JPH0430324B2 - - Google Patents

Info

Publication number
JPH0430324B2
JPH0430324B2 JP58164671A JP16467183A JPH0430324B2 JP H0430324 B2 JPH0430324 B2 JP H0430324B2 JP 58164671 A JP58164671 A JP 58164671A JP 16467183 A JP16467183 A JP 16467183A JP H0430324 B2 JPH0430324 B2 JP H0430324B2
Authority
JP
Japan
Prior art keywords
core
parison
cross
wall thickness
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58164671A
Other languages
Japanese (ja)
Other versions
JPS6056515A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58164671A priority Critical patent/JPS6056515A/en
Publication of JPS6056515A publication Critical patent/JPS6056515A/en
Publication of JPH0430324B2 publication Critical patent/JPH0430324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/325Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • B29C48/48Two or more rams or pistons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はパリソン肉厚を成形品に応じて任意
に調整することができるブロー成形用ダイに関す
るものである。 ブロー成形は、射出吹込成形に比べて、低コス
トで中空成形品が得られるため、洗剤びんを始
め、工業薬品用缶などの容器の領域を越えて、自
動車部品のダクト類など多くの分野に使用されつ
つあり、その用途は多種多様に亘つている。 しかしながらブロー成形では、ダイブツシユと
コアとの間に形成されたスリツトから、溶融樹脂
を押出して成形したパリソンを使用するために、
金型に溶融樹脂を注入して得たパリソンを使用す
る射出吹込成形に比べて、肉厚分布が劣り、しか
も肉厚分布の差から成形品にブロー成形時の応力
が残留し易く、この残留応力によつて歪みが発生
し、これが原因で成形品の寸法安定性や耐環境応
力亀裂性(ESCR)などの物性に、悪影響を及ぼ
すことが多かつた。 そこでブロー成形では、パリソンコントロール
と称せられている方法を用いて、パリソンの肉厚
調整を行つている。この方法には、テーパダイを
使用して、パリソンの成形中にコアを上下移動さ
せ、それによりダイのスリツト幅を変化させる方
法、押出速度を変化させる方法、パリソンの引取
速度を変化させる方法などがあるが、そのいずれ
の方法も、パリソンの縦方向の肉厚調整に対して
であつて、横断面方向の肉厚調整までを行うこと
はできないものである。 パリソンの横断面方向の肉厚調整は、パリソン
の肉厚分布を均一化すること以外にも、横断面が
楕円形のびんなどのように、ブローアツプ比が部
分的に異なる成形品をブロー成形する場合に、き
わめて重要なこととされている。従来では、この
横断面方向の肉厚調整を、シエーピングにより行
つている。ここにおけるシエーピングはダイまた
はコアの一部を全体から見て異型化して流路断面
積の一部の増減をはかり、パリソンの一部の肉厚
の増減をもたらすことである。このようなシエー
ピングと上記パリソンコントロールとを併用し
て、真円の変化及びパリソンの縦方向のコントロ
ールができても、横断面形状が位置によつて偏平
と真円とに異なり、それらの部分におけるブロー
アツプ比が異なるびん状の容器や、一部に凹凸が
ある成形品を、目的とした重量で、しかも肉厚分
布を均一に成形することは、不可能とされてい
る。 しかるに、ブロー成形の応用範囲の拡大に伴
い、成形品の形状も一般と複雑化しつつあり、こ
れまでのパリソンコントロールやシエーピングよ
りも更に効果的な肉厚調整手段を備えたブロー成
形ダイが要求されている。 この発明は上記事情から考えられたものであつ
て、その目的は、コア操作のみをもつて、パリソ
ン肉厚を縦横いずれの方向にても調整することも
できる新たな構造のブロー成形用ダイを提供する
ことにある。 上記目的によるこの発明の特徴は、コアを内外
コアを内外二重に構成し、外コアの先端にテーパ
部を形成し、内コアの先端部に所望の巾、長さを
有するシエーピング部分を形成すると共に、その
先端部を上記テーパ部より突出して、外コアと内
コアとを軸方向に相対的移動自在にダイヘツド内
に設けてなることにあり、ストレートな上記先端
部(以下ストレート部と称する)のシエーピング
部分と、内外コアの軸方向移動とをもつて、パリ
ソン肉厚を縦横いずれの方向をも調整することも
できるようにしてなる。即ちストレート部は断面
形状が軸方向に同一のみならず変化することもあ
る。 上記コアと内コアの移動は、空気圧または油圧
などにより作動する装置を用いて行われる。また
内外コアと各移動装置の接続は、コア本体の上部
にてなされ、テーパ部を有する外コアの移動によ
り、パリソンの肉厚は縦方向に調整でき、またス
トレート部を形成する内コアの移動によつて、パ
リソンの横断面肉厚を調整することもできる。 上記シエーピング部分の横断面形状は、円形、
楕円形或は円形の側面を面取りした形状など、成
形品の横断面形状に応じて任意に形成でき、たと
えば先端になるほど長軸/短軸比の大きい楕円で
あるようなストレート部では、先端でリツプギヤ
ツプが形成される場合に最も肉厚変化が大きい。
これはストレート部の移動によつて、ストレート
部とダイブツシユとの間に形成されたリツプギヤ
ツプが変化するためであり、その範囲にてパリソ
ンの肉厚を自由に変化させることができる。 次にこの発明を図示のブロー成形ダイにより詳
細に説明する。 第1図において、1はダイヘツドで内部中央に
中空のマンドレル2を有する。このマンドレル2
には外コア3と内コア4とからなる二重構成のコ
ア5が挿通してあり、またダイヘツド1の下端に
はダイブツシユ6がダイ固定リング7を用いて取
付けてある。 上記外コア3の先端はマンドレル2の先端より
ダイブツシユ6上方に突出し、かつその突出部周
面はテーパ部3aに形成されている。またテーパ
部3aからダイブツシユ6内に、上記内コア4の
先端が突出し、その先端によりリツプギヤツプ8
を形成するストレート部4aが構成されている。 内コア3及び外コア4は、軸方向に相対的に移
動自在に上記マンドレル2に挿通され、そのマン
ドレル2から突出した各後端に、油圧作動の移動
装置9,10が部材11,12を介して個々に連
結してある。 上記移動装置9,10は、ダイヘツド1の頂部
に上下二段に設けた支持台13,14に設置さ
れ、部材11,12を介して外コア3と内コア4
とを個々に或は同時に軸方向に移動する機能を備
えている。 なお図中15は内コア4の中心部に貫設した空
気路、16は樹脂流路である。 上記ストレート部4aのシエーピング部分の断
面形状は、ブロー成形品に応じて任意に形成され
る。第2図Aは円形断面のストレート部4aの先
端両側を平行にシエーピングして、リツプギヤツ
プ8の両側を拡大した場合を示し、また第2図B
はストレート部4aを楕円形に形成した場合を、
更にまた第2図Cはストレート部4aの片側のみ
をシエーピングした場合をそれぞれ示すものであ
る。 第3図から第6図は、上記ストレート部4aに
よるパリソン17の成形状態を示すもので、第2
図A,Bに示すストレート部4aにあつては、第
3図Aに示すように、パリソン17の両側の肉厚
が厚く形成され、その結果、横断面では第3図B
に示すように、外側が円形でも内側は楕円形を呈
する。 また第4図Aに示すように、テーパ部3aの位
置はそのままにして、内コア4のストレート部4
aを下方へ移動し、円形部分にてリツプギヤツプ
8を形成した場合には、パリソン17の横断面は
第4図Bに示すように内外側ともに円形となる。 このようなことはストレート部先端の断面形状
が異なる第2図Cに付いても同様であり、第5図
Aに示す状態に形成されたパリソン17は、第5
図Bに示すごとく片側のみが肉厚となるが、第6
図Aに示す状態に、ストレート部4aを下方へ移
動しての成形では、パリソン17の横断面は第6
図Bのごとく肉厚が均一な円形を呈する。 したがつて、ストレート部4aのシエーピング
部分によりリツプギヤツプ8が形成される場合
と、円形部分にてリツプギヤツプ8が形成される
場合があるように、上記内コア4を上方または下
方へ移動すれば、横断面肉厚が異なるパリソン1
7を成形することができる。 また縦方向の肉厚調整は外コア3を軸方向に移
動して、上記テーパ部3aにて行えばよく、縦方
向の肉厚を均一に調整した上において、横断面肉
厚に変化を持たせることができる。更にまた内外
コアの軸方向移動を成形サイクルに併せて行うこ
ともでき、その場合には一般に使用されている制
御手段を用いればよい。 次にこの発明の効果を実施例を挙げて示す。 使用成形機及び成形条件 成形機 スクリユー50φmmブロー成形機 (連続押出) L/D=27 C.R=3.4 スクリユー回転数 40rpm 成形機の設定温度(℃) C1 C2 C3 A D 150 170 180 180 180 使用材料 高密度ポリエチレン MFR 0.3g/10min Density 0.950g/cm3 実施例 1 ストレート部の形状は第2図Aのものを使用
し、第7図A,B,Cに示す形状のびん18をブ
ロー成形した。なお、断面個所Bをローマ数字に
て示す。またコア径はストレート部を測定したも
のであり、製品肉厚aおよびbは、第7図Cの横
断面から下記式により定めたものである。 a=a′+a″/2 b=b′+b″/2
The present invention relates to a blow molding die that allows the thickness of the parison to be arbitrarily adjusted depending on the molded product. Blow molding can produce hollow molded products at a lower cost than injection blow molding, so it is used in many fields, including detergent bottles and containers such as industrial chemical cans, as well as ducts for automobile parts. It is being used for a wide variety of purposes. However, in blow molding, a parison formed by extruding molten resin through a slit formed between the die and the core is used.
Compared to injection blow molding, which uses a parison obtained by injecting molten resin into a mold, the wall thickness distribution is inferior, and due to the difference in wall thickness distribution, stress during blow molding tends to remain in the molded product, and this residual Stress causes distortion, which often has a negative impact on physical properties such as dimensional stability and environmental stress cracking resistance (ESCR) of molded products. Therefore, in blow molding, a method called parison control is used to adjust the thickness of the parison. This method includes using a tapered die and moving the core up and down during the forming of the parison, thereby changing the slit width of the die, changing the extrusion speed, and changing the withdrawal speed of the parison. However, all of these methods are for adjusting the wall thickness of the parison in the longitudinal direction, but cannot adjust the wall thickness in the cross-sectional direction. Wall thickness adjustment in the cross-sectional direction of the parison is useful not only for making the thickness distribution of the parison uniform, but also for blow molding molded products with partially different blow-up ratios, such as bottles with oval cross sections. It is considered extremely important in this case. Conventionally, this wall thickness adjustment in the cross-sectional direction is performed by shaping. Shaping here refers to changing the shape of a die or part of the core as a whole to increase or decrease a part of the cross-sectional area of the flow path, thereby increasing or decreasing the wall thickness of a part of the parison. Even if it is possible to change the perfect circle and control the vertical direction of the parison by using such shaping together with the parison control described above, the cross-sectional shape will differ depending on the position, such as flat or perfectly round, and the It is considered impossible to mold bottle-shaped containers with different blow-up ratios or molded products with partially uneven parts to a desired weight and with a uniform wall thickness distribution. However, as the range of applications for blow molding expands, the shapes of molded products generally become more complex, and blow molding dies equipped with more effective wall thickness adjustment means than conventional parison control and shaping are required. ing. This invention was conceived in view of the above circumstances, and its purpose is to provide a blow molding die with a new structure that allows the thickness of the parison to be adjusted in both vertical and horizontal directions using only core operation. It is about providing. The features of the present invention for the above-mentioned purpose are that the core is configured to have an inner and outer core, a tapered part is formed at the tip of the outer core, and a shaped part having a desired width and length is formed at the tip of the inner core. At the same time, the tip part protrudes from the tapered part and is provided within the die head so that the outer core and the inner core can move relatively freely in the axial direction, and the straight tip part (hereinafter referred to as the straight part) ) and the axial movement of the inner and outer cores, it is possible to adjust the parison wall thickness in both the vertical and horizontal directions. That is, the cross-sectional shape of the straight portion may not only be the same in the axial direction but may also vary. The core and inner core are moved using a device operated by pneumatic pressure, hydraulic pressure, or the like. In addition, the connections between the inner and outer cores and each moving device are made at the top of the core body, and the wall thickness of the parison can be adjusted in the vertical direction by moving the outer core, which has a tapered part, and the inner core, which forms the straight part, can be moved. It is also possible to adjust the cross-sectional wall thickness of the parison. The cross-sectional shape of the above shaping part is circular,
It can be formed into any shape depending on the cross-sectional shape of the molded product, such as an elliptical shape or a circular shape with chamfered sides. The wall thickness change is greatest when a lip gap is formed.
This is because the lip gap formed between the straight part and the dive bush changes as the straight part moves, and the thickness of the parison can be freely changed within that range. Next, the present invention will be explained in detail using the illustrated blow molding die. In FIG. 1, a die head 1 has a hollow mandrel 2 in the center thereof. This mandrel 2
A double core 5 consisting of an outer core 3 and an inner core 4 is inserted through the die head 1, and a die bush 6 is attached to the lower end of the die head 1 using a die fixing ring 7. The tip of the outer core 3 protrudes above the dive bush 6 from the tip of the mandrel 2, and the circumferential surface of the protrusion is formed into a tapered portion 3a. Further, the tip of the inner core 4 protrudes from the tapered portion 3a into the dive bush 6, and the tip opens the lip gap 8.
A straight portion 4a is formed. The inner core 3 and the outer core 4 are inserted into the mandrel 2 so as to be relatively movable in the axial direction, and hydraulically operated moving devices 9 and 10 move members 11 and 12 at their respective rear ends protruding from the mandrel 2. They are individually connected through. The moving devices 9 and 10 are installed on support stands 13 and 14 provided in upper and lower stages on the top of the die head 1, and are used to move the outer core 3 and inner core 4 through members 11 and 12.
It has the function of moving both individually or simultaneously in the axial direction. In the figure, 15 is an air passage penetrating the center of the inner core 4, and 16 is a resin flow passage. The cross-sectional shape of the shaped portion of the straight portion 4a can be arbitrarily formed depending on the blow-molded product. FIG. 2A shows a case in which both sides of the tip of the straight portion 4a having a circular cross section are shaped in parallel and both sides of the lip gap 8 are enlarged, and FIG. 2B
represents the case where the straight part 4a is formed into an oval shape,
Furthermore, FIG. 2C shows a case in which only one side of the straight portion 4a is shaped. 3 to 6 show the forming state of the parison 17 by the straight part 4a, and the second
In the case of the straight portion 4a shown in FIGS. 3A and 3B, the thickness of both sides of the parison 17 is thickened as shown in FIG.
As shown, even if the outside is circular, the inside is oval. Further, as shown in FIG. 4A, the straight part 4 of the inner core 4 is
When a is moved downward and the lip gap 8 is formed in a circular portion, the cross section of the parison 17 becomes circular both inside and outside as shown in FIG. 4B. This also applies to the case shown in FIG.
As shown in Figure B, only one side is thick, but the 6th
When molding is performed by moving the straight portion 4a downward to the state shown in Figure A, the cross section of the parison 17 is
As shown in Figure B, it has a circular shape with uniform wall thickness. Therefore, if the inner core 4 is moved upward or downward, the lip gap 8 may be formed by the shaped portion of the straight portion 4a or the lip gap 8 may be formed by the circular portion. Parison 1 with different surface thicknesses
7 can be molded. In addition, the longitudinal wall thickness can be adjusted by moving the outer core 3 in the axial direction and adjusting the tapered portion 3a. After adjusting the longitudinal wall thickness uniformly, there is no change in the cross-sectional wall thickness. can be set. Furthermore, the axial movement of the inner and outer cores can be carried out in conjunction with the molding cycle, in which case commonly used control means may be used. Next, the effects of this invention will be illustrated by giving examples. Molding machine used and molding conditions Molding machine Screw 50φmm blow molding machine (continuous extrusion) L/D=27 CR=3.4 Screw rotation speed 40rpm Molding machine setting temperature (℃) C 1 C 2 C 3 A D 150 170 180 180 180 Materials used: High-density polyethylene MFR 0.3g/10min Density 0.950g/cm 3Example 1 The shape of the straight part is as shown in Figure 2A, and the bottle 18 having the shape shown in Figures 7A, B, and C is blown. Molded. Note that the cross-sectional location B is indicated by Roman numerals. The core diameter is measured at the straight portion, and the product wall thicknesses a and b are determined from the cross section shown in FIG. 7C using the following formula. a=a′+a″/2 b=b′+b″/2

【表】 実施例 2 ストレート部の形状は第2図Cのものを使用
し、第8図A,B,Cに示す形状のエアーダクト
ホース19をブロー成形した。なお断面個所Bを
ローマ数字により示す。またコア径はストレート
部を測定したものであり、製品肉厚aおよびbは
第8図Cの横断面による。
[Table] Example 2 Using the straight portion shown in FIG. 2C, air duct hoses 19 having the shapes shown in FIGS. 8A, B, and C were blow-molded. Note that the cross-sectional location B is indicated by Roman numerals. The core diameter is measured at the straight portion, and the product wall thicknesses a and b are based on the cross section shown in FIG. 8C.

【表】 比較例 1 通常成形でシエーピングパリコン不使用。 比較例 2,3 シエーピングパリコン使用。【table】 Comparative example 1 Regular molding, no shaping paricone used. Comparative example 2, 3 Uses shaping paricon.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明に係るブロー成形用ダイを例示
するもので、第1図は縦断面図、第2図A,B,
Cはストレート部の断面形状を示す図、第3図か
ら第6図はパリソンの成形状態とパリソン断面を
示す図、第7図A,B,Cは実施例1の説明図、
第8図A,B,Cは実施例2の説明図である。 1……ダイヘツド、2……マンドレル、3……
外コア、3a……テーパ部、4……内コア、4a
……ストレート部、5……コア、6……ダイブツ
シユ、8……リツプギヤツプ、9,10……移動
装置。
The drawings illustrate the blow molding die according to the present invention, and FIG. 1 is a longitudinal sectional view, and FIG.
C is a diagram showing the cross-sectional shape of the straight part, FIGS. 3 to 6 are diagrams showing the molded state of the parison and the cross section of the parison, and FIGS. 7A, B, and C are explanatory diagrams of Example 1.
FIGS. 8A, B, and C are explanatory diagrams of the second embodiment. 1... Die head, 2... Mandrel, 3...
Outer core, 3a...Tapered portion, 4...Inner core, 4a
... Straight part, 5 ... Core, 6 ... Dive bush, 8 ... Lip gap, 9, 10 ... Movement device.

Claims (1)

【特許請求の範囲】[Claims] 1 コアを内外二重に構成し、外コアの先端にテ
ーパ部を形成し、内コアの先端部に所望の巾、長
さを有するシエーピング部分を形成すると共に、
その先端部を上記テーパ部より突出して、外コア
と内コアとを軸方向に相対的移動自在にダイヘツ
ド内に設けてなることを特徴とするブロー成形用
ダイ。
1. The core is configured to have an inner and outer double structure, a tapered part is formed at the tip of the outer core, a shaping part having a desired width and length is formed at the tip of the inner core, and
A die for blow molding, characterized in that the tip portion thereof protrudes from the tapered portion, and an outer core and an inner core are provided within a die head so as to be relatively movable in the axial direction.
JP58164671A 1983-09-07 1983-09-07 Die for blow forming Granted JPS6056515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58164671A JPS6056515A (en) 1983-09-07 1983-09-07 Die for blow forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58164671A JPS6056515A (en) 1983-09-07 1983-09-07 Die for blow forming

Publications (2)

Publication Number Publication Date
JPS6056515A JPS6056515A (en) 1985-04-02
JPH0430324B2 true JPH0430324B2 (en) 1992-05-21

Family

ID=15797614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164671A Granted JPS6056515A (en) 1983-09-07 1983-09-07 Die for blow forming

Country Status (1)

Country Link
JP (1) JPS6056515A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280009A (en) * 1985-10-03 1987-04-13 Ishikawajima Harima Heavy Ind Co Ltd Control device for parison thickness at head for blow molding
JP2684773B2 (en) * 1989-01-30 1997-12-03 石川島播磨重工業株式会社 Parison wall thickness control device in blow molding machine
DE102011116680A1 (en) 2011-10-21 2013-04-25 Heinz Gross 3-D head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013898U (en) * 1973-06-06 1975-02-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013898U (en) * 1973-06-06 1975-02-13

Also Published As

Publication number Publication date
JPS6056515A (en) 1985-04-02

Similar Documents

Publication Publication Date Title
CN101466524B (en) Method for producing hollow bodies from thermoplastic material by extrusion blow moulding with continuous die gap adjustment
JP4764565B2 (en) Method for producing hollow body made of thermoplastic plastic, and apparatus for producing the hollow body
US3309443A (en) Plastic molding
US3209404A (en) Extruder
JP2002505205A (en) Extrusion head
US3969060A (en) Apparatus for deforming a tubular slug of thermoplastic material
DK157435B (en) An extrusion die
CN1009631B (en) Apparatus for producing plastic hollow articles with movable core rod
US3865530A (en) Pressure control during blow-moulding
US3914366A (en) Method for forming a parison
US3981672A (en) Apparatus for forming a parison
US2953817A (en) Method of forming plastic containers
JPH0430324B2 (en)
US4348167A (en) Bottom assist pre-blow system for blow molding machines
JP3377249B2 (en) Method and apparatus for controlling wall thickness of parison
US4496301A (en) Plastic molding apparatus
EP1685943B1 (en) An extrusion head for blow moulding of hollow bodies with a system for distribution of the thickness of the walls of the parison
JPS62225309A (en) Method and device for injection mold molding of cylindrical spare forming material
US5002718A (en) Method of blow molding a flat container having portions with greatly varying wall thickness
US4650629A (en) Plastic molding process
JP3118097B2 (en) Die for parison wall thickness adjustment
MX2009000946A (en) An extrusion head for blow moulding of hollow bodies with a system of distribution of the thickness of the walls of the parison.
US4735834A (en) Plastic molding
EP0688658A2 (en) Method and apparatus for producing flat bottles
JPH051730B2 (en)