JPH04299240A - Spectroscopic diffraction apparatus for laser plasma soft x-rays - Google Patents

Spectroscopic diffraction apparatus for laser plasma soft x-rays

Info

Publication number
JPH04299240A
JPH04299240A JP3089799A JP8979991A JPH04299240A JP H04299240 A JPH04299240 A JP H04299240A JP 3089799 A JP3089799 A JP 3089799A JP 8979991 A JP8979991 A JP 8979991A JP H04299240 A JPH04299240 A JP H04299240A
Authority
JP
Japan
Prior art keywords
soft
rays
sample
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3089799A
Other languages
Japanese (ja)
Other versions
JP3095446B2 (en
Inventor
Hirozumi Azuma
博純 東
Yoshihide Watanabe
渡▲辺▼ 佳英
Tomomi Motohiro
友美 元廣
Yoshiaki Kato
義章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP03089799A priority Critical patent/JP3095446B2/en
Publication of JPH04299240A publication Critical patent/JPH04299240A/en
Application granted granted Critical
Publication of JP3095446B2 publication Critical patent/JP3095446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement of the quantity of light for every wavelength at one time by condensing soft X-rays linearly in a wavelength scattering direction in cooperation between a toroidal reflection mirror and a diffraction grating on a sample to be measured. CONSTITUTION:Soft X-rays generated from a laser plasma soft X-rays generating means 1 are condensed linearly at the position 3 of a slit for removing aberration with atoroidal reflection mirror 2 and scattered by a diffraction grating 4 in a wavelength-wise direction to be condensed linearly in the position of a sample 5 to be measured. The soft X-rays condensed at the slit position 3 are scattered with the grating 4 in the direction of the wavelength scattering and then, reflected from the sample 5 to be condensed in a spot by a quantity of light measuring means 6 for every wavelength. Thus, the quantity of light for very wavelength can be measued at one time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ナノメートル(10−
9nm)サイズ構造材料等の微細な構造解析に利用する
ことができるレーザープラズマ軟X線用分光回折装置に
関するものである。
[Industrial Application Field] The present invention is directed to nanometer (10-
The present invention relates to a laser plasma soft X-ray spectroscopic diffraction device that can be used for fine structural analysis of structural materials, etc. (9 nm) size.

【0002】0002

【従来の技術】[Conventional technology]

【0003】ナノメートルサイズの構造材料の構造解析
には、従来からの電子管から発生する波長が0.2〜1
0ÅのX線を用い、回折角の小さな領域からナノメート
ルサイズの構造に関する情報を得る小角散乱により構造
解析を行う方法と、シンクロトロン放射光からの軟X線
を分光し、単色化、すなわち単一波長化した、波長が1
0〜200Åの軟X線を使って構造解析を行う方法があ
る。いずれもブラッグの回折条件(2d・sinθ=n
λ、d:格子定数、θ:散乱角、λ:波長)を利用して
構造解析を行うものである。
[0003] For structural analysis of nanometer-sized structural materials, the wavelengths generated from conventional electron tubes are 0.2 to 1.
There is a method of structural analysis using small-angle scattering, which uses 0 Å X-rays to obtain information about nanometer-sized structures from regions with small diffraction angles, and a method of analyzing soft X-rays from synchrotron radiation to make them monochromatic, that is, monochromatic. One wavelength, one wavelength
There is a method of structural analysis using soft X-rays of 0 to 200 Å. Both are under Bragg's diffraction condition (2d・sinθ=n
Structural analysis is performed using λ, d: lattice constant, θ: scattering angle, λ: wavelength).

【0004】小角散乱による回折では、ナノメートル構
造材料の格子定数であるd値と比べて照射するX線の波
長が非常に短いため、ブラッグの回折条件を満足する散
乱角が小さくなり、分散能が低くなること及び入射角が
小さいため被測定用試料の表面形状の影響を受け易く、
回折光が被測定用試料の内部構造を十分に反映しないと
いった問題点があった。また、シンクロトロン反射光を
使っての計測では、回折に使用できる十分な光量の軟X
線を得るには日本に数台しか無い様な比較的大規模な装
置、例えば筑波のKEKや岡崎のIMS等を必要とし、
手軽に使用することが困難であった。また、軟X線の強
度が低いため、構造解析にマイクロ秒以上の露光を必要
とし、そのため構造解析途中での被測定用試料の被爆に
よる構造変化やマイクロ秒以下での動的観察が困難であ
るといった問題点があった。
In diffraction by small-angle scattering, the wavelength of the irradiated X-rays is very short compared to the d value, which is the lattice constant of the nanometer-structured material, so the scattering angle that satisfies Bragg's diffraction condition becomes small, and the dispersion power decreases. Because the angle of incidence is low and the angle of incidence is small, it is easily affected by the surface shape of the sample being measured.
There was a problem that the diffracted light did not sufficiently reflect the internal structure of the sample to be measured. In addition, in measurements using synchrotron reflected light, soft X
In order to obtain the lines, relatively large-scale equipment of which there are only a few in Japan is required, such as KEK in Tsukuba and IMS in Okazaki.
It was difficult to use it easily. In addition, since the intensity of soft X-rays is low, structural analysis requires exposure for microseconds or more, which makes it difficult to observe structural changes due to exposure of the sample to be measured during structural analysis and dynamic observation in microseconds or less. There were some problems.

【0005】そこで、シンクロトロン放射光にくらべて
強度が高い軟X線を得ることが出来るレーザープラズマ
軟X線を使った回折による構造解析が試みられている。 例えば、レーザープラズマ軟X線を回折格子で分光し、
ピンホール若しくはスリットで単色化した後、コリメー
タによって平行光線とした光の一部を被測定用試料に、
残りを測定器に照射し、前者からの反射光量を後者の測
定光量と比較して多層膜の反射率測定を行った報告があ
る。
[0005] Therefore, attempts have been made to analyze the structure by diffraction using laser plasma soft X-rays, which can obtain soft X-rays with higher intensity than synchrotron radiation. For example, by separating laser plasma soft X-rays with a diffraction grating,
After making it monochromatic with a pinhole or slit, a part of the light is converted into a parallel beam using a collimator and directed to the sample to be measured.
There is a report that measured the reflectance of a multilayer film by irradiating the remaining light onto a measuring device and comparing the amount of reflected light from the former with the measured amount of light from the latter.

【0006】この方法では、ピンホール等で単色化した
軟X線の一部のみしか被測定用試料に照射されず、光量
が十分でないこと、ならびにこの方法は単一波長のブラ
ッグの回折を利用したものであり、複数の波長に対する
回折光量を一度に測定できないため、各波長ごとに照射
を繰り返し、回折光の光量を測定しなければならないと
いう問題点があった。
[0006] In this method, only a part of the soft X-rays made monochromatic by a pinhole etc. are irradiated onto the sample to be measured, and the amount of light is insufficient. In addition, this method uses Bragg diffraction of a single wavelength. However, since the amount of diffracted light for multiple wavelengths cannot be measured at once, there is a problem in that irradiation must be repeated for each wavelength and the amount of diffracted light must be measured.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、レー
ザープラズマ軟X線を使ってナノメートルサイズ構造材
料の分光回折による構造解析を行うに際し、複数の波長
の光量を一度に測定可能な簡易なレーザープラズマ軟X
線用分光回折装置を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a simple method that can measure the light intensity of multiple wavelengths at once when performing structural analysis by spectroscopic diffraction of nanometer-sized structural materials using laser plasma soft X-rays. Laser plasma soft X
An object of the present invention is to provide a line spectroscopic diffraction device.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記従来
技術が有する問題点を解決する新たなレーザープラズマ
軟X線分光回折装置を開発するために、系統的実験およ
び理論的解析を重ねた結果、集光光学手段と、回折格子
を組合わせて軟X線を波長分散させ被測定用試料上で軟
X線を波長分散方向に線状集光等をするように設計した
光学系を使うと、各波長毎の単位面積当たりの光量を多
くすることができ、複数波長の回折による分光回折を1
回のレーザープラズマ軟X線の照射で実現できることを
見い出し、本発明を完成させたものである。 (第1発明の構成)
[Means for Solving the Problems] The present inventors have repeatedly conducted systematic experiments and theoretical analyzes in order to develop a new laser plasma soft As a result, we developed an optical system designed to wavelength-disperse the soft X-rays by combining a condensing optical means and a diffraction grating, and condense the soft X-rays linearly in the direction of the wavelength dispersion on the sample to be measured. When used, the amount of light per unit area for each wavelength can be increased, and the spectral diffraction caused by diffraction of multiple wavelengths can be
They discovered that this can be achieved by irradiating laser plasma with soft X-rays twice, and completed the present invention. (Configuration of the first invention)

【0009】本第1発明のレーザープラズマ軟X線用分
光回折装置は、レーザープラズマ軟X線発生手段と、発
生した軟X線を2箇所に線状に集光するトロイダル反射
鏡を有する集光光学手段と、第1の線状集光部に設置し
た収差除去手段と、第2の線状集光部に設置した被測定
用試料を保持する試料保持手段と、該被測定用試料で回
折された軟X線の光量を測定する光量測定手段と、前記
収差除去手段と被測定用試料の間に設置され、軟X線を
波長分散し、前記光量測定手段上で波長ごとに波長分散
方向に垂直な方向に線状集光する回折格子とからなり、
被測定用試料上で前記トロイダル反射鏡と回折格子との
協働作用によって軟X線を波長分散方向に線状集光する
ことを特徴とする。 (第2発明の構成)
The spectroscopic diffraction apparatus for laser plasma soft X-rays according to the first aspect of the present invention includes a laser plasma soft X-ray generating means and a condensing mirror having a toroidal reflecting mirror that condenses the generated soft X-rays linearly at two locations. an optical means, an aberration removing means installed in the first linear condensing section, a sample holding means for holding a sample to be measured installed in the second linear condensing section, A light amount measuring means is installed between the aberration removing means and the sample to be measured, and the light amount measuring means is installed between the aberration removing means and the sample to be measured, wavelength-dispersing the soft X-rays, and dispersing the soft It consists of a diffraction grating that linearly focuses light in the direction perpendicular to the
The method is characterized in that soft X-rays are linearly focused in the wavelength dispersion direction on the sample to be measured by the cooperation of the toroidal reflecting mirror and the diffraction grating. (Configuration of second invention)

【0010】本第2発明のレーザープラズマ軟X線用分
光回折装置は、レーザープラズマ軟X線発生手段と、発
生した軟X線を線状に集光するシリンドリカル反射鏡又
は球面鏡を有する集光光学手段と、線状集光部に設置し
た収差除去手段と、被測定用試料で回折された軟X線の
光量を測定する光量測定手段と、前記収差除去手段と被
測定用試料の間に設置れ、軟X線を波長分散し、前記光
量測定手段上で波長ごとに波長分散方向に垂直な方向に
線状集光する回折格子と、該回折格子から前記被測定用
試料へ入射する軟X線を波長分散方向に線状の照射をす
るための波長分散方向に細長い孔を有する線状照射用ス
リットとからなることを特徴とする。
A spectroscopic diffraction apparatus for laser plasma soft X-rays according to the second invention includes a laser plasma soft X-ray generating means and a condensing optical system having a cylindrical reflecting mirror or a spherical mirror that condenses the generated soft X-rays into a line. an aberration removing means installed in the linear condensing section, a light amount measuring means for measuring the amount of soft X-rays diffracted by the sample to be measured, and installed between the aberration removing means and the sample to be measured. a diffraction grating that wavelength-disperses the soft X-rays and focuses the soft X-rays linearly for each wavelength in a direction perpendicular to the wavelength dispersion direction on the light amount measuring means; It is characterized by comprising a linear irradiation slit having an elongated hole in the wavelength dispersion direction for linear irradiation in the wavelength dispersion direction.

【0011】[0011]

【作用】(第1発明の作用)本第1発明のレーザープラ
ズマ軟X線用分光回折装置の構成・原理を概略図である
図1をもとに説明する。
[Function] (Function of the first invention) The structure and principle of the laser plasma soft X-ray spectroscopic diffraction apparatus of the first invention will be explained with reference to FIG. 1, which is a schematic diagram.

【0012】本発明の特徴の第1は、集光光学手段とし
てトロイダル反射鏡を用いた点にある。トロイダル反射
鏡は2つの異なる軸に対して異なる曲率を有し、2箇所
で線状集光する機能を有する。すなわち、第1番目の線
状集光部では反射鏡面に対し水平方向に線状集光し、第
2番目の線状集光部では反射鏡面に対し垂直方向に線状
集光する。本発明では第1番目の線状集光部にトロイダ
ル反射鏡による収差成分をカットする収差除去手段を線
状集光方向に配置する。収差成分は軟X線を光量測定手
段上に結像する時にバックグラウンド等として現れてく
るため、プロファイルの正確な判断を妨害するが、本収
差除去手段によってバックグラウンド等の生成を防止し
、解析能を高めることができる。また、第2番目の線状
集光部には被測定用試料を設置する。
The first feature of the present invention is that a toroidal reflecting mirror is used as the condensing optical means. The toroidal reflector has different curvatures along two different axes and has the function of linearly focusing light at two locations. That is, the first linear condensing section linearly condenses light in the horizontal direction with respect to the reflective mirror surface, and the second linear condensing section condenses linear light in the vertical direction with respect to the reflective mirror surface. In the present invention, an aberration removing means for cutting off an aberration component caused by the toroidal reflecting mirror is arranged in the first linear light collecting section in the linear light collecting direction. Aberration components appear as background etc. when soft X-rays are imaged onto a light intensity measurement means, and thus interfere with accurate determination of the profile. However, this aberration removal means prevents the generation of background etc. and facilitates analysis. ability can be improved. Further, a sample to be measured is installed in the second linear light condensing section.

【0013】また、本発明の第2の特徴は、回折格子を
前記トロイダル反射鏡と組合わせて用いた点にある。該
回折格子は格子面に垂直な方向に波長分散するよう格子
形状等が定められており、回折格子に入射した軟X線は
波長分散される。この波長分散された軟X線は、被測定
用試料に入射されるが、前記したように該被測定用試料
は前記トロイダル反射鏡の第2番目の線状集光部に設置
されており、その表面では軟X線がトロイダル反射鏡に
対し垂直な方向に線状集光される。そのため、トロイダ
ル反射鏡と回折格子間の距離、回折格子面等の傾き等を
調整することによって、軟X線を被測定用試料表面で波
長分散方向に線状集光することが可能となる。このよう
に、本発明の装置によれば、被測定用試料上で軟X線を
波長ごとに集光し回折させることが可能となったのであ
る。
A second feature of the present invention is that a diffraction grating is used in combination with the toroidal reflecting mirror. The grating shape and the like of the diffraction grating are determined so as to cause wavelength dispersion in a direction perpendicular to the grating plane, and soft X-rays incident on the diffraction grating are wavelength dispersed. This wavelength-dispersed soft X-ray is incident on the sample to be measured, and as described above, the sample to be measured is installed in the second linear condensing part of the toroidal reflecting mirror, On its surface, soft X-rays are linearly focused in a direction perpendicular to the toroidal reflector. Therefore, by adjusting the distance between the toroidal reflecting mirror and the diffraction grating, the inclination of the diffraction grating surface, etc., it becomes possible to linearly focus the soft X-rays in the wavelength dispersion direction on the surface of the sample to be measured. In this way, according to the apparatus of the present invention, it has become possible to focus and diffract soft X-rays for each wavelength on the sample to be measured.

【0014】また、前記回折格子は、格子面の曲率半径
、回折格子と収差除去手段、被測定用試料、光量測定手
段間の距離等を制御して、回折格子からの回折光が光量
測定手段の表面で波長分散方向に垂直な方向に波長ごと
に線状集光するようにしてある。一方、軟X線は被測定
用試料表面でトロイダル反射鏡によって波長分散方向に
線状集光し、その形をほぼ維持した状態で光量測定手段
10の表面に入射してくるが、上記回折格子による波長
分散方向に垂直な方向への線状集光作用のため、軟X線
は波長分散方向に波長ごとに点集光することになる。 そのため、波長ごとの回折、すなわち分光回折が可能と
なる。
Further, the diffraction grating controls the radius of curvature of the grating surface, the distance between the diffraction grating, the aberration removing means, the sample to be measured, the light amount measuring means, etc., so that the diffracted light from the diffraction grating is transmitted to the light amount measuring means. The light is linearly focused for each wavelength in a direction perpendicular to the wavelength dispersion direction on the surface of the light source. On the other hand, soft X-rays are linearly condensed in the wavelength dispersion direction by a toroidal reflecting mirror on the surface of the sample to be measured, and enter the surface of the light amount measuring means 10 while maintaining almost the same shape. Because of the linear focusing effect in the direction perpendicular to the wavelength dispersion direction, the soft X-rays are focused at each wavelength in the wavelength dispersion direction. Therefore, diffraction for each wavelength, that is, spectral diffraction becomes possible.

【0015】また、軟X線が被測定用試料、光量測定手
段上で波長ごとに集光しているので、単位面積当りの光
量を極めて大きくすることができる。
Furthermore, since the soft X-rays are focused for each wavelength on the sample to be measured and the light amount measuring means, the amount of light per unit area can be extremely increased.

【0016】本第1発明に係る回折装置では、各波長の
光量を被測定用試料への入射角度に対し求め、各波長で
最も強く反射している入射角度からブラッグの回折条件
によって格子間隔であるd値を求めることができる。ま
た、各波長ごとに入射角度に対する光量をプロットして
曲線を描くと、半価幅等が求まり、被測定用試料の結晶
状態等を推定することができる。 (第2発明の作用)
In the diffraction device according to the first aspect of the present invention, the amount of light at each wavelength is determined with respect to the angle of incidence on the sample to be measured, and from the angle of incidence at which each wavelength is reflected most strongly, the grating spacing is determined according to Bragg's diffraction conditions. A certain d value can be determined. Furthermore, by plotting the amount of light against the angle of incidence for each wavelength and drawing a curve, the half-width, etc. can be determined, and the crystal state, etc. of the sample to be measured can be estimated. (Action of the second invention)

【0017】本第2発明の回折装置は、図2にその概略
構成図を示すように、被測定用試料表面で軟X線を線状
集光するのではなく、集光光学手段としてシリンドリカ
ル反射鏡又は球面鏡を用い、これと線状照射用スリット
を組み合わせて線状照射する点に特徴を有する。これ以
外の構成および作用は第1発明の装置とほぼ同一である
ので、その差異を中心に説明する。
As shown in the schematic diagram of FIG. 2, the diffraction apparatus of the second invention does not linearly condense soft X-rays on the surface of the sample to be measured, but uses cylindrical reflection as a condensing optical means. The feature is that a mirror or a spherical mirror is used in combination with a slit for linear irradiation to perform linear irradiation. The configuration and operation other than this are almost the same as the device of the first invention, so the differences will be mainly explained.

【0018】シリンドリカル反射鏡ならびに球面鏡は、
いずれも1箇所で反射鏡面に対し平行に線状集光し、そ
の後は発散光となる特性がある。この集光部には収差除
去手段を設置する。該回折格子は、第1発明で用いたも
のと同様の構成からなり、軟X線を回折格子面に垂直な
方向に波長分散するとともに、光量測定手段表面で波長
分散した軟X線の各波長ごとに波長分散方向に垂直な方
向に線状に集光する。本第2発明の回折装置では、波長
分散した軟X線が被測定用試料に入射する前に、波長分
散方向に細長い孔を開けた線状照射用スリットを設置し
、この孔の部分にのみ軟X線を通過せしめ、被測定用試
料表面に線状に波長分散した軟X線を照射する。この照
射され、反射された軟X線の光量は測定手段で測定され
る。この測定手段表面では第1発明の装置と同様前記回
折格子の線状集光作用によって、波長分散した各波長ご
とに波長分散方向に垂直な方向に点集光される。
Cylindrical reflecting mirrors and spherical mirrors are
In either case, the light is condensed in a line parallel to the reflecting mirror surface at one point, and then becomes a diverging light. An aberration removing means is installed in this condensing section. The diffraction grating has the same configuration as that used in the first invention, and wavelength-disperses the soft X-rays in a direction perpendicular to the diffraction grating surface, and also disperses each wavelength of the soft X-rays wavelength-dispersed on the surface of the light amount measuring means. The light is focused linearly in the direction perpendicular to the wavelength dispersion direction. In the diffraction apparatus of the second invention, before the wavelength-dispersed soft X-rays enter the sample to be measured, a linear irradiation slit with an elongated hole in the wavelength dispersion direction is installed, and only the portion of this hole is exposed. Soft X-rays are allowed to pass through, and the surface of the sample to be measured is irradiated with soft X-rays with linear wavelength dispersion. The amount of the irradiated and reflected soft X-rays is measured by a measuring means. On the surface of this measuring means, each of the wavelength-dispersed wavelengths is focused to a point in the direction perpendicular to the direction of wavelength dispersion, due to the linear focusing action of the diffraction grating, similar to the device of the first invention.

【発明の効果】(第1発明の効果)[Effect of the invention] (Effect of the first invention)

【0019】集光光学手段にトロイダル反射鏡を用いた
ので、回折格子で波長分散した軟X線を被測定用試料表
面で波長分散方向に線状集光することができ、さらに被
測定用試料表面で反射した軟X線は回折格子の線状集光
作用により光量測定手段上でも点集光することができる
。そのため、各波長ごとの単位面積当りの光量が増大し
、十分な解析感度を得ることができる。また、従来の装
置では単一波長毎にその光量を測定していたのに対し、
1回のレーザープラズマ軟X線の照射で複数波長の光量
の測定が可能、すなわち、分光回折が可能となり、従来
のように波長毎に測定をくりかえす手間を著しく軽減す
ることができる。 (第2発明の効果)
Since a toroidal reflector is used as the condensing optical means, the soft X-rays wavelength-dispersed by the diffraction grating can be linearly focused in the direction of wavelength dispersion on the surface of the sample to be measured. The soft X-rays reflected on the surface can also be focused on a point on the light amount measuring means due to the linear focusing action of the diffraction grating. Therefore, the amount of light per unit area for each wavelength increases, and sufficient analysis sensitivity can be obtained. In addition, whereas conventional equipment measures the amount of light for each single wavelength,
One irradiation with laser plasma soft X-rays makes it possible to measure the light intensity of multiple wavelengths, that is, spectroscopic diffraction becomes possible, and the labor of repeating measurements for each wavelength as in the conventional method can be significantly reduced. (Effect of the second invention)

【0020】シリンドリカル反射鏡又は球面鏡と、線状
照射用スリットを組み合わせた光学系によって被測定用
試料表面に線状に波長分散した軟X線を照射でき、試料
表面で線状に集光し得る第1発明の回折装置に比べれば
、単位面積当りの光量はやや小さいが、従来の単一波長
化した軟X線の一部のみを被測定用試料に照射する装置
に比べれば、構造解析に利用し得る軟X線の光量の強度
は格段に強く、十分な解析感度を得ることが可能である
。従って、第1発明の回折装置と同様各波長毎の光量を
高感度で1回のレーザープラズマ軟X線の照射で測定で
きる。
[0020] An optical system that combines a cylindrical reflecting mirror or a spherical mirror and a slit for linear irradiation can irradiate the surface of a sample to be measured with linearly wavelength-dispersed soft X-rays, which can be focused linearly on the sample surface. Compared to the diffraction device of the first invention, the amount of light per unit area is slightly smaller, but compared to the conventional device that irradiates only a part of the single-wavelength soft X-ray to the sample to be measured, it is more effective for structural analysis. The intensity of the available soft X-ray light is much higher, and it is possible to obtain sufficient analysis sensitivity. Therefore, like the diffraction device of the first invention, the amount of light for each wavelength can be measured with high sensitivity by one irradiation of laser plasma soft X-rays.

【0021】[0021]

【実施例】(本発明の具体例)本第1発明および第2発
明をさらに具体化した具体例について説明する。
EXAMPLES (Specific Examples of the Present Invention) Specific examples that further embody the first and second inventions will be described.

【0022】レーザープラズマ軟X線の発生手段は特に
限定は無く、通常軟X線を発生させるために使われてい
る装置を用いて行えば良い。レーザー発生装置が発生し
たレーザービームを真空チャンバーに導入し、アルミニ
ウム等のターゲットに照射すると、軟X線が発生する。
The means for generating laser plasma soft X-rays is not particularly limited, and any device that is normally used for generating soft X-rays may be used. When a laser beam generated by a laser generator is introduced into a vacuum chamber and irradiated onto a target such as aluminum, soft X-rays are generated.

【0023】軟X線の発生は、固体ターゲットにレーザ
ービームを照射すると固体ターゲットを構成する元素が
イオン化もしくは励起し、基底状態より高い準位に置か
れ、これがレーザービーム照射中もしくは照射後に低い
準位に戻ろうとする時、もしくはイオンと衝突を行った
時に生じる。このレーザープラズマ軟X線はターゲット
形状や照射ビームの形状によりプラズマの形状を変える
ことができ、それにより種々の方向に軟X線を放射する
ことができる。
[0023] Soft X-rays are generated when a solid target is irradiated with a laser beam, and the elements constituting the solid target are ionized or excited and placed at a higher level than the ground state. It occurs when trying to return to the original position or when colliding with an ion. The shape of this laser plasma soft X-ray can be changed depending on the shape of the target and the shape of the irradiation beam, so that the soft X-rays can be emitted in various directions.

【0024】本具体例で用いる収差除去手段は、通常ス
リットを用いる。トロイダル反射鏡等の集光光学手段に
入射し、反射された軟X線は、集光部で反射鏡面に平行
に線状集光する。実際には、反射鏡の収差があるため、
線状集光に幅を有し、収差成分は光軸中心より離れて集
光する。
The aberration removing means used in this specific example usually uses a slit. The soft X-rays that are incident on a condensing optical means such as a toroidal reflector and reflected are condensed into a line parallel to the reflective mirror surface at a condensing section. In reality, due to the aberration of the reflecting mirror,
The linear light collection has a width, and the aberration component is focused away from the center of the optical axis.

【0025】従って、鏡面に平行な方向で集光部中心付
近にスリットを置き、収差の大きな軟X線をカットする
。収差の大きな軟X線のカットは、スリット幅を調節し
て行う。また、このように一旦線状に集光させる理由は
、スリット透過光を回折格子の全面にわたって照射する
ためで、スリットで細く絞ることにより、回折格子によ
る光量測定手段表面への結像における分解能を上げるこ
とができる。
Therefore, a slit is placed near the center of the condensing section in a direction parallel to the mirror surface to cut out soft X-rays with large aberrations. Soft X-rays with large aberrations are cut by adjusting the slit width. In addition, the reason for condensing the light into a line in this way is to irradiate the entire surface of the diffraction grating with the light transmitted through the slit, and by narrowing the light with the slit, the resolution of the image formed by the diffraction grating on the surface of the light amount measuring means is increased. can be raised.

【0026】回折格子は、光量調節手段と被測定用試料
の間に設けらる。斜入射型でも透過型でも良いが、格子
面が球面を有するものか、あるいは平面状で特定の格子
間隔を有するもので格子面に垂直な方向に波長分散する
とともに、光量測定手段表面で波長分散方向と垂直な方
向に波長ごとに集光する機能を有するものを用いるのが
良い。
The diffraction grating is provided between the light amount adjusting means and the sample to be measured. It can be either an oblique incidence type or a transmission type, but the grating surface has a spherical surface, or it is flat and has a specific grating spacing, and wavelength dispersion occurs in the direction perpendicular to the grating surface, and wavelength dispersion occurs on the surface of the light amount measuring means. It is preferable to use one that has the function of condensing light for each wavelength in a direction perpendicular to the direction.

【0027】被測定用試料は、試料保持部に固定され、
該試料保持部は試料表面への軟X線の入射角度を自由に
変えられるような機構と、入射角度と同じ角度で反射さ
れる反射光が光量測定手段の方向に向くような調節機構
が設けられている。
[0027] The sample to be measured is fixed to the sample holder,
The sample holder is equipped with a mechanism that can freely change the incident angle of the soft X-rays on the sample surface, and an adjustment mechanism that allows the reflected light reflected at the same angle as the incident angle to be directed toward the light amount measuring means. It is being

【0028】また、光量測定手段としては、軟X線用フ
ィルム、イメージングプレート若しくは固定検出器いず
れをも用いることができる。
Furthermore, as the light amount measuring means, any of a soft X-ray film, an imaging plate, or a fixed detector can be used.

【0029】光量測定手段として軟X線用フィルムを使
用した場合は、各波長位置に該当する露光部の濃度より
その波長の光量を求めることができる。また、イメージ
ングプレートでは、コンピュータに連動した読み取り機
を使うことにより、各波長の光量を求めることができる
。また、固体検出器を用いた場合は、固体検出器とコン
ピュータを連動して使うことにより計測と同時に光量、
反射率が得られるため、実用的な光学素子の評価装置と
して使用することができる。
When a soft X-ray film is used as the light amount measuring means, the amount of light at each wavelength can be determined from the density of the exposed area corresponding to each wavelength position. Furthermore, with the imaging plate, the amount of light at each wavelength can be determined by using a reader linked to a computer. In addition, when using a solid-state detector, by using the solid-state detector and computer in conjunction, it is possible to measure the light intensity at the same time.
Since reflectance can be obtained, it can be used as a practical evaluation device for optical elements.

【0030】また、軟X線を被測定用試料へ入射する照
射光と被測定用試料へ入射せずに直接光量測定手段へ入
射する直接光に分離して両光の光量を比較して被測定用
試料における軟X線の反射率を求めることができる。
[0030] Furthermore, the soft The reflectance of soft X-rays in the measurement sample can be determined.

【0031】照射光と直接光との分離は、(1)レーザ
ープラズマ軟X線発生手段で行っても良いし、(2)集
光光学手段と回折格子間、(3)回折格子と被測定用試
料間で行っても良い。(1)の場合のシステムの構成を
図3に示すが、直接光用の集光光学手段、収差除去手段
、回折格子、ならびに光量測定手段が必要となる。
Separation of the irradiated light and the direct light may be performed by (1) laser plasma soft This may be done between different samples. The configuration of the system in case (1) is shown in FIG. 3, which requires a condensing optical means for direct light, an aberration removing means, a diffraction grating, and a light amount measuring means.

【0032】直接光の集光光学手段は、被測定用試料上
で集光する必要がないので、シリンドリカル反射鏡又は
球面鏡を用い、その鏡の曲率を収差除去用のスリットの
位置で線状に集光するよう設計する。また、光源サイズ
が小さく光量を十分に確保できる場合には、シリンドリ
カル反射鏡等を省略することもできる。
Since the direct light condensing optical means does not need to condense the light on the sample to be measured, a cylindrical reflecting mirror or a spherical mirror is used, and the curvature of the mirror is made linear at the position of the slit for removing aberrations. Design to focus light. Further, if the light source size is small and a sufficient amount of light can be secured, a cylindrical reflecting mirror or the like can be omitted.

【0033】また、(2)、(3)の場合は、軟X線の
光路内に反射鏡を挿入して、軟X線の一部の光路を変え
、直接光と被測定用試料への照射光とに分離する。 (2)の場合は、集光光学手段が1個である点で装置の
簡略化を図れるが、集光光学手段で反射された軟X線を
2分するため、夫々の光量が低下する欠点がある。 (3)の場合は、回折格子で波長分散した軟X線の一部
を反射鏡を使って光路を変え、直接光と照射光とに分離
する。この場合は、回折格子も1個で良い利点があるが
、(2)の場合よりもさらに光量が少なくなる。 (実施例1)
In the case of (2) and (3), a reflecting mirror is inserted into the optical path of the soft X-rays to change the optical path of a part of the soft X-rays, thereby directing the light to the sample to be measured. Separate into irradiated light. In the case of (2), the apparatus can be simplified in that there is only one condensing optical means, but since the soft X-rays reflected by the condensing optical means are divided into two, the amount of light for each is reduced. There is. In the case of (3), a part of the soft X-rays wavelength-dispersed by the diffraction grating is changed in its optical path using a reflecting mirror, and is separated into direct light and irradiation light. In this case, there is an advantage that only one diffraction grating is required, but the amount of light is even smaller than in case (2). (Example 1)

【0034】本実施例では、被測定用試料として、RF
マグネトロンスパッタ法により、シリコン基板上にモリ
ブデンとシリコンを交互に蒸着した、層厚さ約11nm
の30層の多層膜を使用した。
In this example, the sample to be measured is RF
Molybdenum and silicon are alternately deposited on a silicon substrate by magnetron sputtering, with a layer thickness of approximately 11 nm.
A multilayer film of 30 layers was used.

【0035】また、レーザープラズマ軟X線を発生させ
るために、ターゲットとしてはアルミニウムを使用し、
照射するレーザー光はYAGレーザーの2倍高調波(波
長約0.5μm)、パルス幅6〜8ナノ秒、照射エネル
ギー0.8ジュールを使用した。
Furthermore, in order to generate laser plasma soft X-rays, aluminum is used as a target,
The laser beam used was a double harmonic of a YAG laser (wavelength: about 0.5 μm), a pulse width of 6 to 8 nanoseconds, and an irradiation energy of 0.8 Joule.

【0036】図4にレーザープラズマ軟X線発生手段の
概略図を示したが、レーザー光はチャンバー9内に設置
した焦点距離200ミリメートルの石英レンズ10で集
光し、ターゲット11面に対して垂直に照射した。その
ため、レーザー光照射されたターゲット表面より発生す
る軟X線はレーザービームに対して軸対称に放射される
FIG. 4 shows a schematic diagram of the laser plasma soft X-ray generating means. The laser beam is focused by a quartz lens 10 with a focal length of 200 mm installed in a chamber 9, and is perpendicular to the surface of the target 11. was irradiated. Therefore, soft X-rays generated from the target surface irradiated with the laser beam are radiated axially symmetrically with respect to the laser beam.

【0037】また、直接光を得るための光学系12と、
被測定用試料への照射光を得るための光学系13をレー
ザービームに対して軸対称となる位置に設けることによ
り、2つの光学系での各波長の光量を同程度とした。図
1は被測定用試料への照射用の光学系の構成を示したも
のである。1はレーザープラズマ軟X線発生手段で、2
は集光用のトロイダル反射鏡である。軟X線は、トロイ
ダル反射鏡によって収差除去用スリット位置3で線状集
光し、回折格子4によって波長方向に分散し、さらに前
記トロイダル反射鏡によって波長分散の方向に被測定用
試料位置5で線状集光する。また、波長分散方向に対し
ては、スリット位置3で集光した軟X線が回折格子4で
分散した後、被測定用試料5で反射し、各波長毎に光量
測定手段6で点集光する構造になっている。レーザープ
ラズマ軟X線発生手段1と、トロイダル反射鏡2の距離
をU、トロイダル反射鏡2と収差除去用スリット3まで
の距離をV、該スリット3と回折格子4の距離をW、回
折格子4と被測定用試料5の距離をX、被測定用試料5
と光量測定手段6の距離をYとし、トロイダル反射鏡の
波長分散方向の曲率半径をR、波長分散方向に対して直
角方向の曲率半径をr、回折格子の曲率半径をL、トロ
イダル反射鏡への軟X線の入射角度をθ、回折格子への
軟X線の入射角度をΘとすると、これらは以下の関係に
ある。
Furthermore, an optical system 12 for obtaining direct light;
By providing the optical system 13 for obtaining the irradiation light to the sample to be measured at a position axially symmetrical with respect to the laser beam, the amount of light of each wavelength in the two optical systems was made comparable. FIG. 1 shows the configuration of an optical system for irradiating a sample to be measured. 1 is a laser plasma soft X-ray generating means; 2
is a toroidal reflector for focusing light. The soft X-rays are linearly condensed at an aberration removal slit position 3 by a toroidal reflector, dispersed in the wavelength direction by a diffraction grating 4, and further focused in the direction of wavelength dispersion by the toroidal reflector at a sample position 5 for measurement. Focuses light into a line. In addition, in the wavelength dispersion direction, after the soft X-rays focused at the slit position 3 are dispersed by the diffraction grating 4, they are reflected by the sample to be measured 5, and are focused at a point by the light amount measuring means 6 for each wavelength. It is structured to do this. The distance between the laser plasma soft X-ray generating means 1 and the toroidal reflecting mirror 2 is U, the distance between the toroidal reflecting mirror 2 and the aberration removal slit 3 is V, the distance between the slit 3 and the diffraction grating 4 is W, and the diffraction grating 4 and the distance between the sample to be measured 5 is X, and the distance between the sample to be measured 5 is
The distance between and the light amount measuring means 6 is Y, the radius of curvature of the toroidal reflecting mirror in the wavelength dispersion direction is R, the radius of curvature in the direction perpendicular to the wavelength dispersion direction is r, the radius of curvature of the diffraction grating is L, and the radius of curvature of the toroidal reflecting mirror in the direction of wavelength dispersion is R. Assuming that the incident angle of the soft X-rays is θ and the incident angle of the soft X-rays to the diffraction grating is Θ, these have the following relationship.

【0038】   1/U+1/V=2/Rcos(90−θ)・・・
(1)
1/U+1/V=2/Rcos(90-θ)...
(1)

【0039】   1/U+1/(V+W+X)=2cos(90−θ
)/r・・・(2)
1/U+1/(V+W+X)=2cos(90−θ
)/r...(2)

【0040】   1/W+1/(X+Y)=2/Lcos(90−Θ
)・・・(3)
1/W+1/(X+Y)=2/Lcos(90−Θ
)...(3)

【0041】本実施例では、各距離、U
=1095mm、V=95mm、W=237mm、X=
200mm、Y=35mmとし、各曲率半径、R=50
00mm、r=26mm、L=5649mm、各入射角
度、θ=2°、Θ=2.4°とした。
In this embodiment, each distance, U
=1095mm, V=95mm, W=237mm, X=
200mm, Y=35mm, each radius of curvature, R=50
00 mm, r=26 mm, L=5649 mm, each incident angle, θ=2°, Θ=2.4°.

【0042】レーザープラズマ軟X線発生手段1の光源
サイズが約60μmでは、スリット部での集光幅は約5
.2μm(=60×95/1095)、被測定用試料で
の集光幅は約336μm(=60×(95+237+2
00)/95)、光量測定手段上でのスペクトル幅は約
5.16μm(=5.2×235/237)となる。 したがって光量測定手段上での被測定用試料からの反射
光幅は約336μmとなり、光量測定手段上での点集光
の大きさは約5.16×336μmとなる。また、回折
光の角度分解能は約0.04°=0.71mrad(=
0.34/(2π×75))となる。
When the light source size of the laser plasma soft X-ray generating means 1 is about 60 μm, the condensing width at the slit part is about 5 μm.
.. 2 μm (=60×95/1095), and the focusing width at the sample to be measured is approximately 336 μm (=60×(95+237+2)
00)/95), and the spectrum width on the light amount measuring means is approximately 5.16 μm (=5.2×235/237). Therefore, the width of the reflected light from the sample to be measured on the light amount measuring means is about 336 μm, and the size of the point condensed light on the light amount measuring means is about 5.16×336 μm. Also, the angular resolution of the diffracted light is approximately 0.04°=0.71 mrad (=
0.34/(2π×75)).

【0043】図3には直接光測定用の光学系の構成を示
してある。レーザープラズマ軟X線発生手段1で分散さ
れた直接光は、集光用のシリンドリカル反射鏡7に入射
する。軟X線はシリンドリカル反射鏡7によってスリッ
ト位置3に波長分散方向に集光し、該スリット3を通過
した後、回折格子4で波長分散し、光量測定手段6で測
定できる構造となっている。レーザープラズマ軟X線発
生手段1と、シリンドリカル反射鏡7の距離をu、シリ
ンドリカル反射鏡7とスリット3までの距離をv、スリ
ットと回折格子4の距離をw、回折格子4と光量測定用
手段6との距離をxとし、シリンドリカル反射鏡7の曲
率半径をR、回折格子の曲率半径をL、シリンドリカル
反射鏡への軟X線の入射角度をθ、回折格子への軟X線
の入射角度をΘとするとこれらは以下の関係にある。
FIG. 3 shows the configuration of an optical system for direct light measurement. The direct light dispersed by the laser plasma soft X-ray generating means 1 is incident on a cylindrical reflecting mirror 7 for condensing light. The soft X-rays are focused by a cylindrical reflecting mirror 7 on a slit position 3 in the direction of wavelength dispersion, and after passing through the slit 3, the soft X-rays are wavelength-dispersed by a diffraction grating 4 and can be measured by a light quantity measuring means 6. The distance between the laser plasma soft X-ray generating means 1 and the cylindrical reflecting mirror 7 is u, the distance between the cylindrical reflecting mirror 7 and the slit 3 is v, the distance between the slit and the diffraction grating 4 is w, and the diffraction grating 4 and the light amount measuring means 6 is the distance to When Θ is, these have the following relationship.

【0044】   1/u+1/v=2/Rcos(90−θ)・・・
(4)
1/u+1/v=2/Rcos(90−θ)...
(4)

【0045】   1/w+1/x=2/Lcos(90−Θ)・・・
(3)
1/w+1/x=2/Lcos(90−Θ)...
(3)

【0046】本実施例での値は各距離、u=10
95mm、v=95mm、w=237mm、x=235
mmとし、各曲率半径、R=5000mm、L=564
9mm、各入射角度、θ=2°、Θ=2.4°とした。
In this example, the values are each distance, u=10
95mm, v=95mm, w=237mm, x=235
mm, each radius of curvature, R = 5000 mm, L = 564
9 mm, and each incident angle was set to θ=2° and Θ=2.4°.

【0047】レーザー光を照射したアルミニウムターゲ
ットから発生する軟X線の直接光のスペクトルは、図5
に示すように波長8nmから16nmにかけて幾つかの
強いラインスペクトルが観察される。図5において横軸
は波長、縦軸は光学濃度(logI0 /I、I:透過
強度、I0 :入射強度)である。この軟X線を回折格
子で波長分散させ、11nmの周期構造を有する多層膜
に入射させた。入射角度を22.8°から44.5°と
した時の軟X線フィルムを使って得られた反射光のX線
写真を図6に示す。波長8.8nmの軟X線は、入射角
24.6°および25.5°の時、反射光が最も強く、
波長10.8nmの軟X線は入射角29.1°の時、反
射光が最も強く、波長13nmの軟X線は入射角34.
5°の時、反射光が最も強くなっていた。予め測定した
フィルムの感度特性より、反射光の光量を算出して入射
角度との関係を求めた結果、図7が得られた。図7は波
長13nmの軟X線についてのみ示したものである。こ
の様な波長における反射強度の角度分布より、被測定用
試料の周期構造の寸法、層間のバラツキ、表面状態等の
特性を評価することができる。また、直接光の強度と比
較することにより、約10%のピーク反射率を持つこと
が計測された。本実施例の装置では、波長毎に反射率を
求めることができるという大きな特徴を有する。
The spectrum of the direct light of soft X-rays generated from the aluminum target irradiated with laser light is shown in FIG.
As shown in Figure 2, several strong line spectra are observed in the wavelength range from 8 nm to 16 nm. In FIG. 5, the horizontal axis is the wavelength, and the vertical axis is the optical density (logI0/I, I: transmitted intensity, I0: incident intensity). This soft X-ray was subjected to wavelength dispersion using a diffraction grating, and was made incident on a multilayer film having a periodic structure of 11 nm. FIG. 6 shows an X-ray photograph of reflected light obtained using a soft X-ray film when the incident angle was changed from 22.8° to 44.5°. Soft X-rays with a wavelength of 8.8 nm have the strongest reflected light when the incident angle is 24.6° and 25.5°.
Soft X-rays with a wavelength of 10.8 nm have the strongest reflected light when the angle of incidence is 29.1°, and soft X-rays with a wavelength of 13 nm have the strongest reflected light when the angle of incidence is 34.
When the angle was 5°, the reflected light was the strongest. From the sensitivity characteristics of the film measured in advance, the amount of reflected light was calculated and the relationship with the angle of incidence was determined, and as a result, the result shown in FIG. 7 was obtained. FIG. 7 shows only soft X-rays with a wavelength of 13 nm. From the angular distribution of reflection intensity at such wavelengths, characteristics such as the dimensions of the periodic structure, variations between layers, and surface conditions of the sample to be measured can be evaluated. Furthermore, by comparing the intensity of direct light, it was measured that the peak reflectance was about 10%. The apparatus of this embodiment has a major feature of being able to determine the reflectance for each wavelength.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  集光光学手段としてトロイダル反射鏡を用
いた場合の本発明に係るレーザープラズマ軟X線用分光
回折装置の概略図。
FIG. 1 is a schematic diagram of a spectroscopic diffraction apparatus for laser plasma soft X-rays according to the present invention in which a toroidal reflecting mirror is used as a condensing optical means.

【図2】  集光光学手段としてシリンドリカル反射鏡
を用いた場合の本発明に係るレーザープラズマ軟X線用
分光回折装置の概略図である。
FIG. 2 is a schematic diagram of a spectroscopic diffraction apparatus for laser plasma soft X-rays according to the present invention in which a cylindrical reflecting mirror is used as a condensing optical means.

【図3】  直接光の光量を測定する場合の本発明に係
るレーザープラズマ軟X線用分光回折装置の概略図であ
る。
FIG. 3 is a schematic diagram of a laser plasma soft X-ray spectroscopic diffraction apparatus according to the present invention when measuring the amount of direct light.

【図4】  本発明の実施例1で用いたレーザープラズ
マ軟X線発生手段の概略図である。
FIG. 4 is a schematic diagram of a laser plasma soft X-ray generating means used in Example 1 of the present invention.

【図5】  本発明の実施例1で得られた直接光のスペ
クトルを示す図である。
FIG. 5 is a diagram showing the spectrum of direct light obtained in Example 1 of the present invention.

【図6】  本発明の実施例1で得られたX線写真であ
る。
FIG. 6 is an X-ray photograph obtained in Example 1 of the present invention.

【図7】  本発明の実施例1で得られた軟X線の反射
光量の入射角度依存性を示す図である。
FIG. 7 is a diagram showing the incident angle dependence of the amount of reflected light of soft X-rays obtained in Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1・・・レーザープラズマ軟X線発生手段2・・・トロ
イダル反射鏡 3・・・収差除去手段 4・・・回折格子 5・・・被測定用試料 6・・・光量測定手段 7・・・シリンドリカル反射鏡 8・・・線状照射用スリット 9・・・チャンバー 10・・・集光レンズ 11・・・ターゲット 12・・・直接光を得るための光学系 13・・・反射光を得るための光学系
1... Laser plasma soft X-ray generating means 2... Toroidal reflecting mirror 3... Aberration removing means 4... Diffraction grating 5... Sample to be measured 6... Light amount measuring means 7... Cylindrical reflecting mirror 8...Slit for linear irradiation 9...Chamber 10...Condensing lens 11...Target 12...Optical system 13 for obtaining direct light...For obtaining reflected light optical system

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  レーザープラズマ軟X線発生手段と、
発生した軟X線を2箇所に線状に集光するトロイダル反
射鏡を有する集光光学手段と、第1の線状集光部に設置
した収差除去手段と、第2の線状集光部に設置した被測
定用試料を保持する試料保持手段と、該被測定用試料で
回折された軟X線の光量を測定する光量測定手段と、前
記収差除去手段と被測定用試料の間に設置され、軟X線
を波長分散し、前記光量測定手段上で波長ごとに波長分
散方向に垂直な方向に線状集光する回折格子とからなり
、被測定用試料上で前記トロイダル反射鏡と回折格子と
の協働作用によって、軟X線を波長分散方向に線状集光
することを特徴とするレーザープラズマ軟X線用分光回
折装置。
[Claim 1] Laser plasma soft X-ray generating means;
A condensing optical means having a toroidal reflecting mirror that linearly condenses the generated soft X-rays at two locations, an aberration removing means installed in the first linear condensing section, and a second linear condensing section. sample holding means for holding a sample to be measured installed in the sample to be measured; light amount measuring means for measuring the amount of light of soft X-rays diffracted by the sample to be measured; and installed between the aberration removing means and the sample to be measured. It consists of a diffraction grating that wavelength-disperses the soft X-rays and focuses the light in a line perpendicular to the wavelength dispersion direction for each wavelength on the light amount measuring means, and performs diffraction with the toroidal reflecting mirror on the sample to be measured. A spectroscopic diffraction device for laser plasma soft X-rays, which is characterized by linearly focusing soft X-rays in the wavelength dispersion direction through cooperation with a grating.
【請求項2】  レーザープラズマ軟X線発生手段と、
発生した軟X線を線状に集光するシリンドリカル反射鏡
又は球面鏡を有する集光光学手段と、線状集光部に設置
した収差除去手段と、被測定用試料を保持する試料保持
手段と、被測定用試料で回折された軟X線の光量を測定
する光量測定手段と、前記収差除去手段と被測定用試料
の間に設置され、軟X線を波長分散し、前記光量測定手
段上で波長ごとに波長分散方向に垂直な方向に線状集光
する回折格子と、該回折格子から前記被測定用試料へ入
射する軟X線を波長分散方向に線状の照射をするための
波長分軟方向に細長い孔を有する線状照射用スリットと
からなることを特徴とするレーザープラズマ軟X線用分
光回折装置。
[Claim 2] Laser plasma soft X-ray generating means;
a condensing optical means having a cylindrical reflecting mirror or a spherical mirror that condenses the generated soft X-rays into a linear shape; an aberration removing means installed in the linear condensing section; a sample holding means that holds a sample to be measured; a light amount measuring means for measuring the light amount of soft X-rays diffracted by the sample to be measured; A diffraction grating that linearly condenses light in a direction perpendicular to the wavelength dispersion direction for each wavelength, and a wavelength division for linearly irradiating soft X-rays incident on the sample to be measured from the diffraction grating in the wavelength dispersion direction. A spectroscopic diffraction device for laser plasma soft X-rays, comprising a linear irradiation slit having an elongated hole in the soft direction.
JP03089799A 1991-03-27 1991-03-27 Laser plasma soft X-ray spectroscopic diffractometer Expired - Fee Related JP3095446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03089799A JP3095446B2 (en) 1991-03-27 1991-03-27 Laser plasma soft X-ray spectroscopic diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03089799A JP3095446B2 (en) 1991-03-27 1991-03-27 Laser plasma soft X-ray spectroscopic diffractometer

Publications (2)

Publication Number Publication Date
JPH04299240A true JPH04299240A (en) 1992-10-22
JP3095446B2 JP3095446B2 (en) 2000-10-03

Family

ID=13980761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03089799A Expired - Fee Related JP3095446B2 (en) 1991-03-27 1991-03-27 Laser plasma soft X-ray spectroscopic diffractometer

Country Status (1)

Country Link
JP (1) JP3095446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502119A (en) * 2013-01-07 2016-01-21 ブルカー・エイエックスエス・インコーポレイテッドBruker AXS, Inc. Apparatus and method for surface mapping using in-plane oblique incidence diffraction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502119A (en) * 2013-01-07 2016-01-21 ブルカー・エイエックスエス・インコーポレイテッドBruker AXS, Inc. Apparatus and method for surface mapping using in-plane oblique incidence diffraction

Also Published As

Publication number Publication date
JP3095446B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US10295486B2 (en) Detector for X-rays with high spatial and high spectral resolution
US7245696B2 (en) Element-specific X-ray fluorescence microscope and method of operation
US9448190B2 (en) High brightness X-ray absorption spectroscopy system
Pikuz et al. Bragg X-ray optics for imaging spectroscopy of plasma microsources
US7646849B2 (en) Ultra-small angle x-ray scattering measuring apparatus
CN110530907B (en) X-ray absorption measurement system
US7600916B2 (en) Target alignment for X-ray scattering measurements
JP6392850B2 (en) Beam generating unit and X-ray small angle scattering apparatus
US20020003858A1 (en) Optical sample X-ray testing apparatus and method for testing optical sample with X-rays
US6529578B1 (en) X-ray condenser and x-ray apparatus
Ruggles et al. Measurements of 4–10 keV x-ray production with the Z-Beamlet laser
JP2004522966A (en) Arrangement applied to X-ray analyzer
JP2004333131A (en) Total reflection fluorescence xafs measuring apparatus
JPH04299240A (en) Spectroscopic diffraction apparatus for laser plasma soft x-rays
JP4257034B2 (en) X-ray analyzer for glazing emission conditions
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
WO2018072766A1 (en) Apparatus for spectrum and intensity profile characterization of a beam, use thereof and method thereof
Chapman et al. Capillary x-ray optics
JP2002333409A (en) X-ray stress measuring device
EP4160623A1 (en) Multi beam splitting and redirecting apparatus for a tomoscopic inspection apparatus, tomoscopic inspection apparatus and method for creating a three dimensional tomoscopic image of a sample
JP3673849B2 (en) Total reflection X-ray fluorescence analyzer
US20150185168A1 (en) Device for measuring resonant inelastic x-ray scattering of a sample
JPH1183766A (en) X-ray reflectivity measurement device
JPH0583122B2 (en)
JPH11201916A (en) Sample measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees