JPH04298971A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH04298971A
JPH04298971A JP3087646A JP8764691A JPH04298971A JP H04298971 A JPH04298971 A JP H04298971A JP 3087646 A JP3087646 A JP 3087646A JP 8764691 A JP8764691 A JP 8764691A JP H04298971 A JPH04298971 A JP H04298971A
Authority
JP
Japan
Prior art keywords
container body
sodium
battery
microresistor
failure occurs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3087646A
Other languages
Japanese (ja)
Inventor
Hiromochi Tsuji
博以 辻
Chikafumi Ihara
爾史 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3087646A priority Critical patent/JPH04298971A/en
Publication of JPH04298971A publication Critical patent/JPH04298971A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent a damage accident of a battery main unit by avoiding an overcharge by a dynamic current thereafter, in the case of generating trouble of solid electrolyte pipe damage or the like. CONSTITUTION:One end of a fine resistor 5, provided in a vessel main unit 1, is connected to a negative electrode terminal and also supporting a conducting part 6 in the other end contactlessly with the vessel main unit 1 by a stopper member 8, formed of a low melting point alloy fused by a temperature rise at the time of generating a fault, and by arranging a spring 7, assisting conduction at the time of fusing the stopper member 8, in the conducting part 6, the micro resistor 5 is conducted, in the case of generating the fault, to allow a dynamic current to flow in a bypass circuit. A bimetal 10 is used in place of the above-mentioned stopper member 8 or constituting the conducting part 6 of a shape memory alloy 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電池内に故障が発生した
場合に、それ以後の続流による過充電を回避して破壊等
の大事故を未然に防止することができるナトリウム−硫
黄電池に関するものである。
[Industrial Application Field] The present invention relates to a sodium-sulfur battery that can prevent major accidents such as destruction by avoiding overcharging caused by subsequent current when a failure occurs within the battery. It is something.

【0002】0002

【従来の技術】ナトリウム−硫黄電池は大型の収納容器
内に直列あるいは並列に多数個組み合わせて配列され、
大容量の据置型高温電池装置として300 〜350 
℃の高温度で運転されるものである。
[Prior Art] A large number of sodium-sulfur batteries are arranged in series or parallel in a large storage container.
300 to 350 as a large capacity stationary high temperature battery device
It is operated at high temperature of ℃.

【0003】ところが、このような高温電池装置におい
ては短絡事故等によって特定の単電池が固体電解質管の
破損等の故障を生ずる場合があり、この状態を放置して
おくと故障した単電池内へ周辺の健全な単電池から続流
と称される電流が引続き流れ込むこととなる。そして、
この続流による電流は過充電となって有効な仕事には使
われず発熱に消費される結果、内圧の上昇で単電池が破
壊され、この単電池を含む高温電池装置全体あるいは周
辺の高温電池装置をも巻き込んだ大規模な破損事故を発
生させるおそれがあるという問題点があった。
However, in such a high-temperature battery device, a specific cell may malfunction due to a short-circuit accident or the like, such as damage to the solid electrolyte tube, and if this condition is left untreated, water may leak into the faulty cell. A current called a follow-on current will continue to flow from nearby healthy cells. and,
The current caused by this follow-on current becomes overcharged and is not used for effective work but is consumed for heat generation. As a result, the cell is destroyed due to an increase in internal pressure, and the entire high-temperature battery device including this cell or the surrounding high-temperature battery device There was a problem in that there was a risk of causing a large-scale damage accident that also involved other people.

