JPH0430415A - Electron beam lithography device and adjusting method of orthogonality of molding aperture - Google Patents

Electron beam lithography device and adjusting method of orthogonality of molding aperture

Info

Publication number
JPH0430415A
JPH0430415A JP13519890A JP13519890A JPH0430415A JP H0430415 A JPH0430415 A JP H0430415A JP 13519890 A JP13519890 A JP 13519890A JP 13519890 A JP13519890 A JP 13519890A JP H0430415 A JPH0430415 A JP H0430415A
Authority
JP
Japan
Prior art keywords
electron beam
aperture
orthogonality
adjustment
beam lithography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13519890A
Other languages
Japanese (ja)
Other versions
JP3039960B2 (en
Inventor
Hidenori Yamaguchi
山口 秀範
Genya Matsuoka
玄也 松岡
Teruo Iwasaki
照雄 岩崎
Hiroyuki Takahashi
弘之 高橋
Hirozumi Ando
宏純 安藤
Katsuhiro Kawasaki
河崎 勝浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2135198A priority Critical patent/JP3039960B2/en
Publication of JPH0430415A publication Critical patent/JPH0430415A/en
Application granted granted Critical
Publication of JP3039960B2 publication Critical patent/JP3039960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the defectively formed pattern by a variably forming electronic beam lithography device by a method wherein, in the variably forming electronic beam lithography device in which first and second molding aperture are incorporated for the purpose of conducting electron beam molding, an adjusting hole is provided on the molding apertures, and the detection and the calibration of adjustment state is conducted automatically. CONSTITUTION:As the electron beam emitted from an electron gun 1 is made incident on a Faraday cup, to be used to detect the condition of orthogonal intersection of an aperture, through a first rectangular aperture 2 and a second rectangular aperture 3, three holes for adjustment of degree of orthogonal intersection are arranged on the above-mentioned aperture 3 along the extension line of the side used by the hole for adjustment of degree of orthogonal intersection. The current value of the electron beam passed through each hole is detected by the Faraday cup while the electron beam is being scanned on the aperture 3 along the side to be used. When the second rectangular aperture 3 is rotationally adjusted using a driving part 10 so as to make all current values uniform, the degree of orthogonal inter-section of the aperture 2 is adjusted automatically, and defectively formed pattern can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は半導体素子のパターン形成に用いる可変成形電
子線描画装置において5該装置立ち上げ後の成形アパー
チャーの直交度調整方法の簡便化を図るとともに、調整
作業者の主観に捕られれない安定した装置状態を作り出
すための方法に関する。
The present invention aims at simplifying the method for adjusting the orthogonality of a forming aperture after starting up the variable forming electron beam lithography system used for pattern formation of semiconductor elements, and also provides a stable system that is not influenced by the subjectivity of the adjustment operator. Concerning methods for creating conditions.

【従来の技術】[Conventional technology]

ULSIの高集積化、高密度化は3年に4倍の勢いで進
められており、既に4メガビットdRAMの試作がなさ
れている。これに伴って微細加工に要求される寸法は0
.5μmまで微細化している。リソグラフィにはこうし
、た微細化の技術を牽引する役割がある。 リソグラフィ技術には、光、X線、電子線等を利用した
パターンの形成法があり、なかでも電子線描画技術は0
.3μm以下のパターンを必要とする次次世代の半導体
素子作成には欠かせない技術である。パターンの線幅が
微細化するに連れて電子線描画装置に要求される仕様も
より高度なものとなってきた。これを満たすためにパタ
ーン形成時の描画装置の機能および精度は、各メーカに
おいてそれぞれ独自の工夫が為され、充実してきた。 しかしその反面、メンテナンスや調整の簡便さを図った
装置は少ない。この点に関してはまだまだ調整作業者の
経験および主観に頼るところが多く残っている。 その一つとしてアパーチャの直交度の調整がある。「ソ
リッド ステート テクノロジ(SolidState
 Technology)  日本語板1984年11
月P、94/直接描画電子ビームリソグラフィ技術〜製
造ラインにおけるその位置付け」に記されているように
、一般の可変成形型の描画装置では2枚のアパーチャの
切りあいを変えて所望のショットを作りだし、それをつ
なぎあわせてパターンを形成する。 そのため上記調整は描画装置の描画精度の要となるもの
である。 しかし、従来の描画装置では調整作業者が長年の勘を頼
りに調整を行なっていた。
The integration and density of ULSI has been increasing four times in three years, and a 4 megabit dRAM has already been prototyped. Along with this, the dimensions required for microfabrication are 0
.. It has been miniaturized to 5 μm. Lithography has a role to play in driving these miniaturization technologies. Lithography technology includes pattern formation methods using light, X-rays, electron beams, etc. Among them, electron beam writing technology is
.. This technology is essential for creating next-generation semiconductor devices that require patterns of 3 μm or less. As the line width of patterns has become finer, the specifications required of electron beam lithography systems have also become more sophisticated. In order to meet this requirement, each manufacturer has devised its own unique ideas to improve the functionality and accuracy of drawing devices during pattern formation. However, on the other hand, there are few devices designed to simplify maintenance and adjustment. In this regard, much remains to be relied on the experience and subjectivity of the adjustment operator. One of these is adjusting the orthogonality of the aperture. “Solid State Technology”
Technology) Japanese board November 1984
As described in ``Direct Writing Electron Beam Lithography Technology - Its Position in the Manufacturing Line'', published in 2007, ``Direct Write Electron Beam Lithography Technology - Its Position in the Manufacturing Line'', in general variable shaping type lithography equipment, the desired shot is created by changing the cut of two apertures. , connect them to form a pattern. Therefore, the above adjustment is the key to the drawing accuracy of the drawing apparatus. However, in conventional drawing apparatuses, adjustment operators rely on their intuition gained over many years to make adjustments.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、上記方法で調整の行なわれた装置を用い描画
を行なった結果、ミクロな部分で調整残りによるパター
ンの形状異常が生じ、アパーチャの直交度の再調整を行
なわなければならないといった問題が生じた。 これは該調整が担当した作業者の主観に頼るため、起こ
りやすい問題であった。 従来の該調整は、およそ次ぎのような手順で行われてき
た。成形ビームを可変面積最大でステージ部分に設けら
れた金製の微小粒子に照射し、反射電子を検出する。得
られた該信号を処理し、画像としてモニターに映し出す
。W(横)方向、H(縦)方向それぞれを偏向器を用い
、見かけ上アパーチャを移動させた状態を作りだす。画
像でアパーチャの回転の状態を確認しながら、アパーチ
ャ調整機構で所望の状態に設定する。 さらにアパーチャの直交度の状態の精度を上げる手法と
して、ショットを細かくした状態で上記調整を行う。 
しかし、この手法では、電子ビームのショットサイズの
縮小化に伴い、信号検出レベルが低下し、結果的に微細
な部分での直交度の調整が困難となり、直交度の精度を
上げられないことにつながる・ 今後0.3μmレベル、またはそれ以下のパターン形成
に電子線描画装置を用いた場合、これまでにはさほど大
きな問題ではなかった調整残りでも、半導体素子の特性
に悪影響を与えることとなりかねない。 本発明では上記現象を踏まえ、可変成形電子線描画装置
のパターン形成の不良を低減するとともに該装置メンテ
ナンス後の立ち上げ作業の簡便化を図り、これからのU
LSI製造工程に必要不可欠な可変成形電子線描画装置
の機能の充実およびその方法を導入することを目的とす
る。
However, as a result of drawing using a device that had been adjusted using the method described above, abnormalities in the shape of the pattern occurred in microscopic areas due to residual adjustment, resulting in problems such as the orthogonality of the apertures having to be readjusted. . This problem is likely to occur because the adjustment depends on the subjectivity of the operator in charge. Conventionally, this adjustment has been performed approximately in the following procedure. A shaped beam with a maximum variable area is irradiated onto microscopic gold particles provided on the stage, and reflected electrons are detected. The obtained signal is processed and displayed on a monitor as an image. A deflector is used in each of the W (horizontal) direction and the H (vertical) direction to create a state in which the aperture appears to be moved. While checking the rotational state of the aperture in the image, set the aperture adjustment mechanism to the desired state. Furthermore, as a method of increasing the accuracy of the orthogonality state of the aperture, the above adjustment is performed with the shots made finer.
However, with this method, as the shot size of the electron beam decreases, the signal detection level decreases, and as a result, it becomes difficult to adjust the degree of orthogonality in minute areas, making it impossible to improve the accuracy of the degree of orthogonality. Connect - If electron beam lithography equipment is used to form patterns at the 0.3 μm level or smaller in the future, even residual adjustments, which were not a big problem in the past, may have a negative impact on the characteristics of semiconductor devices. . In view of the above phenomenon, the present invention aims to reduce defective pattern formation in variable-forming electron beam lithography equipment, simplify start-up work after maintenance of the equipment, and improve future U.S.
The purpose of this paper is to enhance the functions of variable-forming electron beam lithography equipment, which is indispensable to the LSI manufacturing process, and to introduce its method.

【課題を解決するための手段】[Means to solve the problem]

前記問題点は、アパーチャの直交度の調整方法として該
調整用孔を成形アパーチャ上に設け、調整状態の横比、
校正を自動で行なうことにより解決できる。
The problem is that as a method of adjusting the orthogonality of the aperture, the adjustment hole is provided on the molded aperture, and the lateral ratio of the adjusted state is
This problem can be solved by automatically performing calibration.

【作用】[Effect]

これまで調整作業者の主観により生じていた調整不良が
、該調整の自動化によりなくなる。また、調整に熟練を
要することがなく簡便で安定した調整ができる。
The automation of the adjustment eliminates the adjustment defects that have hitherto been caused by the subjectivity of the adjustment operator. Further, the adjustment does not require skill and can be performed easily and stably.

【実施例】【Example】

第1の実施例は第1図に示すように成形アパーチャの直
交度の調整を自動で行う装置とその方法に関する。 第1図の装置は、電子線を照射するための電子銃1と、
第1矩形アパーチヤ2と、第2矩形アパーチヤ3と、電
子線4を成形するために用いられる偏向器5と、該偏向
器を制御する偏向制御回路6と、アパーチャの直交度の
状態を検出するためのファラデーカップ7と、検出値を
保管するためのメモリ8と、検出された信号を直交度の
理想値と比較し、差分値を求める処理を行う信号処理回
路9と、求められた差分値に応じて回転を行う駆動部1
0と、調整時の全体の制御を行う制御部11からなる可
変成形電子線描画装置である。本装置を用いて直交度の
自動調整を試みた。 直交度の調整用孔としては第2図に示すように、−片が
50μmの矩形孔を成形アパーチャの使用する辺の延長
線上に沿い、それぞれ200μm間隔で3個づつ配置し
たものを用いた。 このアパーチャ上を使用する辺に沿って電子線を走査し
つつ、答礼を通過した電子線の電流値をファラデーカッ
プで検出した。 第3図および第4図は上記検出結果を示したものである
。調整用孔縦1.2.3、横1.2.3に対応して、そ
れぞれに電流波形1.2.3が得られている。 第3図に直交度が正しく調整されていない状態を示す。 この状態では調整用孔毎の電流値に違いが見られる。該
電流値が全て一定となるように、駆動部10を用いて第
2矩形アパーチヤ3を回転調整した。その結果第4図に
示すように、全ての調整用孔で得られる電流値を一定と
することができた。 その後、本装置を用いて実際に0.3μmのラインパタ
ーンを描画し、縦横両方向のパターンについて電子顕微
鏡で観察した結果、直交度の調整残りによるショット異
常は認められなかった。 第2の実施例は配置位置が特定できる固有の形をした直
交度調整用孔を成形アパーチャに縦横3個づつ設け、画
像認識で該調整を自動で行わせた場合に関する。本発明
を取り入れた装置の概略図は第5図に示す通りである。 第6図に直交度が正しく調整されていない状態を示す。 この状態では成形アパーチャに組み込んだ全ての調整用
孔の画像が完全に確認できていない。該画像が全て確認
できる位置に、駆動部511を用いて第2矩形アパーチ
ヤ503を回転調整した。その結果第7図に示すように
、全ての調整用孔の画像を確認できた。 その後1本装置を用いて実際に0.3μmのラインパタ
ーンを描画し、縦横両方向のパターンについて電子顕微
鏡で観察した結果、第1の実施例と同様に直交度の調整
残りによるショット異常は認められなかった。 本発明によれば、第8図に示すような複雑な成形アパー
チャの直交度調整も容易に自動で行うことができる。従
来においては、成形用アパーチャの形状が第8図のよう
に複雑になると、検出信号と調整位置との対応関係を判
別することが困難になり、正確な調整が至難であったが
、本発明によれば、成形用アパーチャの開口形状の如何
にかかわらず、実施例1と同様の方法で該調整を行うこ
とによりショット異常のない良好な成形アパーチャの直
交度調整を行うことがでる。 (発明の効果] 本発明によれば、可変成形電子線描画装置の描画精度、
特に0.3μmレベル加工時のくさび型となるショット
異常を防ぐことができる。また、メンテナンス後の装置
を常に同じ良好な状態に短時間で設定することができる
。今後波々高集積化するULSI等の半導体素子の超微
細デバイスの製造を強力に推進することができる。
The first embodiment relates to an apparatus and method for automatically adjusting the orthogonality of a forming aperture, as shown in FIG. The apparatus shown in FIG. 1 includes an electron gun 1 for irradiating an electron beam,
Detects the state of orthogonality of the first rectangular aperture 2, the second rectangular aperture 3, the deflector 5 used to shape the electron beam 4, the deflection control circuit 6 that controls the deflector, and the aperture. a Faraday cup 7 for storage, a memory 8 for storing detected values, a signal processing circuit 9 for comparing the detected signal with an ideal value of orthogonality and calculating a difference value, and a calculated difference value. Drive unit 1 that rotates according to
0 and a control section 11 that performs overall control during adjustment. We attempted to automatically adjust the degree of orthogonality using this device. As shown in FIG. 2, the orthogonality adjusting holes were three rectangular holes each having a length of 50 .mu.m and arranged along the extension of the side of the molding aperture at intervals of 200 .mu.m. While scanning the electron beam along the side of the aperture, the current value of the electron beam that passed through the aperture was detected using a Faraday cup. FIG. 3 and FIG. 4 show the above detection results. Current waveforms 1.2.3 are obtained corresponding to the adjustment holes 1.2.3 (vertical) and 1.2.3 (horizontal). FIG. 3 shows a state where the degree of orthogonality is not adjusted correctly. In this state, a difference can be seen in the current value for each adjustment hole. The rotation of the second rectangular aperture 3 was adjusted using the drive unit 10 so that the current values were all constant. As a result, as shown in FIG. 4, it was possible to keep the current values obtained at all adjustment holes constant. Thereafter, a line pattern of 0.3 μm was actually drawn using this device, and the pattern in both the vertical and horizontal directions was observed using an electron microscope. As a result, no shot abnormality due to unadjusted orthogonality was observed. The second embodiment relates to a case where three orthogonality adjustment holes each having a unique shape whose arrangement position can be specified are provided in a molded aperture, and the adjustment is automatically performed by image recognition. A schematic diagram of an apparatus incorporating the present invention is shown in FIG. FIG. 6 shows a state where the degree of orthogonality is not adjusted correctly. In this state, images of all adjustment holes incorporated in the molded aperture cannot be completely confirmed. The second rectangular aperture 503 was rotated and adjusted using the drive unit 511 to a position where the entire image could be confirmed. As a result, as shown in FIG. 7, images of all adjustment holes could be confirmed. After that, a line pattern of 0.3 μm was actually drawn using one device, and the pattern in both the vertical and horizontal directions was observed using an electron microscope. As a result, as in the first example, no shot abnormality due to the remaining adjustment of orthogonality was observed. There wasn't. According to the present invention, complicated orthogonality adjustment of a molding aperture as shown in FIG. 8 can be easily and automatically performed. Conventionally, when the shape of the molding aperture becomes complicated as shown in FIG. 8, it becomes difficult to determine the correspondence between the detection signal and the adjustment position, making accurate adjustment extremely difficult. According to the above, regardless of the opening shape of the forming aperture, by performing the adjustment in the same manner as in Example 1, it is possible to perform a good orthogonality adjustment of the forming aperture without shot abnormalities. (Effects of the Invention) According to the present invention, the drawing accuracy of the variable shape electron beam drawing apparatus,
In particular, it is possible to prevent wedge-shaped shot abnormalities during processing at the 0.3 μm level. Further, the device can always be set to the same good condition in a short time after maintenance. It is possible to strongly promote the production of ultra-fine devices for semiconductor elements such as ULSI, which will become increasingly highly integrated in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は成形アパーチャの自動調整機能を設けた可変成
形型電子線描画装置を示す図、第2図は第2成形アパー
チヤに直交度調整用孔を設けた場合の例を示す図、第3
図(a)は第2成形アパーチヤの直交度不良時を示す図
、第3図(b)、(c)は第2成形アパーチャ直交度不
良時の該調整用孔を通過した電流の状態を示す図、第4
図(a)は成形アパーチャの直交度良好時を示す図、第
4図(b)、(c)は成形アパーチャ直交度良好時の該
調整用孔を通過した電流の状態を示す図、第5図は第2
成形アパーチヤの自動調整のための画像認識機能を設け
た電子線描画装置を示す図、第6図(a)は第2成形ア
パーチヤの直交度不良時を示す図、第6図(b)、(c
)は第2成形アパーチャ直交度不良時の該調整用孔の画
像を示す図、第7図(a)は第2成形アパーチヤの直交
度良好時を示す図、第7図(b)、(c)は第2成形ア
パーチャ直交度良好時の該調整用孔の画像を示す図、第
8図は多品種複数個の第2成形アパーチヤに、直交度調
整用孔を配置する方法の例を示した図である。 符号の説明 1・・・電子銃、2・・・第1矩形アパーチヤ、3・・
・第2矩形アパーチヤ、4・・・電子線、5・・・偏向
器、6・・偏向制御回路、7・・・ファラデーカップ、
8・・・メモリ、9・・・信号処理回路、10・・・駆
動部、11・・・制御部、501・・・電子銃、502
・・・第1成形アパーチヤ、503・・・第2成形アパ
ーチヤ、504・・電子線、505・・偏向器、506
・・・偏向制御回路、507・・・導電性被照射基板、
508・・・検出器、509・・・画像処理回路、51
0・・・画像認識器、511・・・駆動部、512・・
・制御部 系 図 系 品 χンへ <b> (C) 吸 様1 里i名旬を量 未手充勾克衾 154 図 (久) (k7) (Q) 糀123 を庭^句り衾 Xわ淘乏太 第 図 第 b 国 (八) (し) H) 7IJ’7 (α) 困 (c)
Fig. 1 is a diagram showing a variable molding type electron beam lithography system equipped with an automatic molding aperture adjustment function, Fig. 2 is a diagram showing an example in which a hole for orthogonality adjustment is provided in the second molding aperture, and Fig. 3 is a diagram showing an example in which a hole for orthogonality adjustment is provided in the second molding aperture.
Figure (a) shows the state when the orthogonality of the second molding aperture is poor, and Figures 3 (b) and (c) show the state of the current passing through the adjustment hole when the orthogonality of the second molding aperture is poor. Figure, 4th
Figure (a) is a diagram showing when the orthogonality of the molding aperture is good; Figures 4 (b) and (c) are diagrams showing the state of the current passing through the adjustment hole when the orthogonality of the molding aperture is good; The figure is the second
A diagram showing an electron beam lithography system equipped with an image recognition function for automatic adjustment of the molding aperture, FIG. 6(a) is a diagram showing when the orthogonality of the second molding aperture is poor, and FIG. c.
) is a diagram showing an image of the adjusting hole when the second molding aperture has poor orthogonality, FIG. 7(a) is a diagram showing when the second molding aperture has good orthogonality, and FIGS. 7(b) and (c) ) is a diagram showing an image of the adjustment hole when the second molding aperture has good orthogonality, and FIG. 8 shows an example of a method for arranging the orthogonality adjustment hole in a plurality of second molding apertures of various types. It is a diagram. Explanation of symbols 1... Electron gun, 2... First rectangular aperture, 3...
- Second rectangular aperture, 4... Electron beam, 5... Deflector, 6... Deflection control circuit, 7... Faraday cup,
8... Memory, 9... Signal processing circuit, 10... Drive section, 11... Control section, 501... Electron gun, 502
...First shaping aperture, 503...Second shaping aperture, 504...Electron beam, 505...Deflector, 506
... Deflection control circuit, 507 ... Conductive irradiated substrate,
508...Detector, 509...Image processing circuit, 51
0... Image recognizer, 511... Drive unit, 512...
・Control Department genealogy product χ<b><b> (C) Sui style 1 Ri Meishun 154 diagram (ku) (k7) (Q) Koji 123 garden ^ kuri school X Wa Taobota Diagram B Country (8) (shi) H) 7IJ'7 (α) Trouble (c)

Claims (1)

【特許請求の範囲】 1、電子線を成形するための第1の成形アパーチャと第
2の成形アパーチャを組み込んだ可変成形型電子線描画
装置において、第2の成形アパーチャに直交度調整用孔
を設け、直交度の調整を自動で行うことを特徴とするア
パーチャの直交度の自動調整機能を具備することを特徴
とする電子線描画装置。 2、上記第2の成形アパーチャの直交度調整用孔として
、開口面積が同じである孔、もしくは配置位置が特定で
きる形である孔を多数個用いることを特徴とする請求項
1記載の電子線描画装置。 3、上記直交度調整用孔を配置する間隔は、上記第1の
成形アパーチャの対角線より長くとり、配置の際の基準
位置は、上記第2の成形アパーチャと該調整用孔の情報
が同時に検出されないような位置とすることを特徴とす
る請求項2記載の電子線描画装置。 4、上記第2の成形アパーチャの使用する辺のなす角が
直角の場合、該辺の延長線上に沿って直交度調整用の孔
を配置することを特徴とする請求項2記載の電子線描画
装置。 5、上記第2の成形アパーチャが任意の形の場合、上記
第2の成形アパーチャ開口面の任意の一点を基準に、上
記第2の成形アパーチャに対して垂直と水平方向に直角
に直交度調整用孔を配置することを特徴とする請求項2
記載の電子線描画装置。 6、多品種、または複数個を一つの成形アパーチャとみ
なす場合、上記第2の成形アパーチャで最も端の辺に対
して垂直方向と水平方向に該直交度調整用孔を配置する
ことを特徴とする請求項2記載の電子線描画装置。 7、上記直交度調整用孔はそれぞれの開口面の重心を基
準に配列することを特徴とする請求項2記載の電子線描
画装置。 8、上記直交度の自動調整機能として、上記直交度調整
用孔を通過した電子線を検出するための検出部と、該検
出部で得られた各検出値をストアするメモリ部と、検出
の理想値と該検出値を比較し、その差分値を算出する処
理部と、差分値に相当する量だけ成形アパーチャの回転
を行う駆動部と、全体を制御するための制御部からなる
ことを特徴とする請求項1記載の電子線描画装置。 9、上記検出部は、電流値を検出するためのファラデー
カップもしくは反射電子もしくは2次電子を検出するた
めの導電性基板からなることを特徴とする請求項8記載
の電子線描画装置。 10、調整用孔に電子線を走査して得られる出力値を用
いて直交度の検出を行うことを特徴とする成形用アパー
チャの直交度調整方法。 11、上記電子線の走査方向は成形アパーチャを基点に
水平および垂直に走査することを特徴とする請求項10
記載の成形用アパーチャーの直交度調整方法。 12、直交度調整用孔に電子線を走査して得られる該調
整用孔の形状情報を認識して直交度の検出を行う機能を
有してなることを特徴とする電子線描画装置。
[Claims] 1. In a variable shaping type electron beam lithography device incorporating a first shaping aperture and a second shaping aperture for shaping an electron beam, the second shaping aperture is provided with a hole for orthogonality adjustment. What is claimed is: 1. An electron beam lithography apparatus comprising: an automatic adjustment function for the orthogonality of an aperture; 2. The electron beam according to claim 1, wherein as the orthogonality adjusting holes of the second molded aperture, a large number of holes having the same opening area or having a shape that allows the placement position to be specified are used. drawing device. 3. The interval at which the orthogonality adjustment holes are arranged is longer than the diagonal line of the first molded aperture, and the reference position during arrangement is such that information on the second molded aperture and the adjustment hole are simultaneously detected. 3. The electron beam lithography apparatus according to claim 2, wherein the electron beam lithography apparatus is located at such a position that the electron beam lithography apparatus is not exposed to the electron beam. 4. Electron beam lithography according to claim 2, characterized in that when the angle formed by the side used in the second forming aperture is a right angle, a hole for orthogonality adjustment is arranged along an extension of the side. Device. 5. When the second molded aperture has an arbitrary shape, orthogonality adjustment is performed perpendicularly to the vertical and horizontal directions with respect to the second molded aperture, with reference to an arbitrary point on the opening surface of the second molded aperture. Claim 2 characterized in that an irrigation hole is arranged.
The electron beam lithography apparatus described above. 6. When a wide variety of molded apertures or a plurality of molded apertures are considered as one molded aperture, the perpendicularity adjustment holes are arranged in the vertical and horizontal directions with respect to the endmost side of the second molded aperture. The electron beam lithography apparatus according to claim 2. 7. The electron beam lithography apparatus according to claim 2, wherein the orthogonality adjustment holes are arranged based on the center of gravity of each opening surface. 8. The orthogonality automatic adjustment function includes a detection section for detecting the electron beam passing through the orthogonality adjustment hole, a memory section for storing each detection value obtained by the detection section, and a detection section for detecting the electron beam that has passed through the orthogonality adjustment hole. It is characterized by consisting of a processing section that compares the ideal value and the detected value and calculates the difference value, a drive section that rotates the molding aperture by an amount corresponding to the difference value, and a control section that controls the whole. The electron beam lithography apparatus according to claim 1. 9. The electron beam lithography apparatus according to claim 8, wherein the detection section comprises a Faraday cup for detecting a current value or a conductive substrate for detecting reflected electrons or secondary electrons. 10. A method for adjusting the degree of orthogonality of a molding aperture, characterized in that the degree of orthogonality is detected using an output value obtained by scanning the adjustment hole with an electron beam. 11. Claim 10, wherein the scanning direction of the electron beam is horizontal and vertical scanning with the forming aperture as a base point.
The described method for adjusting the orthogonality of a molding aperture. 12. An electron beam lithography apparatus having a function of detecting orthogonality by recognizing shape information of the orthogonality adjustment hole obtained by scanning the electron beam over the orthogonality adjustment hole.
JP2135198A 1990-05-28 1990-05-28 Electron beam drawing equipment Expired - Fee Related JP3039960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2135198A JP3039960B2 (en) 1990-05-28 1990-05-28 Electron beam drawing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2135198A JP3039960B2 (en) 1990-05-28 1990-05-28 Electron beam drawing equipment

Publications (2)

Publication Number Publication Date
JPH0430415A true JPH0430415A (en) 1992-02-03
JP3039960B2 JP3039960B2 (en) 2000-05-08

Family

ID=15146142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2135198A Expired - Fee Related JP3039960B2 (en) 1990-05-28 1990-05-28 Electron beam drawing equipment

Country Status (1)

Country Link
JP (1) JP3039960B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223152A (en) * 2000-02-09 2001-08-17 Fujitsu Ltd Charged particle beam drawing apparatus and method of adjusting charged particle beam size
JP2006024624A (en) * 2004-07-06 2006-01-26 Toshiba Corp Charged beam drawing apparatus and aperture adjusting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223152A (en) * 2000-02-09 2001-08-17 Fujitsu Ltd Charged particle beam drawing apparatus and method of adjusting charged particle beam size
JP2006024624A (en) * 2004-07-06 2006-01-26 Toshiba Corp Charged beam drawing apparatus and aperture adjusting method

Also Published As

Publication number Publication date
JP3039960B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
DE4226694C2 (en) Method for separating a small section of a sample
US4503329A (en) Ion beam processing apparatus and method of correcting mask defects
US20060186351A1 (en) Inspection method and inspection apparatus using charged particle beam
US6320187B1 (en) Magnification and rotation calibration patterns for particle beam projection system
JPH0616391B2 (en) Ion beam irradiation device
JPH06132203A (en) Charged particle beam exposure method
USRE33193E (en) Ion beam processing apparatus and method of correcting mask defects
US7242014B2 (en) Charged particle beam drawing equipment, method of adjusting aperture mask, and method of manufacturing semiconductor device
US7423274B2 (en) Electron beam writing system and electron beam writing method
DE10134755B4 (en) Method for measuring a characteristic dimension of at least one structure on semiconductor wafers
JPH05251315A (en) Electron beam apparatus
EP0431864B1 (en) Method of detecting and adjusting exposure conditions of charged particle exposure system and such a system
JPH0430415A (en) Electron beam lithography device and adjusting method of orthogonality of molding aperture
US20020024020A1 (en) Electron-beam drawing appraratus electron-beam drawing method
US5936252A (en) Charged particle beam performance measurement system and method thereof
JP2000048752A (en) Electron beam inspection device, its sample for adjustment, adjusting method, and method for inspecting contact hole
KR0152128B1 (en) Electron beam drawing apparatus and method of drawing with such apparatus
US5432314A (en) Transparent mask plate for charged particle beam exposure apparatus and charged particle beam exposure process using the transparent mask plate
JP2003197138A (en) Charged beam device, method for measuring pattern, and method for manufacturing semiconductor device
JPS60126834A (en) Ion beam processing method and device thereof
US6573519B1 (en) Electron beam exposure apparatus, adjusting method, and block mask for adjustment
JP2594660B2 (en) Charged particle beam exposure method
JP3080006B2 (en) Electron beam exposure correction method
US6476400B1 (en) Method of adjusting a lithography system to enhance image quality
JP2000299267A (en) Electron beam drawing apparatus and electron beam blanking method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees