formula ()) A method for producing a hydrazone derivative represented by the following formula.
JP58214098A 1983-11-16 1983-11-16 Hydrazone derivative and production thereof Granted JPS60106860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214098A JPS60106860A (en) 1983-11-16 1983-11-16 Hydrazone derivative and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214098A JPS60106860A (en) 1983-11-16 1983-11-16 Hydrazone derivative and production thereof

Publications (2)

Publication Number Publication Date
JPS60106860A JPS60106860A (en) 1985-06-12
JPH0430424B2 true JPH0430424B2 (en) 1992-05-21

Family

ID=16650187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214098A Granted JPS60106860A (en) 1983-11-16 1983-11-16 Hydrazone derivative and production thereof

Country Status (1)

Country Link
JP (1) JPS60106860A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767940A (en) * 1980-10-15 1982-04-24 Konishiroku Photo Ind Co Ltd Electrophotographic receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767940A (en) * 1980-10-15 1982-04-24 Konishiroku Photo Ind Co Ltd Electrophotographic receptor

Also Published As

Publication number Publication date
JPS60106860A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
JPS6136232B2 (en)
JPS58198043A (en) Electrophotographic receptor
JPS6098437A (en) Photosensitive body for electrophotography
JPH0234015B2 (en)
JPS637218B2 (en)
JPS62116943A (en) Electrophotographic sensitive body
JPH0214697B2 (en)
JPH0441343B2 (en)
US4500621A (en) Sensitive electrophotographic plates containing squaric acid methine dyes suspended in a binder
JPS6126904B2 (en)
JPH0374832B2 (en)
US4480019A (en) Electrophotographic photosensitive material
JPH0462377B2 (en)
JPH0471107B2 (en)
JP2678311B2 (en) Electrophotographic photoreceptor
JPH0430424B2 (en)
JP2515145B2 (en) Electrophotographic photoreceptor
JPS62134652A (en) Electrophotographic sensitive body
JPH0441339B2 (en)
JPS6343430B2 (en)
JPS60198550A (en) Electrophotographic sensitive body
JP2597911B2 (en) Electrophotographic photoreceptor
JP2676630B2 (en) Electrophotographic photoreceptor
JPH05703B2 (en)
JPS5951949A (en) Disazo compound, and photoconductive composition and electrophotographic material containing the same