JPH04300420A - Porous static pressure gas bearing - Google Patents

Porous static pressure gas bearing

Info

Publication number
JPH04300420A
JPH04300420A JP8583591A JP8583591A JPH04300420A JP H04300420 A JPH04300420 A JP H04300420A JP 8583591 A JP8583591 A JP 8583591A JP 8583591 A JP8583591 A JP 8583591A JP H04300420 A JPH04300420 A JP H04300420A
Authority
JP
Japan
Prior art keywords
porous
bearing
gas bearing
flow rate
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8583591A
Other languages
Japanese (ja)
Other versions
JPH0733848B2 (en
Inventor
Katsuhiro Ono
小野 克博
Kazumasa Kitamura
和正 北村
Hidenobu Misawa
三澤 英延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3085835A priority Critical patent/JPH0733848B2/en
Priority to EP91310992A priority patent/EP0488715B1/en
Priority to DE69124730T priority patent/DE69124730T2/en
Publication of JPH04300420A publication Critical patent/JPH04300420A/en
Publication of JPH0733848B2 publication Critical patent/JPH0733848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To obtain a porous static pressure gas bearing having structure by the use of which the mass production of a stable and highly rigid static pressure gas bearing is possible. CONSTITUTION:Porous ceramics 1 whose flow Q per unit area is Q<=0.01P<2>+0.02P-0.03 (where, P: air supply pressure), are used for the bearing surface of a static pressure gas bearing consisting of the bearing surface retaining a shaft structure body 3, and a gas supply portion 2 supplying gas to this bearing surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は多孔質セラミックスを使
用した静圧気体軸受けに関し、特に安定かつ高剛性な多
孔質気体軸受に関するものである。スライシングマシン
は、セラミックスの切断や溝入れ等に用いられる工作機
械であって、その砥石を回転させるスピンドルは加工物
に合った回転数で高速回転しかつ高剛性を得るため、工
場で容易に得られる最大給気圧力で運転される。本発明
の軸受けは、このような安定した高速回転かつ高剛性が
必要なところの軸受けとして利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static pressure gas bearing using porous ceramics, and more particularly to a stable and highly rigid porous gas bearing. A slicing machine is a machine tool used for cutting and grooving ceramics, etc. The spindle that rotates the grindstone rotates at a high speed that matches the workpiece and has high rigidity, so it can be easily obtained in factories. operated at maximum supply pressure. The bearing of the present invention can be used as a bearing where such stable high-speed rotation and high rigidity are required.

【0002】0002

【従来の技術】従来、軸受け面に多孔質体を配してこの
多孔質体を通して軸受け面の間隙に加圧気体を供給して
、軸受け面の空気層により軸構造体を保持する多孔質静
圧気体軸受けが知られている。
[Prior Art] Conventionally, a porous static material is provided on a bearing surface, and pressurized gas is supplied through the porous material into the gap on the bearing surface, and the shaft structure is held by the air layer on the bearing surface. Pressurized gas bearings are known.

【0003】この多孔質体の材料として、従来から多孔
質である焼結金属、カーボンやセラミックスが使用され
ている。このうち、多孔質の焼結金属または多孔質のカ
ーボンを使用した場合は、軸受け面の加工により軸受け
面に目つぶれが生じるため、膨大な工数のかかる再加工
をしなければ、安定で高剛性な静圧気体軸受けを得るこ
とができない問題があった。
Conventionally, porous sintered metals, carbon, and ceramics have been used as materials for this porous body. Among these, when porous sintered metal or porous carbon is used, the bearing surface will be damaged due to machining of the bearing surface, so unless it is reprocessed which requires a huge amount of man-hours, it will be stable and have high rigidity. There was a problem in that it was not possible to obtain a static pressure gas bearing.

【0004】0004

【発明が解決しようとする課題】その点、多孔質セラミ
ックスを使用した場合は上述した目つぶれの問題は発生
しない。しかしながら、例えば、日本機械学会論文集C
編55巻511 号「多孔質セラミックス静圧空気軸受
の負荷特性」に開示されているように、多孔質セラミッ
クスを使用した静圧気体軸受けでは、自励振動(ニュー
マチックハンマ)発生による不安定性を有しており、極
めて限定された条件下でしか安定せず、実際に高剛性で
安定な静圧気体軸受けを量産することができない問題が
あった。
[Problems to be Solved by the Invention] In this respect, when porous ceramics are used, the above-mentioned problem of eyelids does not occur. However, for example, the Transactions of the Japan Society of Mechanical Engineers C
As disclosed in "Load Characteristics of Porous Ceramic Hydrostatic Air Bearings" in Vol. The problem is that it is stable only under extremely limited conditions, making it impossible to mass-produce highly rigid and stable hydrostatic gas bearings.

【0005】本発明の目的は上述した課題を解消して、
安定で高剛性な静圧気体軸受けを量産可能な構造を有す
る多孔質静圧気体軸受を提供しようとするものである。
[0005] The purpose of the present invention is to solve the above-mentioned problems,
The present invention aims to provide a porous hydrostatic gas bearing having a structure that allows mass production of stable and highly rigid hydrostatic gas bearings.

【0006】[0006]

【課題を解決するための手段】本発明の多孔質静圧軸受
は、軸受け面に、単位面積当りの流量Q[s1/(mi
n ・cm2 ) ]が、 Q≦0.01P2+0.02P −0.03     
         −−−−(1)但し、P:給気圧[
kgf/cm2 ・G]である多孔質セラミックスを用
いたことを特徴とするものである。
[Means for Solving the Problems] The porous hydrostatic bearing of the present invention has a flow rate Q [s1/(mi) per unit area on the bearing surface.
n ・cm2)] is Q≦0.01P2+0.02P-0.03
-----(1) However, P: Supply pressure [
kgf/cm2·G] is used.

【0007】[0007]

【作用】上述した構成において、軸受け面の多孔質セラ
ミックスの単位面積当りに流れる流量を所定の値以下に
すれば、後述する実施例から明らかなように、多孔質セ
ラミックスの他の特性がどうであっても通常の使用にお
いて自励振動が発生せず、安定で高剛性な多孔質静圧気
体軸受を得ることができることを見いだしたことによる
[Operation] In the above-mentioned configuration, if the flow rate per unit area of the porous ceramic on the bearing surface is kept below a predetermined value, as will be clear from the examples described later, other characteristics of the porous ceramic will be affected. This is because it has been found that even if there is, it is possible to obtain a stable and highly rigid porous hydrostatic gas bearing that does not generate self-excited vibration during normal use.

【0008】なお、下限については特に規定するもので
はないが、Q=10−3(0.01P2 +0.02P
 −0.03)未満では、剛性が小さく軸受として使用
できなくなることが多いので、下限はQ=10−3(0
.01P2 +0.02P −0.03)までであると
好ましい。
[0008] The lower limit is not particularly stipulated, but Q = 10-3 (0.01P2 + 0.02P
If it is less than -0.03), the rigidity is too small and it is often impossible to use it as a bearing, so the lower limit is Q = 10-3 (0.03).
.. 01P2 +0.02P -0.03).

【0009】また、所定の通気率を有する多孔質セラミ
ックスを得るためには、粉末を調製し、成形、焼成して
焼結体を得る通常の製造法において、成形時の成形圧を
変化させるか、あるいは焼成時の焼成温度を変化させる
と、簡単に再現性良く所望の通気率を得ることができる
ことを見いだした。
[0009] Furthermore, in order to obtain porous ceramics having a predetermined air permeability, it is necessary to change the molding pressure during molding in the usual manufacturing method in which powder is prepared, molded, and fired to obtain a sintered body. Alternatively, it has been found that a desired air permeability can be easily obtained with good reproducibility by changing the firing temperature during firing.

【0010】なお、本発明においては多孔質セラミック
スの単位面積当りに流れる流量が上記(1)式を満たす
ものであれば他の特性はどの様なものでも可能だが、こ
の流量を達成するためには、多孔質セラミックスの特性
は通常以下の範囲にある。すなわち、平均細孔径:0.
5 〜10μm 、開気孔率:10〜30% 、細孔容
積:0.02〜0.08cc/g、吸水率:2 〜8%
、成形密度:2〜5g/cc の範囲にある。
[0010] In the present invention, as long as the flow rate per unit area of the porous ceramic satisfies the above formula (1), any other properties are possible; however, in order to achieve this flow rate, The properties of porous ceramics are usually in the following ranges. That is, average pore diameter: 0.
5 to 10 μm, open porosity: 10 to 30%, pore volume: 0.02 to 0.08 cc/g, water absorption rate: 2 to 8%
, molding density: in the range of 2 to 5 g/cc.

【0011】[0011]

【実施例】図1は本発明の多孔質静圧気体軸受の一例の
構成を示す断面図である。図1において、1は所定の流
量を有する多孔質セラミックス層、2は多孔質セラミッ
クス層1を介して空気等の気体を供給する気体供給部、
3は支持すべき軸構造体である。一般のスライシングマ
シンの砥石スピンドルの軸受寸法は、d=25〜60m
m、D=30〜80mm、1=25〜60mmである。 上述した構造の多孔質静圧気体軸受による軸構造体3の
支持は、まず多孔質セラミックス層1の円筒形状の軸受
け面に5〜20μmの隙間を設けて軸構造体3を装着し
た後、所定の圧力の気体を気体供給部2に供給した状態
で軸構造体3を回転することにより達成することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing the structure of an example of a porous static pressure gas bearing according to the present invention. In FIG. 1, 1 is a porous ceramic layer having a predetermined flow rate; 2 is a gas supply unit that supplies gas such as air through the porous ceramic layer 1;
3 is a shaft structure to be supported. The bearing dimensions of the grinding wheel spindle of a general slicing machine are d = 25 to 60 m.
m, D=30 to 80 mm, 1=25 to 60 mm. The shaft structure 3 is supported by the porous hydrostatic gas bearing having the above-mentioned structure. First, the shaft structure 3 is mounted on the cylindrical bearing surface of the porous ceramic layer 1 with a gap of 5 to 20 μm, and then This can be achieved by rotating the shaft structure 3 while supplying gas at a pressure of .

【0012】多孔質セラミックス層1は通常のセラミッ
クスの焼成方法、すなわち所定組成の粉末を調製し、調
製した粉末を成形し、成形後の成形体を焼成して得るこ
とができる。その際、後述するように成形時の成形圧を
変化させるか焼成時の焼成温度を変化させることにより
、所定の流量を有する多孔質セラミックス層1を得るこ
とができる。なお、多孔質セラミックス層1は均一な気
孔分布を有し加工しても目づまりしない材料から構成さ
れると好ましく、多孔質ジルコニア、多孔質アルミナ、
多孔質窒化アルミニウム、多孔質炭化ケイ素、多孔質窒
化ケイ素を使用すると好ましい。
The porous ceramic layer 1 can be obtained by the usual ceramic firing method, that is, by preparing powder of a predetermined composition, molding the prepared powder, and firing the molded body after molding. At this time, the porous ceramic layer 1 having a predetermined flow rate can be obtained by changing the molding pressure during molding or changing the firing temperature during firing, as will be described later. The porous ceramic layer 1 is preferably made of a material that has a uniform pore distribution and does not become clogged even when processed, such as porous zirconia, porous alumina,
Preferably, porous aluminum nitride, porous silicon carbide, porous silicon nitride are used.

【0013】図2は実際の多孔質静圧気体軸受により軸
構造体を受け、自励振動が発生する限界を求めるのに使
用した装置を示す図である。各軸受部の寸法は、d=5
0〜60mm、D=55〜75mm、1=50〜60m
mの範囲にある。図2に示す装置では、図1と同様の構
造の多孔質静圧気体軸受に、距離測定センサと加速度ピ
ックアップ4及びFFTアナライザー5を設け、各回転
数で回転させた時の振動を計測し、回転数と同期しない
周波数成分が発生したときに自励振動が発生したものと
みなしている。なお、図1の気体供給部から供給する圧
力は7kgf /cm2 Gとした。これは、給気圧が
高い方が軸受剛性が高くなることと、工場内で容易に供
給できる最高圧力であるためである。
FIG. 2 is a diagram showing an apparatus used to determine the limit at which self-excited vibration occurs when a shaft structure is received by an actual porous hydrostatic gas bearing. The dimensions of each bearing part are d=5
0~60mm, D=55~75mm, 1=50~60m
It is in the range of m. In the device shown in FIG. 2, a distance measurement sensor, an acceleration pickup 4, and an FFT analyzer 5 are installed in a porous hydrostatic gas bearing with a structure similar to that in FIG. 1, and vibrations when rotated at each rotation speed are measured. Self-excited vibration is considered to have occurred when a frequency component that is not synchronized with the rotational speed occurs. Note that the pressure supplied from the gas supply section in FIG. 1 was 7 kgf/cm2G. This is because the higher the supply pressure, the higher the bearing rigidity, and because this is the highest pressure that can be easily supplied within the factory.

【0014】実際に図2に示す装置により、多孔質セラ
ミックス層1の単位面積当りに流れる流量を変えてその
際の自励振動の発生する回転数を求めたところ、図3に
示す結果を得た。図3において、数字は試験No. を
示すとともに、数字の枠の意味は、□:2000rpm
 以下で、回転数に同期しない振動成分が発生した軸受
の流量曲線を、Δ:2000rpm 以上30000r
pm以下で、回転数に同期しない振動成分が発生した軸
受の流量曲線を、○:30000rpmまで、回転数に
同期しない振動成分が発生しなかった軸受の流量曲線を
意味し、さらに二重の枠は境界条件となる流量曲線を示
している。図3から明らかなように、単位面積当りに流
れる流量QをQ=0.01P2+ 0.02P−0.0
3以下にしさえすれば、自励振動のない安定した多孔質
静圧気体軸受が得られることがわかる。また、単位面積
当りの流量QがQ=1.2 ×10−3P2+0.01
P −7.8 ×10−3以下であれば、実験で確認で
きた装置の最高回転数である3万回転まで安定なため、
より一層安定な多孔質静圧気体軸受が得られることがわ
かる。一方、剛性は、(1) 式を満たすすべての条件
で15kgf/μm 以上であることが実測された。
When the flow rate per unit area of the porous ceramic layer 1 was varied and the rotational speed at which self-excited vibration occurred was actually determined using the apparatus shown in FIG. 2, the results shown in FIG. 3 were obtained. Ta. In FIG. 3, the numbers indicate test no. In addition to indicating, the meaning of the number frame is □: 2000 rpm
Below, the flow rate curve of a bearing in which a vibration component that is not synchronized with the rotation speed is generated, Δ: 2000rpm or more
pm or less, the flow rate curve of a bearing in which a vibration component that is not synchronized with the rotation speed has occurred, ○: The flow rate curve of a bearing that has not generated a vibration component that is not synchronized with the rotation speed up to 30,000 rpm, and a double frame. shows the flow rate curve serving as the boundary condition. As is clear from Fig. 3, the flow rate Q per unit area is Q = 0.01P2 + 0.02P - 0.0
It can be seen that as long as the value is 3 or less, a stable porous hydrostatic gas bearing without self-excited vibration can be obtained. Also, the flow rate Q per unit area is Q = 1.2 × 10-3P2 + 0.01
If P -7.8 × 10-3 or less, it is stable up to 30,000 rotations, which is the maximum rotation speed of the device confirmed in experiments.
It can be seen that an even more stable porous hydrostatic gas bearing can be obtained. On the other hand, the rigidity was actually measured to be 15 kgf/μm or more under all conditions satisfying equation (1).

【0015】また、多孔質セラミックス層1の製造時の
成形圧力及び焼成温度の影響を調べるため、同一組成の
セラミックスに対して成形時の成形圧力及び焼成温度を
変化させ、他の条件は同一として多孔質セラミックスを
製造し、その流量を調べたところ、成形圧力及び焼成温
度を変化させることにより、流量を制御することができ
、この方法が本発明の所定の流量を有する多孔質セラミ
ックスを得るために最適であることがわかったが、成形
圧力と焼成温度は密接な関係にあるため、実際の通気率
の制御にあたっては、これらの間の関係をも考慮する必
要がある。
In addition, in order to investigate the influence of the molding pressure and firing temperature during the production of the porous ceramic layer 1, the molding pressure and firing temperature during molding were varied for ceramics of the same composition, and other conditions were kept the same. When porous ceramics were manufactured and the flow rate was investigated, the flow rate could be controlled by changing the molding pressure and firing temperature, and this method was used to obtain the porous ceramics having a predetermined flow rate of the present invention. However, since molding pressure and firing temperature are closely related, it is necessary to consider the relationship between them when actually controlling the air permeability.

【0016】[0016]

【発明の効果】以上詳細に説明したところから明らかな
ように、本発明によれば、多孔質静圧気体軸受の多孔質
セラミックス層の単位面積当りに流れる流量さえ上記(
1) 式を満たすように制御すれば、セラミックスを使
用した靜圧気体軸受においても自励振動のない安定かつ
高剛性な軸受を得ることができる。また、上述したセラ
ミックス層の流量の制御には、成形圧力を変化させるか
焼成温度を変化させることにより、簡単に所定の通気率
を有する多孔質セラミックス層を得ることができる。
Effects of the Invention As is clear from the above detailed explanation, according to the present invention, even the flow rate per unit area of the porous ceramic layer of the porous hydrostatic gas bearing can be reduced to the above (
1) If controlled so as to satisfy the formula, a stable and highly rigid bearing without self-excited vibration can be obtained even in a low-pressure gas bearing using ceramics. Further, in controlling the flow rate of the ceramic layer described above, a porous ceramic layer having a predetermined air permeability can be easily obtained by changing the molding pressure or changing the firing temperature.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の多孔質靜圧気体軸受の一例の構成を示
す断面図である。
FIG. 1 is a sectional view showing the structure of an example of a porous low-pressure gas bearing of the present invention.

【図2】本発明において自励振動の発生を調べる状態を
示す図である。
FIG. 2 is a diagram showing a state in which the occurrence of self-excited vibration is investigated in the present invention.

【図3】本発明における、多孔質層を流れる単位面積当
りの流量が最高回転数に及ぼす影響を示すグラフである
FIG. 3 is a graph showing the influence of the flow rate per unit area flowing through a porous layer on the maximum rotation speed in the present invention.

【符号の説明】[Explanation of symbols]

1  多孔質セラミックス層 2  気体供給部 3  軸構造体 4  距離測定センサ及び加速度ピックアップ5  F
FT アナライザー
1 Porous ceramic layer 2 Gas supply section 3 Shaft structure 4 Distance measurement sensor and acceleration pickup 5 F
FT analyzer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  軸受け面に、単位面積当りの流量Q[
s1/(min ・cm2 )]が、Q≦0.01P2
+0.02P −0.03(但し、P:給気圧[kgf
/cm2 ・G])である多孔質セラミックスを用いた
ことを特徴とする多孔質静圧気体軸受。
[Claim 1] A flow rate per unit area Q[
s1/(min・cm2)] is Q≦0.01P2
+0.02P -0.03 (P: Supply pressure [kgf
A porous hydrostatic gas bearing characterized in that it uses porous ceramics that have the following properties: /cm2 ・G]).
【請求項2】  前記多孔質セラミックスの単位面積当
りの流量Qが、10−3(0.01P2 +0.02P
 −0.03) ≦Q≦0.01P2+0.02P −
0.03である請求項1記載の多孔質静圧気体軸受。
2. The flow rate Q per unit area of the porous ceramic is 10-3 (0.01P2 +0.02P
-0.03) ≦Q≦0.01P2+0.02P -
The porous hydrostatic gas bearing according to claim 1, wherein the porous hydrostatic gas bearing has a diameter of 0.03.
JP3085835A 1990-11-29 1991-03-27 Porous static pressure gas bearing Expired - Lifetime JPH0733848B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3085835A JPH0733848B2 (en) 1991-03-27 1991-03-27 Porous static pressure gas bearing
EP91310992A EP0488715B1 (en) 1990-11-29 1991-11-28 A porous hydrostatic gas-bearing
DE69124730T DE69124730T2 (en) 1990-11-29 1991-11-28 Porous, gas-static bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085835A JPH0733848B2 (en) 1991-03-27 1991-03-27 Porous static pressure gas bearing

Publications (2)

Publication Number Publication Date
JPH04300420A true JPH04300420A (en) 1992-10-23
JPH0733848B2 JPH0733848B2 (en) 1995-04-12

Family

ID=13869918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085835A Expired - Lifetime JPH0733848B2 (en) 1990-11-29 1991-03-27 Porous static pressure gas bearing

Country Status (1)

Country Link
JP (1) JPH0733848B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186030A (en) * 1986-09-30 1988-08-01 Canon Inc Porous static pressure gas bearing
JPH0289811A (en) * 1988-09-26 1990-03-29 Ibiden Co Ltd Static pressure gas bearing
JPH0281925U (en) * 1988-12-13 1990-06-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186030A (en) * 1986-09-30 1988-08-01 Canon Inc Porous static pressure gas bearing
JPH0289811A (en) * 1988-09-26 1990-03-29 Ibiden Co Ltd Static pressure gas bearing
JPH0281925U (en) * 1988-12-13 1990-06-25

Also Published As

Publication number Publication date
JPH0733848B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
KR101177346B1 (en) Grinding wheel for roll grinding application and method of roll grinding thereof
EP2314388B1 (en) Apparatus for removing a coating
Bertsche et al. Ultrasonic slot machining of a silicon carbide matrix composite
EP0633406B1 (en) Combination bearing construction
KR20080014778A (en) Shower plate and method for manufacturing the same
US20150267544A1 (en) Rotor-stator assembly for a gas turbine engine
JP3860253B2 (en) Static pressure gas bearing
JPH05296248A (en) Slider member
JP2726776B2 (en) Grinding method
JP3542502B2 (en) Manufacturing method of hydrostatic porous bearing
JPH04300420A (en) Porous static pressure gas bearing
JP2009227555A (en) Ceramic porous body and polishing processing method of the same
EP0488715A2 (en) A porous hydrostatic gas-bearing
JPH04219519A (en) Porous static pressure pneumatic bearing
JPH04300421A (en) Porous static pressure gas bearing
JP2008088849A (en) Nozzle vane member manufacturing method and nozzle vane member
Song et al. Grinding performance of metal-bonded CBN wheels with regular pores
Bifano et al. Fixed-abrasive grinding of brittle hard-disk substrates
JPH06100226B2 (en) Ceramic bearing device
JPH10128668A (en) Super-abrasive grain grinding wheel and its manufacture
Kwan Processing and fluid flow characteristics of hot isostatically pressed porous alumina for aerostatic bearing applications
JP3575540B2 (en) Numerical control polishing method
Zhao et al. Design of Tools, Grinding Wheels, and Precision Spindles
Shih et al. Wear of the blade diamond tools in truing vitreous bond grinding wheels: Part I. Wear measurement and results
JP2010269414A (en) Thin-edged blade

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980324