JPH04302179A - Superconductive element - Google Patents

Superconductive element

Info

Publication number
JPH04302179A
JPH04302179A JP3066274A JP6627491A JPH04302179A JP H04302179 A JPH04302179 A JP H04302179A JP 3066274 A JP3066274 A JP 3066274A JP 6627491 A JP6627491 A JP 6627491A JP H04302179 A JPH04302179 A JP H04302179A
Authority
JP
Japan
Prior art keywords
electrode
superconducting
barrier layer
based oxide
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3066274A
Other languages
Japanese (ja)
Inventor
Koichi Mizuno
紘一 水野
Hiroshi Ichikawa
洋 市川
Hideaki Adachi
秀明 足立
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3066274A priority Critical patent/JPH04302179A/en
Publication of JPH04302179A publication Critical patent/JPH04302179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a superconductive element which can be applicable as a Josephson element, stable in characteristics, and large in element resistance. CONSTITUTION:A superconductive element is composed of a barrier layer 2 and an A electrode 1 and a B electrode 4 which are formed of superconductor and located at the ends of the barrier layer 2, where the barrier layer 2 is formed of non-superconductor where alkaline earth metal contained in Bi oxide superconductor is partially substituted with rare earth elements.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は超伝導応用技術に関し、
特に超伝導電極にアルカリ土類金属を含むBi系酸化物
超伝導体を用い、バリア層として、Bi系酸化物超伝導
体中のアルカリ土類金属元素の一部をY、もしくはラン
タノイド元素で置換した非超伝導体を用いた超伝導素子
に関するものである。
[Industrial Application Field] The present invention relates to superconductivity application technology.
In particular, a Bi-based oxide superconductor containing an alkaline earth metal is used for the superconducting electrode, and a portion of the alkaline-earth metal element in the Bi-based oxide superconductor is replaced with Y or a lanthanide element as a barrier layer. The present invention relates to superconducting devices using non-superconducting materials.

【0002】0002

【従来の技術】近年発見された酸化物超伝導体の中には
、その超伝導遷移温度が液体窒素温度(77.3ケルビ
ン)を越えるものがあり、超伝導体の応用分野を大きく
広げることとなった。
[Prior Art] Among the oxide superconductors discovered in recent years, there are some whose superconducting transition temperature exceeds the temperature of liquid nitrogen (77.3 Kelvin), which greatly expands the field of application of superconductors. It became.

【0003】その実用化の一つである超伝導素子につい
て、酸化物超伝導体を二つに割り、再びわずかに接触さ
せたジョセフソン素子、酸化物超伝導体を薄膜にし、小
さなくびれをつけたブリッジ型ジョセフソン素子、酸化
物超伝導体間をAu、Ag等の貴金属で接続したジョセ
フソン素子が従来試作されている。
One of the practical applications of superconducting devices is the Josephson device, in which an oxide superconductor is divided into two halves and then brought into slight contact again.The oxide superconductor is made into a thin film and a small constriction is formed in the Josephson device. A bridge-type Josephson element, and a Josephson element in which oxide superconductors are connected with a noble metal such as Au or Ag, have been prototyped in the past.

【0004】0004

【発明が解決しようとする課題】従来試作されている素
子のうち、二つに割った超伝導体を接触させた超伝導素
子では、再現性が得られず、また特性が非常に不安定で
あった。
[Problem to be solved by the invention] Among the devices that have been prototyped in the past, superconducting devices in which two halves of a superconductor are brought into contact cannot achieve reproducibility and the characteristics are extremely unstable. there were.

【0005】さらに酸化物超伝導体にくびれをつけたり
、貴金属で接続したブリッジ型素子では、わずかな静電
的ショックで破損するという欠点があり、素子抵抗の大
きいものが得られていないという課題があった。
Furthermore, bridge-type devices in which oxide superconductors are constricted or connected with precious metals have the disadvantage of being damaged by even the slightest electrostatic shock, and the problem is that devices with high resistance have not been obtained. there were.

【0006】また酸化物超伝導体を用いた薄膜接合型の
構造を持つ超伝導素子では、酸化物超伝導体の成膜温度
が約600℃以上必要なため上部に位置する超伝導電極
成膜時にバリア層が拡散する、あるいは超伝導電極層に
用いた材料とバリア層の材料の熱膨張係数が違うため室
温に戻したときに膜にストレスが入り、上部に位置する
超伝導電極の超伝導性が著しく損なわれたり、バリア層
にピンホールが存在する等の課題があった。
[0006] Furthermore, in a superconducting element having a thin film bonding type structure using an oxide superconductor, the film formation temperature of the oxide superconductor must be approximately 600°C or higher, so the superconducting electrode located at the top must be formed at a temperature of approximately 600°C or higher. Sometimes the barrier layer diffuses, or the thermal expansion coefficients of the material used for the superconducting electrode layer and the material of the barrier layer are different, so stress is applied to the film when it is returned to room temperature, causing the superconductivity of the superconducting electrode located above to There were problems such as a significant loss in performance and the presence of pinholes in the barrier layer.

【0007】また、超伝導電極層に用いた材料とバリア
層の材料の結晶構造の違いによる格子定数のミスマッチ
によって上部超伝導電極の結晶性が悪く、その超伝導性
が、下部電極に用いた超伝導電極に比べ劣るなどの課題
も指摘されていた。
[0007] Furthermore, the crystallinity of the upper superconducting electrode is poor due to a mismatch in lattice constants due to the difference in crystal structure between the material used for the superconducting electrode layer and the material for the barrier layer, and its superconductivity is Issues such as being inferior to superconducting electrodes were also pointed out.

【0008】本発明は、特性が安定で、しかも大きな素
子抵抗を有するジョセフソン素子として応用できる超伝
導素子を提供することを目的とする。また、本発明は先
の目的に加えて、550℃以上で成膜した後室温に戻し
ても、膜にストレスが入らず成膜時の結晶性を保ち、液
体窒素温度以上でも良好な超伝導性を有する、薄膜接合
型の超伝導素子を提供することも目的の一つである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting element that has stable characteristics and a large element resistance and can be used as a Josephson element. In addition to the above-mentioned objectives, the present invention also has the advantage that even if the film is deposited at 550°C or higher and then returned to room temperature, the film maintains its crystallinity at the time of deposition without stress, and has good superconductivity even at liquid nitrogen temperatures or higher. Another objective is to provide a thin film bonding type superconducting element having the following properties.

【0009】[0009]

【課題を解決するための手段】バリア層と、その両端に
位置する2つの、超伝導体よりなるA電極およびB電極
とより構成される超伝導素子において、A電極、及びB
電極の材料として少なくともアルカリ土類金属を含むB
i系酸化物超伝導体を用い、さらにバリア層の材料とし
て前述のアルカリ土類金属を含むBi系酸化物超伝導体
中のアルカリ土類金属の一部をYまたは、ランタノイド
元素のうち1つで置換した非超伝導体を用いる。
[Means for Solving the Problems] In a superconducting element composed of a barrier layer and two electrodes A and B made of a superconductor located at both ends of the barrier layer, the A electrode and the B electrode are provided.
B containing at least an alkaline earth metal as an electrode material
Using an i-based oxide superconductor, a part of the alkaline earth metal in the Bi-based oxide superconductor containing the above-mentioned alkaline earth metal as a barrier layer material is Y or one of the lanthanide elements. A non-superconductor substituted with is used.

【0010】0010

【作用】本発明の超伝導素子の構成要素の一つであるバ
リア層に、アルカリ土類金属を含むBi系酸化物超伝導
体中のアルカリ土類金属の一部を少なくともY、または
ランタノイド元素のうち一つで置換した非超伝導体を用
い、さらに、超伝導素子の構成要素であるA電極および
B電極にアルカリ土類金属を含むBi系酸化物超伝導体
を用いることで良好な超伝導素子が製造できる。
[Operation] At least a portion of the alkaline earth metal in the Bi-based oxide superconductor containing an alkaline earth metal is added to the barrier layer, which is one of the constituent elements of the superconducting element of the present invention, by Y or a lanthanide element. A good superconductor can be obtained by using a non-superconductor substituted with one of these, and by using a Bi-based oxide superconductor containing an alkaline earth metal for the A and B electrodes, which are the constituent elements of the superconducting element. Conductive elements can be manufactured.

【0011】ここでいう、アルカリ土類金属を含むBi
系酸化物超伝導体とは、A、B両超伝導電極としては、
Bi−Sr−Ca−Cu−O、Bi−Sr−Ba−Cu
−O、Bi−Ca−Ba−Cu−Oのうち1つ、あるい
は、少なくともPbを含むBi−Sr−Ca−Cu−O
、Bi−Sr−Ba−Cu−O、Bi−Ca−Ba−C
u−Oのうち1つが供される。
[0011] Here, Bi containing an alkaline earth metal
The system oxide superconductor has both A and B superconducting electrodes:
Bi-Sr-Ca-Cu-O, Bi-Sr-Ba-Cu
-O, one of Bi-Ca-Ba-Cu-O, or Bi-Sr-Ca-Cu-O containing at least Pb
, Bi-Sr-Ba-Cu-O, Bi-Ca-Ba-C
One of u-O is provided.

【0012】またバリア層の材料としては、超伝導電極
に用いたBi−Sr−Ca−Cu−O、Bi−Sr−B
a−Cu−O、Bi−Ca−Ba−Cu−O、あるいは
、少なくともPbを含むBi−Sr−Ca−Cu−O、
Bi−Sr−Ba−Cu−O、Bi−Ca−Ba−Cu
−Oの中の、Ca、Sr、またはBaの一部、または全
てを、Y、またはランタノイド元素で置換したものが供
される。
[0012] Also, as the material of the barrier layer, Bi-Sr-Ca-Cu-O and Bi-Sr-B used for the superconducting electrode are used.
a-Cu-O, Bi-Ca-Ba-Cu-O, or Bi-Sr-Ca-Cu-O containing at least Pb,
Bi-Sr-Ba-Cu-O, Bi-Ca-Ba-Cu
-O in which part or all of Ca, Sr, or Ba is replaced with Y or a lanthanide element is provided.

【0013】これらの材料は、すべて同様な層状ペロブ
スカイト構造をとり、そのa、b各結晶方位の格子定数
がほぼ一致し、また熱膨張係数もほとんど一致するため
に、作製時と超伝導素子使用時の環境温度の変化に対し
、各電極とバリア層間の機械的ストレスが低減でき、超
伝導素子特性が劣化しない。
[0013] All of these materials have a similar layered perovskite structure, and the lattice constants of their a and b crystal orientations are almost the same, and their thermal expansion coefficients are also almost the same. The mechanical stress between each electrode and the barrier layer can be reduced in response to changes in the environmental temperature, and the characteristics of the superconducting element will not deteriorate.

【0014】例えば、基体、および一方の超伝導電極を
兼ねて、Bi系酸化物超伝導体の単結晶体、または焼結
体を用い、その上にバリア層、他の超伝導電極を作製す
ると、作製後、室温に戻しても、ストレスが入らず作製
時の結晶性を保て、しかも上部に位置する超伝導電極の
超伝導性も基体として用いた超伝導体の超伝導性と同程
度のものが得られる。この場合、基体に他の材料を用い
る場合に比べ、熱膨張係数の違いによる結晶性の乱れが
なく、超伝導素子の超伝導特性、特に臨界電流密度を高
くできる。
For example, if a single crystal or sintered body of a Bi-based oxide superconductor is used as the substrate and one superconducting electrode, and a barrier layer and another superconducting electrode are formed thereon, , even if the temperature is returned to room temperature after fabrication, the crystallinity at the time of fabrication is maintained without stress, and the superconductivity of the superconducting electrode located at the top is comparable to that of the superconductor used as the substrate. You can get the following. In this case, compared to cases where other materials are used for the substrate, there is no disturbance in crystallinity due to differences in thermal expansion coefficients, and the superconducting properties of the superconducting element, particularly the critical current density, can be increased.

【0015】さらに、基板上に作製する様な構成の超伝
導素子では、基体に用いる基板を適当に選択し、基板の
格子定数、熱膨張係数を、酸化物超伝導体のものと近い
ものとすることによって、2つの超伝導電極、バリア層
をすべて薄膜状とし、基板温度550℃以上で成膜し室
温に戻しても、ストレスが入らず成膜時の結晶性を保て
、しかも上部に位置する超伝導電極の超伝導性も基板上
に成膜した超伝導電極の超伝導性と同程度のものが得ら
れる。また、この構成では、A電極、バリア層、B電極
共に、同一真空中での連続成膜によって超伝導素子を形
成できるため、各層間に汚染層が形成されることを防ぎ
、超伝導素子特性の再現性、制御性を向上させることが
出来る。この構成はまた、大面積の基体を用いることが
出来、同一特性の素子を多数集積化する場合にも有利で
ある。
Furthermore, in a superconducting element constructed on a substrate, the substrate used as the base is appropriately selected, and the lattice constant and coefficient of thermal expansion of the substrate are close to those of the oxide superconductor. By doing so, the two superconducting electrodes and the barrier layer are all in the form of thin films, and even if the film is formed at a substrate temperature of 550°C or higher and returned to room temperature, no stress is applied and the crystallinity at the time of film formation is maintained. The superconductivity of the superconducting electrode located on the substrate is also comparable to that of the superconducting electrode formed on the substrate. In addition, with this configuration, the superconducting element can be formed by continuous film formation of the A electrode, barrier layer, and B electrode in the same vacuum, which prevents the formation of a contamination layer between each layer and improves the properties of the superconducting element. can improve reproducibility and controllability. This configuration also allows the use of a large-area substrate and is advantageous when a large number of elements with the same characteristics are integrated.

【0016】一方、本発明において用いたバリア層(非
超伝導体)は、抵抗率が77K付近で10Ωcm以上と
高く、超伝導素子の素子抵抗が大きくできる。
On the other hand, the barrier layer (non-superconductor) used in the present invention has a high resistivity of 10 Ωcm or more at around 77K, and the element resistance of the superconducting element can be increased.

【0017】さらに、A電極、B電極共に同一の材料を
用いて構成すると、わずかな結晶の格子定数の違いから
くるピンホールを減少させることができ、多数の素子を
集積化する際に歩留りを向上させる。またこの構成は、
成膜工程での装置構成が簡略化でき、実用化の際に有利
である。
Furthermore, if both the A and B electrodes are constructed using the same material, pinholes caused by slight differences in crystal lattice constants can be reduced, and the yield can be improved when integrating a large number of elements. Improve. Also, this configuration
The device configuration in the film forming process can be simplified, which is advantageous in practical use.

【0018】また、A電極、B電極、バリア層を、すべ
てc軸配向させて形成したBi系酸化物薄膜を用いると
、結晶系、さらに、構成元素の類似性から、各層の結晶
性に歪が入ることなく、良好な超伝導素子特性を有する
超伝導素子を再現性良く作製できた。
Furthermore, if a Bi-based oxide thin film is used in which the A electrode, B electrode, and barrier layer are all oriented along the c-axis, the crystallinity of each layer will be distorted due to the similarity of the crystal system and constituent elements. We were able to fabricate a superconducting device with good superconducting device characteristics with good reproducibility, without any interference.

【0019】[0019]

【実施例】本発明の超伝導素子は、アルカリ土類金属を
含むBi系酸化物超伝導体を一対の電極とし、この両電
極の間にバリア層を設けた構造を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The superconducting element of the present invention has a structure in which a Bi-based oxide superconductor containing an alkaline earth metal is used as a pair of electrodes, and a barrier layer is provided between the two electrodes.

【0020】本発明の超伝導素子は、特に、バリア層と
して、Bi系酸化物超伝導体中のアルカリ土類金属の一
部を少なくともY、またはランタノイド元素のうち一つ
で置換した非超伝導体を用いることによって、その効果
をより顕著に示すものである。
[0020] In particular, the superconducting element of the present invention is a non-superconducting material in which a part of the alkaline earth metal in the Bi-based oxide superconductor is replaced with at least Y or one of the lanthanide elements as a barrier layer. By using the body, its effects are more clearly demonstrated.

【0021】ここでいう、アルカリ土類金属を含むBi
系酸化物超伝導体とは、A、B両超伝導電極としては、
Bi−Sr−Ca−Cu−O、Bi−Sr−Ba−Cu
−O、Bi−Ca−Ba−Cu−Oのうち1つ、あるい
は、少なくともPbを含むBi−Sr−Ca−Cu−O
、Bi−Sr−Ba−Cu−O、Bi−Ca−Ba−C
u−Oのうち1つが供される。このPbを混入すると、
結晶か温度の範囲が拡がりる効果があった。
[0021] Here, Bi containing an alkaline earth metal
The system oxide superconductor has both A and B superconducting electrodes:
Bi-Sr-Ca-Cu-O, Bi-Sr-Ba-Cu
-O, one of Bi-Ca-Ba-Cu-O, or Bi-Sr-Ca-Cu-O containing at least Pb
, Bi-Sr-Ba-Cu-O, Bi-Ca-Ba-C
One of u-O is provided. When this Pb is mixed,
This had the effect of expanding the crystal temperature range.

【0022】特に下記2212相構造のBi系酸化物超
伝導体では、結晶構造が安定に得られた。
In particular, a Bi-based oxide superconductor having the following 2212 phase structure had a stable crystal structure.

【0023】 (Bi1−yPby)2−Sr2−Ca1−Cu2−O
x、(但し0≦y<0.5、xは任意) また下記2223相構造のBi系酸化物超伝導体では、
より高温の超伝導遷移温度を有する超伝導体が得られる
ため、超伝導素子の動作温度のマージンが拡がった。
(Bi1-yPby)2-Sr2-Ca1-Cu2-O
x, (however, 0≦y<0.5, x is arbitrary) In addition, in the Bi-based oxide superconductor with the following 2223 phase structure,
The ability to obtain superconductors with higher superconducting transition temperatures has expanded the operating temperature margin of superconducting devices.

【0024】 (Bi1−yPby)2−Sr2−Ca2−Cu3−O
x、(但し0≦y<0.5、xは任意) またバリア層の材料としては、超伝導電極に用いたBi
−Sr−Ca−Cu−O、Bi−Sr−Ba−Cu−O
、Bi−Ca−Ba−Cu−O、あるいは、少なくとも
Pbを含むBi−Sr−Ca−Cu−O、Bi−Sr−
Ba−Cu−O、Bi−Ca−Ba−Cu−Oの中の、
Ca、Sr、またはBaの一部、または全てを、Y、ま
たはランタノイド元素で置換したものが供される。これ
らの材料は、超伝導電極と同様の結晶構造をもち、また
、熱膨張係数も超伝導電極のそれにほぼ等しく、超伝導
電極との積層構造に好ましかった。さらに大きな抵抗率
を有し、素子抵抗が大きいバリア層となった。
(Bi1-yPby)2-Sr2-Ca2-Cu3-O
x, (however, 0≦y<0.5, x is arbitrary) In addition, as a material for the barrier layer, Bi used for the superconducting electrode
-Sr-Ca-Cu-O, Bi-Sr-Ba-Cu-O
, Bi-Ca-Ba-Cu-O, or Bi-Sr-Ca-Cu-O, Bi-Sr- containing at least Pb
In Ba-Cu-O, Bi-Ca-Ba-Cu-O,
A material in which part or all of Ca, Sr, or Ba is replaced with Y or a lanthanide element is provided. These materials have a crystal structure similar to that of the superconducting electrode and also have a coefficient of thermal expansion approximately equal to that of the superconducting electrode, making them suitable for a laminated structure with the superconducting electrode. This resulted in a barrier layer with even higher resistivity and higher device resistance.

【0025】特に下記の、主として2212相のBi系
酸化物では、抵抗率が大きく、また結晶構造が安定なた
め、最もバリア層として好ましかった。
In particular, the following Bi-based oxide mainly having a 2212 phase was most preferred as a barrier layer because it had a high resistivity and a stable crystal structure.

【0026】 (Bi1−yPby)2−Sr2−Ra1−Cu2−O
x、(但し0≦y<0.5、xは任意、RaはY、およ
びランタノイド元素のうち少なくとも一つをさす)とく
に基板として(100)SrTiO3、または(100
)MgO基板を用い、A電極、B電極に主として221
2相の下記Bi系酸化物超伝導体を用い、(Bi1−y
Pby)2−Sr2−Ca1−Cu2−Ox、(但し0
≦y<0.5、xは任意) バリア層の材料に、主として2212相の下記酸化物を
用いるか、 (Bi1−yPby)2−Sr2−Ra1−Cu2−O
x、(但し0≦y<0.5、xは任意、RaはY、およ
びランタノイド元素のうち少なくとも一つをさす)また
はA電極、B電極に主として2223相の下記Bi系酸
化物超伝導体を用い、 (Bi1−yPby)2−Sr2−Ca2−Cu3−O
x、(但し0≦y<0.5、xは任意) バリア層の材料に、主として2212相の下記酸化物を
用いると、 (Bi1−yPby)2−Sr2−Ra1−Cu2−O
x、(但し0≦y<0.5、xは任意、RaはY、およ
びランタノイド元素のうち少なくとも一つをさす)基板
温度を600℃から850℃とした場合、各層とも基板
に対し連続的にエピタキシャル成長し、また700℃以
下の酸素中でのアニール処理をしても結晶性を保ったま
まA、B両電極の超伝導性が向上することを見いだした
(Bi1-yPby)2-Sr2-Ra1-Cu2-O
x, (0≦y<0.5, x is arbitrary, Ra refers to Y, and at least one of the lanthanide elements) In particular, as a substrate, (100) SrTiO3 or (100
) Using an MgO substrate, 221 is mainly used for the A and B electrodes.
Using the following two-phase Bi-based oxide superconductor, (Bi1-y
Pby)2-Sr2-Ca1-Cu2-Ox, (but 0
≦y<0.5, x is arbitrary) The following oxide of 2212 phase is mainly used as the material of the barrier layer, or (Bi1-yPby)2-Sr2-Ra1-Cu2-O
x, (0≦y<0.5, x is arbitrary, Ra refers to Y, and at least one of the lanthanide elements) or the following Bi-based oxide superconductor mainly of 2223 phase for the A electrode and the B electrode (Bi1-yPby)2-Sr2-Ca2-Cu3-O
x, (0≦y<0.5, x is arbitrary) When the following oxide of mainly 2212 phase is used as the material of the barrier layer, (Bi1-yPby)2-Sr2-Ra1-Cu2-O
x, (0≦y<0.5, x is arbitrary, Ra refers to Y, and at least one of the lanthanide elements) When the substrate temperature is from 600℃ to 850℃, each layer is continuous with respect to the substrate. It has been found that the superconductivity of both electrodes A and B can be improved while maintaining crystallinity even when epitaxially grown and annealed in oxygen at temperatures below 700°C.

【0027】さらに以上述べたこれらの多層膜を用い接
合型の超伝導素子を作製したところ、液体窒素温度以上
でも良好な超伝導特性を示し、ジョセフソン効果を示す
ことを見いだした。
Furthermore, when a junction-type superconducting device was fabricated using these multilayer films described above, it was found that it exhibited good superconducting properties even at temperatures above liquid nitrogen temperature and exhibited the Josephson effect.

【0028】以下に具体的実施例を挙げて、本発明をよ
り詳細に説明する。 具体的実施例 第1の実施例 図1は本発明の第1の実施例を示すプロセス図である。 まず、(100)MgO基板を基体3に用い、rfマグ
ネトロンスパッタリング法によって、主として2212
相の酸化物超伝導体を含むBi系酸化物超伝導体(Bi
1−yPby)2−Sr2−Ca1−Cu2−Ox、(
但し0≦y<0.5、xは任意) が堆積するように調整した酸化物粉末のターゲットを用
い、厚さ300nmのA電極1を堆積させた。ひき続き
同一真空中において、主として2212相のBi系酸化
物 (Bi1−yPby)2−Sr2−Nd1−Cu2−O
x、(但し0≦y<0.5、xは任意) が堆積するように調整した酸化物粉末のターゲットより
バリア層2を厚さ11nm堆積させた(図1(a)参照
)。
The present invention will be explained in more detail with reference to specific examples below. Specific Embodiments First Embodiment FIG. 1 is a process diagram showing a first embodiment of the present invention. First, a (100) MgO substrate was used as the substrate 3, and mainly 2212
Bi-based oxide superconductor (Bi
1-yPby)2-Sr2-Ca1-Cu2-Ox, (
(0≦y<0.5, x is arbitrary) Using an oxide powder target adjusted to deposit 0≦y<0.5, the A electrode 1 with a thickness of 300 nm was deposited. Subsequently, in the same vacuum, a mainly 2212-phase Bi-based oxide (Bi1-yPby)2-Sr2-Nd1-Cu2-O
Barrier layer 2 was deposited to a thickness of 11 nm from an oxide powder target adjusted to deposit x, (0≦y<0.5, x is arbitrary) (see FIG. 1(a)).

【0029】さらにB電極2となる2212相の酸化物
超伝導体を含むBi系酸化物超伝導体、(Bi1−yP
by)2−Sr2−Ca1−Cu2−Ox、(但し0≦
y<0.5、xは任意) が堆積するように調整した酸化物粉末のターゲットを用
いて、B電極4を200ナノメータ堆積させ、最後に表
面保護層5としてのPtを60nm堆積させた(図1(
b)参照)。
Furthermore, a Bi-based oxide superconductor containing a 2212-phase oxide superconductor, which becomes the B electrode 2, (Bi1-yP
by) 2-Sr2-Ca1-Cu2-Ox, (0≦
Using an oxide powder target adjusted to deposit y < 0.5, x is arbitrary), the B electrode 4 was deposited to a thickness of 200 nm, and finally Pt was deposited to a thickness of 60 nm as the surface protective layer 5 ( Figure 1 (
b)).

【0030】但し基板温度は表面保護層5のPtの堆積
を除き、いずれの場合も650℃である。表面保護層5
は、室温で堆積した。
However, the substrate temperature was 650° C. in all cases except for the deposition of Pt in the surface protective layer 5. Surface protective layer 5
was deposited at room temperature.

【0031】その後、ネガレジストを用いたフォトリソ
グラフィーおよびイオンミリングによりにより、バリア
層2、B電極4、及び表面保護層5をトンネル接合形状
にパターニングした(図1(c)参照)。
Thereafter, the barrier layer 2, B electrode 4, and surface protection layer 5 were patterned into a tunnel junction shape by photolithography using a negative resist and ion milling (see FIG. 1(c)).

【0032】その後、ネガレジスト6を除去せずに、電
極間分離層7として250ナノメータのCaF2を真空
蒸着により堆積後(図1(d)参照)、トリクロロエタ
ンによる超音波洗浄、およびO2ガスプラズマ処理(1
トール、13.56MHz、400W)によるリフトオ
フ法で表面保護層5を露出させた(図1(e)参照)。   最後に、全面にコンタクト電極8用に、Pt150
nmを堆積させ、ネガレジストを用いたフォトリソグラ
フィーおよびイオンミリングによりによりB電極の一部
に接触させたコンタクト電極8を形成し、超伝導素子を
完成させた(図1(f)参照)。
Thereafter, without removing the negative resist 6, 250 nanometers of CaF2 was deposited as the interelectrode separation layer 7 by vacuum evaporation (see FIG. 1(d)), followed by ultrasonic cleaning with trichloroethane and O2 gas plasma treatment. (1
The surface protective layer 5 was exposed by a lift-off method (see FIG. 1(e)). Finally, Pt150 was applied to the entire surface for the contact electrode 8.
A contact electrode 8 was formed in contact with a part of the B electrode by photolithography using a negative resist and ion milling, and a superconducting element was completed (see FIG. 1(f)).

【0033】この製造方法による超伝導素子は液体窒素
温度において良好な超伝導特性、および非線形性を有す
る電流電圧特性を示すことを確認した。
[0033] It was confirmed that the superconducting element manufactured by this manufacturing method exhibits good superconducting characteristics and nonlinear current-voltage characteristics at liquid nitrogen temperature.

【0034】図2は本超伝導素子作製に用いた多層膜の
X線回折パターンである。これによると、650℃の成
膜温度において各層はc軸配向を示しており、また高速
電子線回折(RHEED)観察などよりエピタキシャル
成長していることが確認された。
FIG. 2 shows an X-ray diffraction pattern of the multilayer film used to fabricate the present superconducting device. According to this, each layer showed c-axis orientation at a film formation temperature of 650° C., and epitaxial growth was confirmed by high-speed electron diffraction (RHEED) observation.

【0035】この超伝導素子の電流電圧特性は大きな非
線形性を示し、また、高周波を印加することにより、交
流ジョセフソン効果を示す電流ステップが電流電圧特性
上に観測された。図3は、その電流電圧特性の一例であ
る。素子抵抗は、従来作製された同様の形状の素子より
も大きなものであり、ピンホールの存在確立も低くなっ
た。
The current-voltage characteristics of this superconducting element showed large nonlinearity, and by applying a high frequency, a current step indicating the AC Josephson effect was observed on the current-voltage characteristics. FIG. 3 shows an example of the current-voltage characteristics. The element resistance was higher than conventionally manufactured elements of similar shape, and the probability of the existence of pinholes was also lowered.

【0036】第2の実施例 次に本発明の第2の実施例を説明する。図4は第2の実
施例を説明するプロセス図である。A電極1には溶融法
により作製した2212相単結晶のBi系酸化物超伝導
体 (Bi1−yPby)2−Sr2−Ca1−Cu2−O
x、(但し0≦y<0.5、xは任意) を用いた。この単結晶はab面で容易に僻開し、その僻
開面上にスパッタリング法により、バリア層2、B電極
4を堆積した。単結晶の僻界は、スパッタリング容器を
真空排気した真空容器内で粘着テープにより行い、ひき
続き同一真空中においてA電極1を加熱、所定の温度に
保持した後、主として2212相のBi系酸化物(Bi
1−yPby)2−Sr2−Er1−Cu2−Ox、(
但し0≦y<0.5、xは任意) が堆積するように調整した酸化物粉末のターゲットより
バリア層2を厚さ11nm堆積させた(図4(a)参照
)。
Second Embodiment Next, a second embodiment of the present invention will be described. FIG. 4 is a process diagram explaining the second embodiment. The A electrode 1 is a 2212-phase single crystal Bi-based oxide superconductor (Bi1-yPby)2-Sr2-Ca1-Cu2-O prepared by a melting method.
x, (0≦y<0.5, x is arbitrary) was used. This single crystal was easily opened on the AB plane, and a barrier layer 2 and a B electrode 4 were deposited on the open face by sputtering. The isolation of the single crystal was carried out using adhesive tape in a vacuum chamber with the sputtering chamber evacuated, and after heating the A electrode 1 in the same vacuum and maintaining it at a predetermined temperature, mainly 2212 phase Bi-based oxide was formed. (Bi
1-yPby)2-Sr2-Er1-Cu2-Ox, (
Barrier layer 2 was deposited to a thickness of 11 nm using an oxide powder target adjusted to deposit 0≦y<0.5, x being arbitrary (see FIG. 4(a)).

【0037】さらにB電極4となる2212相の酸化物
超伝導体を含むBi系酸化物超伝導体、(Bi1−yP
by)2−Sr2−Ca1−Cu2−Ox、(但し0≦
y<0.5、xは任意) が堆積するように調整した酸化物粉末のターゲットを用
いて、Bi系酸化物超伝導体を200ナノメータ堆積さ
せ、最後に加熱をやめ、A電極1、バリア層2、および
B電極4が十分冷えた状態(室温程度)で、表面保護層
5としてのPtを60nm堆積させた(図4(b)参照
)。
Further, a Bi-based oxide superconductor containing a 2212-phase oxide superconductor, which becomes the B electrode 4, (Bi1-yP
by) 2-Sr2-Ca1-Cu2-Ox, (0≦
Using an oxide powder target adjusted to deposit y < 0.5, x is arbitrary), 200 nanometers of Bi-based oxide superconductor was deposited.Finally, heating was stopped and A electrode 1, barrier With the layer 2 and the B electrode 4 sufficiently cooled (about room temperature), 60 nm of Pt was deposited as the surface protective layer 5 (see FIG. 4(b)).

【0038】但し表面保護層5のPtの堆積を除き、加
熱温度は650℃である。その後、ネガレジスト6を用
いたフォトリソグラフィーおよびイオンミリングにより
により、バリア層2、B電極4、及び表面保護層5をト
ンネル接合形状にパターニングした(図4(c)参照)
However, except for the deposition of Pt in the surface protective layer 5, the heating temperature was 650°C. Thereafter, the barrier layer 2, B electrode 4, and surface protection layer 5 were patterned into a tunnel junction shape by photolithography and ion milling using a negative resist 6 (see FIG. 4(c)).
.

【0039】その後、ネガレジスト6を除去せずに、電
極間分離層7として250ナノメータのCaF2を真空
蒸着により堆積後(図4(d)参照)、トリクロロエタ
ンによる超音波洗浄、およびO2ガスプラズマ処理(1
トール、13.56MHz、400W)によるリフトオ
フ法で表面保護層5を露出させた(図4(e)参照)。   最後に、全面にPt150nmを堆積させ、ネガレ
ジストを用いたフォトリソグラフィーおよびイオンミリ
ングによりによりB電極4の一部に接触させたコンタク
ト電極8を形成し、超伝導素子を完成させた(図4(f
)参照)。
Thereafter, without removing the negative resist 6, 250 nanometers of CaF2 was deposited as the interelectrode separation layer 7 by vacuum evaporation (see FIG. 4(d)), followed by ultrasonic cleaning with trichloroethane and O2 gas plasma treatment. (1
The surface protective layer 5 was exposed by a lift-off method (see FIG. 4(e)). Finally, 150 nm of Pt was deposited on the entire surface, and a contact electrode 8 was formed in contact with a part of the B electrode 4 by photolithography using a negative resist and ion milling, thereby completing a superconducting element (see FIG. 4). f
)reference).

【0040】この製造方法による超伝導素子も液体窒素
温度において良好な超伝導特性、ジョセフソン効果、お
よび非線形性を有する電流電圧特性を示すことを確認し
た。
[0040] It was confirmed that the superconducting element manufactured by this manufacturing method also exhibited good superconducting characteristics, Josephson effect, and current-voltage characteristics with nonlinearity at liquid nitrogen temperature.

【0041】第3の実施例図5は本発明の第3の実施例
を示すプロセス図である。まず、(100)MgO基板
を基体3に用い、rfマグネトロンスパッタリング法に
よって、主として2212相のBi系酸化物(Bi1−
yPby)2−Sr2−Nd1−Cu2−Ox、(但し
0≦y<0.5、xは任意) が堆積するように調整した酸化物粉末のターゲットより
バリア層2を厚さ200nm堆積させた(図1(a)参
照)。
Third Embodiment FIG. 5 is a process diagram showing a third embodiment of the present invention. First, using a (100) MgO substrate as the substrate 3, a Bi-based oxide (Bi1-
Barrier layer 2 was deposited to a thickness of 200 nm from an oxide powder target adjusted to deposit yPby)2-Sr2-Nd1-Cu2-Ox, (0≦y<0.5, x is arbitrary) ( (See Figure 1(a)).

【0042】ひき続き同一真空中において、主として2
212相の下記Bi系酸化物超伝導体 (Bi1−yPby)2−Sr2−Ca1−Cu2−O
x、(但し0≦y<0.5、xは任意) が堆積するように調整した酸化物粉末のターゲットを用
い、厚さ100nmの酸化物超伝導薄膜9を堆積させた
。(図5(a)参照)。
Subsequently, in the same vacuum, mainly 2
212-phase Bi-based oxide superconductor (Bi1-yPby)2-Sr2-Ca1-Cu2-O
An oxide superconducting thin film 9 having a thickness of 100 nm was deposited using an oxide powder target adjusted to deposit x, (0≦y<0.5, x is arbitrary). (See Figure 5(a)).

【0043】但し基板温度はいずれの場合も650℃で
ある。その後、電子線レジスト10を用いた電子ビーム
リソグラフィーによりにより、幅100nmの溝をパタ
ーニングした(図5(b)参照)。
However, the substrate temperature was 650° C. in both cases. Thereafter, grooves with a width of 100 nm were patterned by electron beam lithography using the electron beam resist 10 (see FIG. 5(b)).

【0044】その後、イオンミリングによって、超伝導
薄膜9をパターニング、A電極1、B電極4を形成後、
電子ビームレジストを除去し、超伝導素子を完成させた
(図5(c)参照)。
After that, the superconducting thin film 9 is patterned by ion milling to form the A electrode 1 and the B electrode 4.
The electron beam resist was removed and the superconducting device was completed (see FIG. 5(c)).

【0045】この製造方法による超伝導素子も液体窒素
温度において良好な超伝導特性、および非線形性を有す
る電流電圧特性を示すことを確認した。
[0045] It was confirmed that the superconducting element manufactured by this manufacturing method also exhibited good superconducting characteristics and nonlinear current-voltage characteristics at liquid nitrogen temperature.

【0046】なお、本発明の具体的実施例において、超
伝導素子の構成要素である超伝導素子のA電極、B電極
に主として2212相の下記酸化物超伝導体を含むBi
系酸化物超伝導体薄膜、または単結晶を用い、(Bi1
−yPby)2−Sr2−Ca1−Cu2−Ox、(但
し0≦y<0.5、xは任意) バリア層の材料に、主として2212相のBi系酸化物
(Bi1−yPby)2−Sr2−Nd1−Cu2−O
x、(但し0≦y<0.5、xは任意) を用いたが、A電極、B電極に主として2223相の下
記酸化物超伝導体を含むBi系酸化物超伝導体薄膜、ま
たは単結晶、 (Bi1−yPby)2−Sr2−Ca2−Cu3−O
x、(但し0≦y<0.5、xは任意) を用いても同様に良好な結晶性を有する積層膜が製造で
き、また動作温度も高くなることを確認した。また、第
2の実施例の説明で、単結晶体を用いたが、表面を研磨
した焼結体でも同様に超電導素子を作製できることを確
認した。
In a specific embodiment of the present invention, the A and B electrodes of the superconducting element, which are the constituent elements of the superconducting element, mainly contain Bi containing the following oxide superconductor of 2212 phase.
Using a thin film or single crystal of an oxide superconductor, (Bi1
-yPby)2-Sr2-Ca1-Cu2-Ox, (however, 0≦y<0.5, x is arbitrary) The material of the barrier layer is mainly a 2212 phase Bi-based oxide (Bi1-yPby)2-Sr2- Nd1-Cu2-O
x, (0≦y<0.5, x is arbitrary), but a Bi-based oxide superconductor thin film containing mainly the following oxide superconductor of 2223 phase or a monolayer was used for the A and B electrodes. Crystal, (Bi1-yPby)2-Sr2-Ca2-Cu3-O
It was confirmed that even if x, (0≦y<0.5, x is arbitrary) is used, a laminated film having good crystallinity can be similarly produced, and the operating temperature can also be increased. Furthermore, although a single crystal was used in the description of the second example, it was confirmed that a superconducting element could be similarly produced using a sintered body whose surface was polished.

【0047】また、A、B両電極、およびバリア層をす
べて、少なくともBiとアルカリ土類金属を含むc軸配
向したBi系酸化物とすることで、各層とも550℃以
上で基板に対しc軸配向した膜が成長することを確認し
、その多層膜を用いて作製した接合型の素子が超伝導素
子として動作することを確認した。
Furthermore, by making both the A and B electrodes and the barrier layer a c-axis oriented Bi-based oxide containing at least Bi and an alkaline earth metal, each layer has a c-axis orientation with respect to the substrate at 550° C. or higher. We confirmed that an oriented film grows and that a junction-type device fabricated using the multilayer film operates as a superconducting device.

【0048】但しここで言う、アルカリ土類金属を含む
Bi系酸化物とは、A、B両超伝導電極としては、Bi
−Sr−Ca−Cu−O、Bi−Sr−Ba−Cu−O
、Bi−Ca−Ba−Cu−Oのうち1つ、あるいは、
少なくともPbを含むBi−Sr−Ca−Cu−O、B
i−Sr−Ba−Cu−O、Bi−Ca−Ba−Cu−
Oの内1種の何れか1種である。
However, the Bi-based oxide containing an alkaline earth metal referred to here means Bi-based oxide for both A and B superconducting electrodes.
-Sr-Ca-Cu-O, Bi-Sr-Ba-Cu-O
, Bi-Ca-Ba-Cu-O, or
Bi-Sr-Ca-Cu-O, B containing at least Pb
i-Sr-Ba-Cu-O, Bi-Ca-Ba-Cu-
It is any one of O.

【0049】また、バリア層の材料として(Bi1−y
Pby)2−Sr2−Nd1−Cu2−Ox、(但し0
≦y<0.5、xは任意) または (Bi1−yPby)2−Sr2−Er1−Cu2−O
x、(但し0≦y<0.5、xは任意) を用いたが、主として2212相の下記酸化物(Bi1
−yPby)2−Sr2−Ra1−Cu2−Ox、(但
し0≦y<0.5、xは任意、RaはY、およびランタ
ノイド元素のうち少なくとも一つをさす)のうち一種を
用いても、同様に良好な超電導素子が作製できることを
確認した。
[0049] Also, as a material for the barrier layer (Bi1-y
Pby)2-Sr2-Nd1-Cu2-Ox, (but 0
≦y<0.5, x is arbitrary) or (Bi1-yPby)2-Sr2-Er1-Cu2-O
x, (however, 0≦y<0.5, x is arbitrary), but mainly the following oxide of 2212 phase (Bi1
-yPby)2-Sr2-Ra1-Cu2-Ox, (where 0≦y<0.5, x is arbitrary, Ra refers to Y and at least one of the lanthanide elements), It was confirmed that similarly good superconducting elements could be fabricated.

【0050】さらにコンタクト電極としてはPtを用い
たが、Au、Ag、Pd、Cuなどの金属でもよい。
Further, although Pt is used as the contact electrode, metals such as Au, Ag, Pd, and Cu may be used.

【0051】本実施例においてはバリア層としてc軸配
向の膜を用い、電流はそのc軸方法に流れる構造とした
が、バリア層、超伝導電極共に多結晶構造としても、同
様に素子が作製でき、超伝導素子として動作することを
確認した。
In this example, a c-axis oriented film was used as the barrier layer, and the current flowed in the direction of the c-axis, but the device could also be fabricated in the same way if both the barrier layer and the superconducting electrode had a polycrystalline structure. It was confirmed that the device could operate as a superconducting device.

【0052】[0052]

【発明の効果】本発明によれば、超伝導素子の構成要素
である超伝導素子のA、B両電極、およびバリア層をす
べて、アルカリ土類金属を含むBi系酸化物とすること
で、熱膨張係数がほとんど一致するために、基板温度5
50℃以上で成膜し室温に戻しても、ストレスが入らず
成膜時の結晶性を保ち、しかも上部に位置する超伝導電
極の超伝導性も基板上に成膜した超伝導電極の超伝導性
と同程度のものが得られる。
According to the present invention, both the A and B electrodes of the superconducting element, which are the constituent elements of the superconducting element, and the barrier layer are all made of Bi-based oxide containing an alkaline earth metal. Because the coefficients of thermal expansion are almost the same, the substrate temperature is 5.
Even if the film is formed at 50°C or higher and returned to room temperature, no stress occurs and the film maintains its crystallinity, and the superconductivity of the superconducting electrode located at the top is also the same as that of the superconducting electrode formed on the substrate. The same level of conductivity can be obtained.

【0053】本発明による超伝導素子は、従来使用でき
なかった高周波の電波を検知できるため、これら電気通
信分野の電波周波数の利用範囲を拡大できる。さらに高
感度であるため、電波障害の問題も低減出来る可能性が
ある。
The superconducting element according to the present invention can detect high-frequency radio waves that could not be used conventionally, so that the range of use of radio frequencies in the field of telecommunications can be expanded. Furthermore, since it is highly sensitive, it may also reduce the problem of radio wave interference.

【0054】[0054]

【図の簡単な説明】[Brief explanation of the figure]

【0055】[0055]

【図1】本発明の第1の実施例を説明する、超伝導素子
の作製プロセス図である。
FIG. 1 is a process diagram for manufacturing a superconducting element, explaining a first embodiment of the present invention.

【0056】[0056]

【図2】本発明の第1の実施例に用いた積層薄膜のX線
回折図である。
FIG. 2 is an X-ray diffraction diagram of the laminated thin film used in the first example of the present invention.

【0057】[0057]

【図3】本発明の第1の実施例で説明した超伝導素子の
電流電圧特性図である。
FIG. 3 is a current-voltage characteristic diagram of the superconducting element described in the first embodiment of the present invention.

【0058】[0058]

【図4】本発明の第2の実施例を説明する、超伝導素子
の作製プロセス図である。
FIG. 4 is a process diagram for manufacturing a superconducting element, explaining a second embodiment of the present invention.

【0059】[0059]

【図5】本発明の第3の実施例を説明する、超伝導素子
の作製プロセス図である。
FIG. 5 is a process diagram for manufacturing a superconducting element, explaining a third embodiment of the present invention.

【0060】[0060]

【符号の説明】[Explanation of symbols]

1  A電極 2  バリア層 3  基体 4  B電極 5  表面保護層 6  ネガレジスト 7  電極間分離層 8  コンタクト電極 9  超伝導薄膜 10  電子ビームレジスト 1 A electrode 2 Barrier layer 3 Base 4 B electrode 5 Surface protective layer 6 Negative resist 7 Inter-electrode separation layer 8 Contact electrode 9 Superconducting thin film 10 Electron beam resist

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  バリア層と、前記バリア層の2つの表
面、あるいは1つの表面に接した超伝導体よりなるA電
極およびB電極とより構成される超伝導素子において、
前記A電極、及びB電極の材料が少なくともアルカリ土
類金属を含むBi系酸化物超伝導体からなり、しかも前
記バリア層の材料が前記アルカリ土類金属を含むBi系
酸化物超伝導体中のアルカリ土類金属の一部を少なくと
もY、またはランタノイド元素のうち一つで置換した非
超伝導体からなることを特徴とする超伝導素子。
1. A superconducting element comprising a barrier layer and an A electrode and a B electrode made of a superconductor in contact with two surfaces or one surface of the barrier layer,
The material of the A electrode and the B electrode is made of a Bi-based oxide superconductor containing at least an alkaline earth metal, and the material of the barrier layer is made of a Bi-based oxide superconductor containing at least an alkaline earth metal. A superconducting element comprising a non-superconductor in which a portion of an alkaline earth metal is replaced with at least one of Y or a lanthanide element.
【請求項2】  少なくともA電極、またはB電極のど
ちらか一方を焼結体あるいは単結晶体をもちいて構成す
ることを特徴とする請求項1に記載の超伝導素子。
2. The superconducting element according to claim 1, wherein at least one of the A electrode and the B electrode is constructed using a sintered body or a single crystal.
【請求項3】  A電極、バリア層、B電極共に基体上
に作製した薄膜を用いて構成したことを特徴とする請求
項1に記載の超伝導素子。
3. The superconducting element according to claim 1, wherein the A electrode, the barrier layer, and the B electrode are all constructed using thin films fabricated on a substrate.
【請求項4】  A電極、B電極共に同一の材料を用い
て構成したことを特徴とする請求項3に記載の超伝導素
子。
4. The superconducting element according to claim 3, wherein both the A electrode and the B electrode are constructed using the same material.
【請求項5】  A電極、B電極、またはバリア層を、
すべてc軸配向させて形成したBi系酸化物薄膜を用い
ることを特徴とする請求項3または4に記載の超伝導素
子。
5. The A electrode, the B electrode, or the barrier layer,
5. The superconducting element according to claim 3, characterized in that a Bi-based oxide thin film formed entirely with c-axis orientation is used.
【請求項6】  A電極、B電極の材料に、少なくとも
Bi系酸化物超伝導体の、Bi−Sr−Ca−Cu−O
、Bi−Sr−Ba−Cu−O、Bi−Ca−Ba−C
u−Oの内何れか1種を用いたことを特徴とする請求項
2〜5のいずれかに記載の超伝導素子。
6. The material of the A electrode and the B electrode is at least Bi-based oxide superconductor Bi-Sr-Ca-Cu-O.
, Bi-Sr-Ba-Cu-O, Bi-Ca-Ba-C
The superconducting element according to any one of claims 2 to 5, characterized in that any one of u-O is used.
【請求項7】  A電極、B電極の材料に、少なくとも
Pbを含むBi系酸化物超伝導体を用いることを特徴と
する請求項6に記載の超伝導素子。
7. The superconducting element according to claim 6, wherein a Bi-based oxide superconductor containing at least Pb is used as a material for the A electrode and the B electrode.
【請求項8】  A電極、B電極の材料が、主として2
212相の下記Bi系酸化物超伝導体 (Bi1−yPby)2−Sr2−Ca1−Cu2−O
x、(但し0≦y<0.5、xは任意) もしくはA電極、B電極の材料が、主として2223相
の下記酸化物超伝導体 (Bi1−yPby)2−Sr2−Ca2−Cu3−O
x、(但し0≦y<0.5、xは任意) の内何れか1種であり、バリア層の材料が、主として2
212相の下記酸化物 (Bi1−yPby)2−Sr2−Ra1−Cu2−O
x、(但し0≦y<0.5、xは任意、RaはY、およ
びランタノイド元素のうち少なくとも一つをさす)を用
いたことを特徴とする請求項6または7に記載の超伝導
素子。
[Claim 8] The materials of the A electrode and B electrode are mainly 2
212 phase Bi-based oxide superconductor (Bi1-yPby)2-Sr2-Ca1-Cu2-O
x, (however, 0≦y<0.5, x is arbitrary), or the material of the A electrode and B electrode is the following oxide superconductor (Bi1-yPby)2-Sr2-Ca2-Cu3-O, mainly having the 2223 phase.
x, (where 0≦y<0.5, x is arbitrary), and the material of the barrier layer is mainly 2
212 phase of the following oxide (Bi1-yPby)2-Sr2-Ra1-Cu2-O
The superconducting element according to claim 6 or 7, characterized in that x, (0≦y<0.5, x is arbitrary, and Ra refers to at least one of Y and a lanthanide element). .
JP3066274A 1991-03-29 1991-03-29 Superconductive element Pending JPH04302179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066274A JPH04302179A (en) 1991-03-29 1991-03-29 Superconductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066274A JPH04302179A (en) 1991-03-29 1991-03-29 Superconductive element

Publications (1)

Publication Number Publication Date
JPH04302179A true JPH04302179A (en) 1992-10-26

Family

ID=13311102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066274A Pending JPH04302179A (en) 1991-03-29 1991-03-29 Superconductive element

Country Status (1)

Country Link
JP (1) JPH04302179A (en)

Similar Documents

Publication Publication Date Title
EP0673073B1 (en) Method of manufacturing a superconducting device
US5278140A (en) Method for forming grain boundary junction devices using high Tc superconductors
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JPH0577347B2 (en)
US5354734A (en) Method for manufacturing an artificial grain boundary type Josephson junction device
JPH05335637A (en) Josephson junction structure body
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JP2790494B2 (en) Superconducting element
JPH04302179A (en) Superconductive element
JP2861235B2 (en) Superconducting element
JP2539584B2 (en) Superconducting quantum interference device
US20040134967A1 (en) Interface engineered high-Tc Josephson junctions
JP2907831B2 (en) Josephson element
JP2976427B2 (en) Method of manufacturing Josephson device
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JPH0563247A (en) Superconducting joint structure and production thereof
JPH04332180A (en) Josephson element
JPH02264486A (en) Superconductive film weakly coupled element
JPH05160448A (en) Abrupt josephson device
JPH05251773A (en) Josephson element and manufacture thereof
JPH04152683A (en) Superconducting element
KR20030005600A (en) Josephson junction device and manufacturing method for using the same
JPH05243631A (en) Manufacture of artificial grain boundary type josephson junction element
JPH05190927A (en) Tunnel type josephson junction element and its manufacture
JPH05267736A (en) Element having superconductive junction and manufacturing method thereof