【0004】0004

【発明が解決しようとする課題】本発明は上記のような
従来の問題点を解決して、万が一、単電池の固体電解質
管が破損するような故障が発生した場合にも続流による
過充電を有効に回避して単電池自体の破壊を確実に防止
することができ、更には事故の拡大化を防止して大規模
な事故の発生を未然に防ぐことができる安全性に優れた
ナトリウム−硫黄電池を提供することを目的として完成
されたものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional problems and prevents overcharging due to follow-on current even if a failure such as damage to the solid electrolyte tube of a single cell occurs. Sodium has excellent safety and can effectively avoid damage and reliably prevent the destruction of the cell itself, as well as prevent the spread of accidents and prevent large-scale accidents from occurring. It was completed for the purpose of providing sulfur batteries.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、陽極端子と同一極性に保持した
容器本体の一部に、電池内の故障発生時の昇温により前
記容器本体に導通する微小抵抗体を設けたナトリウム−
硫黄電池であって、前記微小抵抗体の一端を陰極端子に
連結するとともに他端の導通部を故障発生時の昇温によ
り溶融する低融点合金からなるストッパー部材で容器本
体と非接触に支持し、前記導通部にはストッパー部材の
溶融時に該導通部を強制的に押圧して容器本体に導通さ
せるスプリングを配置したことを特徴とするナトリウム
−硫黄電池を第1の発明とし、陽極端子と同一極性に保
持した容器本体の一部に、電池内の故障発生時の昇温に
より前記容器本体に導通する微小抵抗体を設けたナトリ
ウム−硫黄電池であって、前記微小抵抗体の一端を陰極
端子に連結するとともに他端の導通部を故障発生時の昇
温により熱変形するバイメタルで容器本体と非接触に支
持し、前記導通部にはバイメタルの熱変形時に該導通部
を強制的に押圧して容器本体に導通させるスプリングを
配置したことを特徴とするナトリウム−硫黄電池を第2
の発明とし、陽極端子と同一極性に保持した容器本体の
一部に、電池内の故障発生時の昇温により前記容器本体
に導通する微小抵抗体を設けたナトリウム−硫黄電池で
あって、前記微小抵抗体の一端を陰極端子に連結すると
ともに他端には故障発生時の昇温により熱変形して容器
本体に接触・導通する形状記憶合金を容器本体とは非接
触に設けたことを特徴とするナトリウム−硫黄電池を第
3の発明とするものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and a part of the container main body, which is held in the same polarity as the anode terminal, is heated when a failure occurs in the battery. Sodium with a microresistance conductive to the main body
A sulfur battery, in which one end of the microresistor is connected to a cathode terminal, and the conductive part at the other end is supported without contact with the container body by a stopper member made of a low melting point alloy that melts when the temperature rises when a failure occurs. The first invention provides a sodium-sulfur battery, characterized in that a spring is disposed in the conductive part to forcibly press the conductive part to make it conductive to the container body when the stopper member melts, and the conductive part is the same as the anode terminal. A sodium-sulfur battery, in which a part of the container body maintained in polarity is provided with a microresistor that conducts to the container body when the temperature rises when a failure occurs in the battery, and one end of the microresistor is connected to a cathode terminal. At the same time, the conductive part at the other end is supported without contact with the container body by a bimetal that is thermally deformed by the temperature increase when a failure occurs, and the conductive part is forcibly pressed against the conductive part when the bimetal is thermally deformed. The second sodium-sulfur battery is characterized in that a spring is arranged to conduct electricity to the container body.
The present invention is a sodium-sulfur battery in which a part of the container body held in the same polarity as the anode terminal is provided with a microresistor that conducts to the container body when the temperature rises when a failure occurs in the battery, the sodium-sulfur battery comprising: One end of the microresistor is connected to the cathode terminal, and the other end is equipped with a shape memory alloy that is thermally deformed due to temperature rise in the event of a failure to contact and conduct electricity with the container body, without contacting the container body. The third invention is a sodium-sulfur battery.

【0006】[0006]

【実施例】次に本発明を図示の実施例について詳細に説
明する。図中、1は陽極活物質として溶融硫黄または多
硫化ナトリウム、陰極活物質として金属ナトリウムを用
いたナトリウム−硫黄電池の容器本体、2はその陽極端
子、3は陰極端子である。なお、前記の容器本体1はア
ルミニウム等の金属で形成されたうえ陽極端子2に導通
されており、該陽極端子2と同一の極性に保持されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained in detail with reference to the illustrated embodiments. In the figure, 1 is a container body of a sodium-sulfur battery using molten sulfur or sodium polysulfide as an anode active material and metallic sodium as a cathode active material, 2 is an anode terminal thereof, and 3 is a cathode terminal. The container body 1 is made of metal such as aluminum, is electrically connected to the anode terminal 2, and is maintained in the same polarity as the anode terminal 2.

【0007】前記容器本体1の底部には電池内の故障発
生時の昇温により容器本体1に導通する微小抵抗体5が
設けられているとともに、該微小抵抗体5の一端は陰極
端子3に連結されている。そして、該微小抵抗体5は3
00 〜350 ℃の正常運転時においては陽極状態に
ある容器本体1と導通しないよう、電気的に絶縁された
状態を保持されているとともに、万が一故障等が発生し
て固体電解質管が破壊され380〜440 ℃に昇温し
た場合には、前記容器本体1に導通させて単電池と並列
関係にあるバイパス回路を形成するものである。なお、
実施例においては前記微小抵抗体5の容器本体1との導
通部側を容器本体1の底部に設けてあるが、最も温度上
昇を明確にとらえられる場所であれば何れに設置しても
よいことはもちろんである。
A microresistor 5 is provided at the bottom of the container body 1 and is electrically connected to the container body 1 when the temperature rises when a failure occurs in the battery, and one end of the microresistor 5 is connected to the cathode terminal 3. connected. The microresistance element 5 is 3
During normal operation at 00 to 350 degrees Celsius, the tube is kept electrically insulated so as not to be electrically connected to the container body 1 which is in the anode state, and in the unlikely event that a failure occurs and the solid electrolyte tube is destroyed. When the temperature rises to ~440°C, the container body 1 is brought into conduction to form a bypass circuit in parallel with the cell. In addition,
In the embodiment, the conductive side of the microresistance element 5 with the container body 1 is provided at the bottom of the container body 1, but it may be installed in any location as long as the temperature rise can be most clearly detected. Of course.

【0008】第1の発明においては図2に示されるよう
に、前記の微小抵抗体5の容器本体1との導通部側は、
先端の導通部6がスプリング7の弾発下にあって、事故
発生時の昇温により溶融する低融点合金のストッパー部
材8で前記容器本体1と電気的絶縁状態を保持するよう
非接触に支持されている。そして、前記低融点合金とし
ては380 〜440 ℃において溶融する鉛、鉛−錫
合金、アルミ−亜鉛合金等が用いられ、該低融点合金が
電池内の故障発生時の昇温をキャッチすることにより溶
融し、前記導通部6をスプリング7の弾発力により容器
本体1側へ押し上げて導通するよう構成されている。な
お、前記ストッパー部材8と導通部6との間には正常運
転時において電気的絶縁状態を保持するようセラミック
ス等の絶縁材9が装着されている。
In the first invention, as shown in FIG. 2, the conductive portion side of the microresistor 5 with the container body 1 is
The conductive part 6 at the tip is under the spring force of the spring 7, and is supported in a non-contact manner so as to maintain an electrically insulated state from the container body 1 by a stopper member 8 made of a low melting point alloy that melts due to temperature rise when an accident occurs. has been done. As the low melting point alloy, lead, lead-tin alloy, aluminum-zinc alloy, etc., which melt at 380 to 440 degrees Celsius, are used. It is configured to melt and push the conductive portion 6 toward the container body 1 side by the elastic force of the spring 7 to establish conduction. Incidentally, an insulating material 9 such as ceramics is installed between the stopper member 8 and the conductive portion 6 so as to maintain an electrically insulated state during normal operation.

【0009】また、第2の発明においては図3に示され
るように、前記の微小抵抗体5の容器本体1との導通部
側は、先端の導通部6がスプリング7の弾発下にあって
、故障発生時の昇温により熱変形するバイメタル10で
前記容器本体1と電気的絶縁状態を保持するよう非接触
に支持されている。なお、前記バイメタル10と導通部
6との間には正常運転時において電気的絶縁状態を保持
するようセラミックス等の絶縁材9が装着されている。 また、第3の発明においては図4に示されるように、故
障発生時の昇温により熱変形して容器本体に接触・導通
する形状記憶合金が容器本体とは非接触に設けられてい
る。
Further, in the second aspect of the invention, as shown in FIG. The bimetal 10 is supported in a non-contact manner so as to be electrically insulated from the container body 1 by means of a bimetal 10 which is thermally deformed due to temperature rise when a failure occurs. Note that an insulating material 9 such as ceramics is installed between the bimetal 10 and the conductive portion 6 so as to maintain an electrically insulated state during normal operation. Further, in the third aspect of the invention, as shown in FIG. 4, a shape memory alloy is provided without contacting the container main body, which is thermally deformed by the temperature increase when a failure occurs and comes into contact with and conducts the container main body.

【0010】0010

【作用】以上のように構成されたものにおいては、断熱
容器内に直列あるいは並列に組み合わせて配列され従来
のものと同様に使用さるものであるが、万が一、短絡事
故等によって特定の単電池が故障した場合には次のとお
り該単電池の破壊事故を回避することとなる。すなわち
第1の発明においては、図5の等価回路図に示されるよ
うに例えば4本の単電池の直列群を複数個並列に配列し
たブロック内の特定の単電池A1が固体電解質管を破損
したとすると、該単電池A1の温度は約400 ℃まで
急激に上昇することとなる。すると、この温度上昇によ
り微小抵抗体5が陽極端子2と同一極性にある容器本体
1と導通して該容器本体1と陰極端子3との間に単電池
A1と並列なバイパス回路を形成することとなる。
[Operation] The above-constructed battery is arranged in series or parallel in an insulated container and used in the same way as conventional batteries, but in the unlikely event that a particular unit battery is damaged due to a short circuit or other accident. In the event of failure, destruction of the cell will be avoided as follows. That is, in the first invention, as shown in the equivalent circuit diagram of FIG. 5, for example, when a specific unit cell A1 in a block in which a plurality of series groups of four unit cells are arranged in parallel breaks the solid electrolyte tube. In this case, the temperature of the single cell A1 will rapidly rise to about 400°C. Then, due to this temperature rise, the micro resistor 5 becomes electrically conductive with the container body 1 having the same polarity as the anode terminal 2, and a bypass circuit in parallel with the cell A1 is formed between the container body 1 and the cathode terminal 3. becomes.

【0011】つまり、低融点合金からなるストッパー部
材8が溶融し、導通部6がスプリング7の弾発力により
強制的に押上げられて容器本体1に接触することにより
導通し、以後の周辺電池群からの続流をバイパス回路に
分散させることとなる。この結果、故障した単電池A1
への電流集中が緩和さることとなり、単電池A1内にお
ける異常発熱が有効に防止され内圧上昇が抑えられて破
壊事故が確実に防止されることとなる。
That is, the stopper member 8 made of a low melting point alloy melts, and the conductive portion 6 is forcibly pushed up by the elastic force of the spring 7 and comes into contact with the container body 1, so that it becomes conductive and the subsequent peripheral battery. The follow-on current from the group will be distributed to the bypass circuit. As a result, the failed cell A1
The concentration of current in the single cell A1 is alleviated, and abnormal heat generation within the cell A1 is effectively prevented, internal pressure rise is suppressed, and breakdown accidents are reliably prevented.

【0012】また、第2の発明においても380 〜4
40 ℃において熱変形するバイメタル10が電池内の
故障による昇温で拡開し、導通部6がスプリング7の弾
発力により強制的に押上げられて容器本体1に接触する
ことにより導通し、以後の周辺電池群からの続流をバイ
パス回路に分散させることとなる。また、第3の発明に
おいても380 〜440 ℃において熱変形する形状
記憶合金11が電池内の故障による昇温で先端部側を伸
張して容器本体1に接触することにより導通し、以後の
周辺電池群からの続流をバイパス回路に分散させること
となる。この結果、いずれも故障した単電池A1への電
流集中が緩和さることとなり、単電池A1内における異
常発熱が有効に防止され内圧上昇が抑えられて破壊事故
が確実に防止されることとなる。
[0012] Also in the second invention, 380 to 4
The bimetal 10, which is thermally deformed at 40° C., expands due to the rise in temperature due to a failure inside the battery, and the conductive portion 6 is forcibly pushed up by the elastic force of the spring 7 and comes into contact with the container body 1, thereby becoming conductive. Subsequent currents from the peripheral battery groups will be dispersed to the bypass circuit. Further, in the third invention as well, the shape memory alloy 11, which is thermally deformed at 380 to 440°C, expands its tip end side due to temperature rise due to a failure in the battery and contacts the container body 1, thereby becoming electrically conductive, and the subsequent surroundings become electrically conductive. The follow-on current from the battery group will be dispersed to the bypass circuit. As a result, the concentration of current to the faulty unit cell A1 is alleviated, and abnormal heat generation within the unit cell A1 is effectively prevented, internal pressure rise is suppressed, and breakdown accidents are reliably prevented.

【0013】このように、いずれかの単電池が万が一故
障したとしても事故の初期段階においてバイパス回路を
形成し、以後の続流をバイパス回路を通じて流すことに
より故障電池における電流集中を回避し単電池の破壊事
故、およびそれに起因する高温電池装置全体の大規模な
破壊事故を防止することとなる。
[0013] In this way, even if one of the cells should fail, a bypass circuit is formed at the initial stage of the accident, and the subsequent current flows through the bypass circuit, thereby avoiding current concentration in the faulty battery. This will prevent the destruction of the battery and the large-scale destruction of the entire high-temperature battery device caused by it.

【0014】[0014]

【発明の効果】以上の説明からも明らかなように、第1
〜第3の発明においては、故障が発生した場合にも続流
による過充電を有効に回避して単電池自体の破壊を確実
に防止することができ、更には事故の拡大化を防止して
大規模な事故の発生を未然に防ぐことができて、極めて
安全性に優れたものである。また、簡単な構造であって
生産性にも優れており安価に量産することができるとい
う利点も有する。よって、本発明は従来の問題点を一掃
したナトリウム−硫黄電池として、産業の発展に寄与す
るところは極めて大である。
[Effect of the invention] As is clear from the above explanation, the first
~ In the third invention, even if a failure occurs, overcharging due to follow-on current can be effectively avoided and destruction of the cell itself can be reliably prevented, and furthermore, the spread of the accident can be prevented. It is extremely safe and can prevent large-scale accidents from occurring. Further, it has the advantage that it has a simple structure, has excellent productivity, and can be mass-produced at low cost. Therefore, the present invention greatly contributes to the development of industry as a sodium-sulfur battery that eliminates the problems of the conventional battery.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】第1の発明の実施例を示す正面図である。FIG. 1 is a front view showing an embodiment of the first invention.

【図2】第1の発明の要部を示す切欠正面図である。FIG. 2 is a cutaway front view showing essential parts of the first invention.

【図3】第2の発明の要部を示す切欠正面図である。FIG. 3 is a cutaway front view showing essential parts of the second invention.

【図4】第3の発明の要部を示す切欠正面図である。FIG. 4 is a cutaway front view showing essential parts of the third invention.

【図5】本発明に係るナトリウム−硫黄電池で構成され
る高温電池装置の一部の等価回路図である。
FIG. 5 is an equivalent circuit diagram of a portion of a high-temperature battery device configured with a sodium-sulfur battery according to the present invention.

【符号の説明】[Explanation of symbols]

1  容器本体 2  陽極端子 3  陰極端子 5  微小抵抗体 6  導通部 7  スプリング 8  ストッパー部材 10  バイメタル 11  形状記憶合金 1 Container body 2 Anode terminal 3 Cathode terminal 5 Microresistor 6 Continuity part 7 Spring 8 Stopper member 10 Bimetal 11 Shape memory alloy

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  陽極端子と同一極性に保持した容器本
体の一部に、電池内の故障発生時の昇温により前記容器
本体に導通する微小抵抗体を設けたナトリウム−硫黄電
池であって、前記微小抵抗体の一端を陰極端子に連結す
るとともに他端の導通部を故障発生時の昇温により溶融
する低融点合金からなるストッパー部材で容器本体と非
接触に支持し、前記導通部にはストッパー部材の溶融時
に該導通部を強制的に押圧して容器本体に導通させるス
プリングを配置したことを特徴とするナトリウム−硫黄
電池。
1. A sodium-sulfur battery, in which a part of the container body held at the same polarity as the anode terminal is provided with a microresistor that conducts to the container body when the temperature rises when a failure occurs in the battery, comprising: One end of the microresistor is connected to the cathode terminal, and the conductive part at the other end is supported without contact with the container body by a stopper member made of a low melting point alloy that melts when the temperature rises when a failure occurs. A sodium-sulfur battery characterized in that a spring is disposed that forcibly presses the conductive portion to conduct the conductive portion to the container body when the stopper member melts.
【請求項2】  陽極端子と同一極性に保持した容器本
体の一部に、電池内の故障発生時の昇温により前記容器
本体に導通する微小抵抗体を設けたナトリウム−硫黄電
池であって、前記微小抵抗体の一端を陰極端子に連結す
るとともに他端の導通部を故障発生時の昇温により熱変
形するバイメタルで容器本体と非接触に支持し、前記導
通部にはバイメタルの熱変形時に該導通部を強制的に押
圧して容器本体に導通させるスプリングを配置したこと
を特徴とするナトリウム−硫黄電池。
2. A sodium-sulfur battery, in which a part of the container body held at the same polarity as the anode terminal is provided with a microresistor that conducts to the container body when the temperature rises when a failure occurs in the battery, comprising: One end of the microresistor is connected to the cathode terminal, and the conductive part at the other end is supported without contact with the container body by a bimetal that is thermally deformed by the temperature increase when a failure occurs, and the conductive part is A sodium-sulfur battery characterized in that a spring is disposed that forcibly presses the conductive portion to bring the conductive portion into conduction with the container body.
【請求項3】  陽極端子と同一極性に保持した容器本
体の一部に、電池内の故障発生時の昇温により前記容器
本体に導通する微小抵抗体を設けたナトリウム−硫黄電
池であって、前記微小抵抗体の一端を陰極端子に連結す
るとともに他端には故障発生時の昇温により熱変形して
容器本体に接触・導通する形状記憶合金を容器本体とは
非接触に設けたことを特徴とするナトリウム−硫黄電池
3. A sodium-sulfur battery, in which a part of the container body held at the same polarity as the anode terminal is provided with a microresistor that conducts to the container body when the temperature rises when a failure occurs in the battery, comprising: One end of the microresistor is connected to the cathode terminal, and the other end is provided with a shape memory alloy that is thermally deformed due to temperature rise when a failure occurs and contacts and conducts with the container main body without contacting the container main body. Features of sodium-sulfur battery.
JP3087646A 1991-03-27 1991-03-27 Sodium-sulfur battery Pending JPH04298971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087646A JPH04298971A (en) 1991-03-27 1991-03-27 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087646A JPH04298971A (en) 1991-03-27 1991-03-27 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPH04298971A true JPH04298971A (en) 1992-10-22

Family

ID=13920742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087646A Pending JPH04298971A (en) 1991-03-27 1991-03-27 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH04298971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773595A1 (en) * 1995-10-09 1997-05-14 Wako Electronics Co., Ltd. Safety device for use in secondary battery
KR100993553B1 (en) * 2004-09-14 2010-11-11 기아자동차주식회사 A battery terminal damage preventing structure in vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773595A1 (en) * 1995-10-09 1997-05-14 Wako Electronics Co., Ltd. Safety device for use in secondary battery
US5766793A (en) * 1995-10-09 1998-06-16 Wako Electronics Co., Ltd. Safety device for use in secondary battery
KR100993553B1 (en) * 2004-09-14 2010-11-11 기아자동차주식회사 A battery terminal damage preventing structure in vehicle

Similar Documents

Publication Publication Date Title
US8057928B2 (en) Cell cap assembly with recessed terminal and enlarged insulating gasket
KR100922471B1 (en) Protection Circuit Module of Secondary Battery and Secondary Battery using the same
EP2838138A1 (en) Current interrupter and electrical storage device using same
KR101812273B1 (en) Battery module including bus bar for cutting off current flowing
JP2010267615A (en) Rechargeable battery
KR101614434B1 (en) Battery cell with improved safety
KR20180091446A (en) Battery pack and busbar applied for the same
US11081764B2 (en) Battery module
JP2009076270A (en) Battery and power source system using it
KR20140135054A (en) Overcurrent shut-off device and Secondary battery comprising the same
JP2006012602A (en) Storage battery
JPS62210841A (en) Silicon diode device forming closed circuit for battery protection
CN104303336A (en) Secondary-battery connecting part, and battery module and battery pack including same
US4849806A (en) Shunting element
KR20180018279A (en) Cap assembly of excellent electrical safety for a secondary battery and the battery inclusive of the same
CN108511670A (en) A kind of cell electrode assemblies, cover plate assembly and battery
CN107093699B (en) Battery cover plate structure capable of being heated to short circuit and damaging explosion-proof film and battery
KR20140064093A (en) Battery module with improved safety and bus bar applied for the same
US20040092167A1 (en) Connection device for electric accumulator
KR20070067783A (en) Secondary battery
CN107482140B (en) Battery cover plate of external double-insurance protection device
JP3882267B2 (en) Battery power supply
JPH04298971A (en) Sodium-sulfur battery
US6229282B1 (en) Low-voltage-drop, spring-activated bypass of failed battery cell
CN115312981A (en) High-capacity battery shell, high-capacity battery with shell and series battery pack

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000204