JPH04297248A - Medical ultrasonic system - Google Patents

Medical ultrasonic system

Info

Publication number
JPH04297248A
JPH04297248A JP3061471A JP6147191A JPH04297248A JP H04297248 A JPH04297248 A JP H04297248A JP 3061471 A JP3061471 A JP 3061471A JP 6147191 A JP6147191 A JP 6147191A JP H04297248 A JPH04297248 A JP H04297248A
Authority
JP
Japan
Prior art keywords
sound wave
transmitter
focusing
output
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3061471A
Other languages
Japanese (ja)
Other versions
JP3235110B2 (en
Inventor
Shinichiro Umemura
晋一郎 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP06147191A priority Critical patent/JP3235110B2/en
Publication of JPH04297248A publication Critical patent/JPH04297248A/en
Application granted granted Critical
Publication of JP3235110B2 publication Critical patent/JP3235110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surgical Instruments (AREA)

Abstract

PURPOSE:To provide a mechanism which allows an intense sound wave irradiation by enabling the checking to see if a focusing intense sound wave is focused on a target treatment area or object accurately as collimated in a focusing sound wave treatment. CONSTITUTION:A transmitting output of a focusing intense sound wave transmitter is allowed to be modulated and a component of an output modulation frequency of the transmitter is extracted and displsyed from a received signal of an ultrasonic pulse transmitter/receiver with a scannable directivity constituting a part of the system. A focusing intense sound wave is made to overlap a pulse echo image by the transmission with the ultrasonic pulse transmitter/ receiver and displayed, thereby enabling the checking to see if the focusing intense sound wave is focused accurately on a target treatment area or object.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、悪性腫瘍の治療・結石
の治療等に好適な収束音波治療における超音波による照
準監視機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic aiming monitoring mechanism in convergent sound wave therapy suitable for the treatment of malignant tumors, stones, and the like.

【0002】0002

【従来の技術】収束強力音波照射による結石破砕治療や
悪性腫瘍治療装置は、手術によらない低侵襲度の治療術
、患者の術後の生活の質(Quality of Li
fe) を大切にする治療術として、今後もその社会的
価値がますます高まっていくと予想される。
[Prior Art] Stone crushing treatment and malignant tumor treatment devices using convergent high-intensity sound wave irradiation are minimally invasive treatment methods that do not involve surgery, and improve the quality of life of patients after surgery.
It is expected that its social value will continue to increase in the future as a treatment method that values FE).

【0003】このような収束強力音波照射による治療の
場合、収束強力音波を治療目標領域に正しく照準するこ
とが、安全上きわめて重要である。この目的にそって、
衝撃波照射による結石破砕治療装置に、超音波による照
準・監視機能を付加した従来例としては、米国特許48
21730 号のように超音波または衝撃波の送波口径
に撮像用の超音波プローブを組み込んだ装置が従来知ら
れている。このような装置では、治療効果を生ぜせしめ
るためにも、照準・監視のためにも、共に生体中で同様
に屈折する音波を用いるので、この自己整合性に依って
照準誤差を小さく抑えることができるという原理的利点
がある。
[0003] In the case of treatment using such convergent high-intensity sound wave irradiation, it is extremely important for safety to correctly aim the convergent high-intensity sound wave at the treatment target area. In line with this purpose,
U.S. Pat.
21730, a device in which an ultrasonic probe for imaging is incorporated in a transmitting aperture for ultrasonic waves or shock waves is conventionally known. Such devices use sound waves that are refracted in the same way in the living body both to produce a therapeutic effect and for aiming and monitoring, so this self-alignment makes it possible to keep aiming errors small. There is a theoretical advantage that it can be done.

【0004】0004

【発明が解決しようとする課題】上記技術によって、原
理的に小さな照準誤差の期待できる照準による、収束音
波治療が可能となったが、さらに1歩進めて、収束強力
音波が治療目標領域または物体に照準通りに正しく収束
されていることを確認の上で強力音波照射を行ない得る
ことが、治療の安全上、切望される。これを可能にする
機構を提供することを本発明の課題とする。
[Problems to be Solved by the Invention] The above technology has made it possible to perform convergent sound wave treatment using aiming that can be expected to have a small aiming error in principle. In terms of treatment safety, it is highly desirable to be able to irradiate powerful sound waves while confirming that the target is correctly focused. It is an object of the present invention to provide a mechanism that makes this possible.

【0005】[0005]

【課題を解決するための手段】音波が、媒質中の物体に
反射されたり吸収されたり散乱されたりすることにより
、物体を挟む前後で音波エネルギー密度に差が生ずると
、その物体は音波エネルギー密度が高い方から低い方へ
働く圧力、いわゆる放射圧を受ける。この放射圧による
生体の変位は、超音波診断装置程度の小さい時間平均パ
ワの音波が、肝臓などの実質臓器に照射されるときには
、全く無視できる程度の大きさである。しかしながら、
音波のパワが衝撃波結石破砕装置のように大きく、照準
すべき物体の音波反射率が結石のように大きな場合には
、この放射圧による物体の変位は充分に計測にかかる大
きさとなる。また、音波反射率は結石ほど大きくはない
が、肝臓などの実質臓器は、かなり大きな超音波吸収率
を持つので、悪性腫瘍の治療に用いられるような時間平
均パワの大きな収束超音波が照射されると、放射圧によ
る焦点付近の変位が計測可能な大きさとなる。この放射
圧による照準すべき物体の変位は、超音波パルスエコー
法に変調法を応用することにより計測することができ、
この方法を収束強力音波が治療目標領域に照準通りに正
しく収束されていることを確認する手段とすることがで
きる。
[Means for solving the problem] When a difference in sound wave energy density occurs before and after an object is sandwiched due to the sound waves being reflected, absorbed, or scattered by objects in the medium, the object has a high sound wave energy density. is subjected to pressure that acts from high to low, so-called radiation pressure. The displacement of the living body due to this radiation pressure is completely negligible when a solid organ such as the liver is irradiated with a sound wave having a time average power as small as that of an ultrasonic diagnostic device. however,
If the power of the sound wave is large, as in a shock wave lithotripter, and the sound wave reflectivity of the object to be aimed at is large, such as a stone, the displacement of the object due to this radiation pressure will be large enough to be measured. In addition, although the sound wave reflection rate is not as high as that of a stone, parenchymal organs such as the liver have a considerably high ultrasound absorption rate, so they cannot be irradiated with focused ultrasound waves with a high time-average power, such as those used in the treatment of malignant tumors. Then, the displacement near the focal point due to radiation pressure becomes large enough to be measured. The displacement of the object to be aimed at due to this radiation pressure can be measured by applying a modulation method to the ultrasonic pulse echo method.
This method can be used as a means to confirm that the focused high-intensity sound waves are properly focused on the treatment target area.

【0006】[0006]

【作用】衝撃波結石破砕装置から照射された音波の放射
圧による結石の変位は、上記従来例の照準・監視用超音
波撮像機能による動画像によっても容易に観察されるほ
ど大きなものであり、数mmの程度に達することもある
ことが知られている。従って、本発明の超音波パルスエ
コー法に変調法を応用した計測法によれば、収束衝撃波
の強度を大幅に落としても、変位を計測することができ
る。
[Operation] The displacement of stones due to the radiation pressure of the sound waves irradiated by the shock wave lithotripter is so large that it can be easily observed in the moving images using the above-mentioned conventional aiming and monitoring ultrasonic imaging function. It is known that it can reach the order of mm. Therefore, according to the measurement method in which the modulation method is applied to the ultrasonic pulse echo method of the present invention, displacement can be measured even if the intensity of the convergent shock wave is significantly reduced.

【0007】もうひとつの肝臓・乳腺などの実質臓器の
場合にどの程度の変位が得られるかについては、少し詳
しく説明する必要がある。上記のような実質臓器内に周
波数0.5 〜1MHzの収束超音波により、方位方向
直径2〜4mm、音響パワ密度100W/平方cm程度
の焦点スポットを形成する場合を考える。上記周波数の
超音波の実質臓器内減衰係数は10%/cmの程度であ
るので、焦点スポット中の組織は0.1N /立方cm
程度の大きさの体積力を受ける。実質臓器のずり弾性率
を10N/平方cmと仮定し、境界条件として焦点スポ
ットから方位方向に10cm離れた組織は変位しないと
仮定すると、焦点スポットに位置する組織は0.1mm
 程度変位すると見積もられる。また、一定焦点の超音
波照射が開始されてから、焦点付近の変位が一定となる
に要する時間は、生体組織の密度が1g/立方cm程度
であることから1〜100msecと見積もられる。
It is necessary to explain in some detail how much displacement can be obtained in the case of other real organs such as the liver and mammary glands. Let us consider the case where a focal spot with an azimuth direction diameter of 2 to 4 mm and an acoustic power density of about 100 W/cm2 is formed in a parenchymal organ as described above using focused ultrasound waves with a frequency of 0.5 to 1 MHz. Since the attenuation coefficient of ultrasonic waves of the above frequency in the parenchymal organ is about 10%/cm, the tissue in the focal spot is 0.1N/cubic cm.
receives a body force of a certain magnitude. Assuming that the shear modulus of the parenchymal organ is 10 N/cm2, and assuming that the tissue 10 cm away from the focal spot in the azimuth direction is not displaced as a boundary condition, the tissue located at the focal spot is 0.1 mm
It is estimated that the amount of displacement will vary. Further, since the density of living tissue is approximately 1 g/cm3, the time required for the displacement near the focal point to become constant after ultrasonic irradiation at a constant focus is started is estimated to be 1 to 100 msec.

【0008】上記のような収束音波照射による変位を感
度良く検出するために、撮像用超音波パルス送受波機構
を用いて照準すべき腫瘍組織や結石からの反射エコー信
号を計測する。そして、照射出力をオン・オフまたは増
減するか、送波焦点を循環的に変更することによるその
反射エコー信号の変動成分、すなわち、オン・オフ周期
または増減周期の成分、あるいは焦点変更周期の成分を
抽出して計測する。
[0008] In order to detect the displacement caused by the convergent sound wave irradiation as described above with high sensitivity, an imaging ultrasonic pulse transmitting/receiving mechanism is used to measure reflected echo signals from the tumor tissue or stone to be aimed at. Then, the fluctuation component of the reflected echo signal due to turning on/off or increasing/decreasing the irradiation output or cyclically changing the transmission focus, that is, the component of the on/off cycle or increase/decrease cycle, or the component of the focus change cycle. Extract and measure.

【0009】上記実質臓器の場合のような、従来方法で
は非変動成分に埋もれてしまって検出しにくい0.1m
m 程度の比較的小さな変位であっても、このような収
束照射音波の変調による変動成分を抽出する方法によれ
ば計測することができ、収束強力音波が治療目標領域に
照準通りに正しく収束されていることを確認することが
できる。また、結石破砕の場合であっても、収束衝撃波
の本照射に先立って、焦点が多少ずれていても副作用が
問題とならない小さめの強度の予備照射を行ない、上記
方法によって収束音波が目標の結石に照準通りに正しく
収束されていることを確認の上で、強力な本照射を行な
うことができる。
[0009] As in the case of the parenchymal organ described above, it is difficult to detect 0.1 m with the conventional method because it is buried in non-variable components.
Even relatively small displacements on the order of m can be measured using this method of extracting the fluctuation component due to modulation of the focused irradiated sound waves, and the focused powerful sound waves can be accurately focused on the treatment target area. You can confirm that In addition, even in the case of stone fragmentation, prior to the main irradiation of the convergent shock wave, preliminary irradiation is performed at a lower intensity so that side effects will not be a problem even if the focus is slightly shifted. After confirming that the target is correctly focused on the target, the main irradiation can be performed with high intensity.

【0010】0010

【実施例】以下、本発明の実施例を図1および図2を用
いて詳細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be explained in detail with reference to FIGS. 1 and 2.

【0011】収束強力音波送波器としてアレイ型送波器
を用い、超音波パルスエコー信号の変調成分検出方法と
して差分法を用いた場合の実施例のブロック図を図1に
示す。また、図中の超音波パルス送受波器を組み込んだ
収束強力音波送波器の上面図・側面図を図2(a)・(
b)に示す。
FIG. 1 shows a block diagram of an embodiment in which an array type transmitter is used as the convergent high-intensity sound wave transmitter and a differential method is used as the method for detecting the modulation component of the ultrasonic pulse echo signal. In addition, Figures 2(a) and 2(a) show the top and side views of the convergent strong sound wave transmitter incorporating the ultrasonic pulse transducer shown in the figure.
Shown in b).

【0012】このアレイ型収束強力音波送波器1は、強
力音波焦点の走査を必要最小限の送波器素子数Nにより
可能とするため、幾何学的フォーカスを有している。幾
何学的フォーカスは、送波器素子1−1〜1−Nを軽合
金製球殻上配置することによって与えられている。軽合
金製球殻5は、送波器素子からの効果的な放熱および送
波器圧電素子とカプリング用流体とのあいだの音響整合
、さらには、圧電素子の接地電極の働きを担っている。 主制御回路10により同期がとられた強力音波送波回路
11による制御にもとづいて強力音波送波出力のオン・
オフあるいは増減、さらには循環的な焦点走査などの出
力変調が行なわれる。出力変調周期は、照射対象生体組
織の機械的時定数を考慮して、1msec程度以上とす
ることにより、比較的大きな変位が得られる。
This array type convergent strong sound wave transmitter 1 has a geometric focus in order to enable scanning of the strong sound wave focus with the minimum number N of transmitter elements. Geometric focus is provided by arranging the transmitter elements 1-1 to 1-N on a light alloy spherical shell. The light alloy spherical shell 5 is responsible for effective heat dissipation from the transmitter element, acoustic matching between the transmitter piezoelectric element and the coupling fluid, and also serves as a ground electrode for the piezoelectric element. Based on the control by the strong sound wave transmission circuit 11 synchronized by the main control circuit 10, the strong sound wave transmission output is turned on and off.
Output modulation such as off, increase/decrease, or even cyclic focus scanning is performed. A relatively large displacement can be obtained by setting the output modulation period to approximately 1 msec or more in consideration of the mechanical time constant of the irradiation target biological tissue.

【0013】図1・図2の中の送受波器2は、通常のパ
ルス・エコー像撮像用セクタ・スキャン型アレイ送受波
器と基本的に同様の形式を有しており、音響整合層6を
備えている。図2の中(b)には、軽合金製球殻5およ
び音響整合層6を透視したときの図を示し、また、図の
煩雑さを避けるため、音響カップリング材は図2より省
略した。
The transducer 2 shown in FIGS. 1 and 2 has basically the same form as a normal sector scan type array transducer for pulse echo imaging, and has an acoustic matching layer 6. It is equipped with Part (b) of FIG. 2 shows a transparent view of the light alloy spherical shell 5 and the acoustic matching layer 6, and the acoustic coupling material has been omitted from FIG. 2 to avoid complication of the diagram. .

【0014】送受波器2により得られるパルス・エコー
信号は、通常のパルス・エコー像形成に用いられると同
時に、強力音波変調に同期した差分像形成にも用いられ
る。送受波器2と送受波回路13により受信されたエコ
ーは、受信フォーカス回路14においてフォーカスのた
めの遅延時間が与えられて互いに加算され、記憶回路2
0―1と20―2に一時的に記録される。記憶回路への
記録は、送波回路11による強力音波送波の変調に同期
して、無変位とみなせる時相のエコー信号を20―1に
、相対的に大きな変位が得られる時相のエコー信号を2
0―2に記録する。記憶回路20―1に記録された信号
は、そのまま表示回路16に入力されて通常の超音波パ
ルス・エコー像として表示される一方、記憶回路20―
2に記録された信号との差分が、差分回路15により演
算され、表示回路16に入力されて、差分像として表示
される。
The pulse echo signal obtained by the transducer 2 is used not only for normal pulse echo image formation, but also for differential image formation synchronized with strong acoustic wave modulation. The echoes received by the transducer 2 and the transceiver circuit 13 are given a delay time for focusing in the reception focus circuit 14, are added together, and are stored in the memory circuit 2.
Temporarily recorded in 0-1 and 20-2. Recording in the memory circuit is performed in synchronization with the modulation of the powerful sound wave transmitted by the wave transmitting circuit 11, and records echo signals in a time phase that can be regarded as non-displacement at 20-1, and echo signals in a time phase in which a relatively large displacement can be obtained. signal 2
Record 0-2. The signal recorded in the memory circuit 20-1 is directly input to the display circuit 16 and displayed as a normal ultrasonic pulse echo image, while the signal recorded in the memory circuit 20-1
The difference with the signal recorded in 2 is calculated by the difference circuit 15, inputted to the display circuit 16, and displayed as a difference image.

【0015】エコー信号の検波は、受信フォーカス回路
14においてフォーカス処理後に行なう方法と、表示回
路16において行なう方法とがある。後者の方が、記憶
回路20として大容量ものが要求されるが、深度方向の
変位に対して高い感度が得られる。また、差分像は、照
準の確認に利用しやすくするため、通常の超音波パルス
・エコー像に重畳させて、異なる表示色調,表示輝度特
性により表示する。また、収束強力音波による高調波発
生が、キャビテイションや非線形伝播現象に基づいて起
こり、送受波器13によって受信されるときも、上記差
分処理によりこれをより強調して検出・表示することが
できる。
There are two methods for detecting the echo signal: one method is to perform it in the reception focus circuit 14 after focus processing, and the other method is to perform it in the display circuit 16. The latter requires a larger capacity memory circuit 20, but provides higher sensitivity to displacement in the depth direction. Further, in order to make the difference image easier to use for checking aiming, the difference image is superimposed on a normal ultrasonic pulse/echo image and displayed with different display color tone and display brightness characteristics. Furthermore, even when harmonics are generated by convergent powerful sound waves based on cavitation or nonlinear propagation phenomena and are received by the transducer 13, this can be detected and displayed with greater emphasis through the above-mentioned differential processing. .

【0016】なお、以上では、収束強力音波送波器とし
て、アレイ型送波器を用いる例のみを示したが、単一フ
ォーカス型送波器を用いる場合でも、本発明を適用する
ことができる。しかし、この場合には、収束強力音波照
射出力を変調する方法として、照射出力をオン・オフま
たは増減する方法は同様に用いることができるが、送波
焦点を循環的に変更する方法を用いることは困難である
[0016] In the above, only an example in which an array type transmitter is used as a convergent strong sound wave transmitter is shown, but the present invention can also be applied to a case where a single focus type transmitter is used. . However, in this case, as a method of modulating the convergent high-intensity sound wave irradiation output, a method of turning on/off or increasing/decreasing the irradiation output can be similarly used, but a method of cyclically changing the transmission focal point can be used. It is difficult.

【0017】また、以上では、超音波パルス送受信機構
により得られる照準すべき生体組織や物体の反射信号か
ら、照射出力の変調に対応する変動成分を抽出する方法
として、差分法を用いる例のみを示したが、フーリエ解
析法を用いることもできる。すなわち、反射信号から、
変調周波数と等しい周波数のフーリエ成分を抽出する。 フーリエ解析法において変調と同相成分を抽出すること
は、差分法と実質的に等価である。ただし、フーリエ解
析法によれば、同相成分だけでなく直交成分をも必要に
したがって同時に検出することができる。
[0017] In addition, in the above, only an example in which the differential method is used as a method for extracting a fluctuation component corresponding to modulation of irradiation output from a reflected signal of a target biological tissue or object obtained by an ultrasonic pulse transmitting/receiving mechanism is described. Although shown, Fourier analysis can also be used. That is, from the reflected signal,
Extract the Fourier component with a frequency equal to the modulation frequency. Extracting modulation and in-phase components in the Fourier analysis method is substantially equivalent to the difference method. However, according to the Fourier analysis method, not only the in-phase component but also the orthogonal component can be simultaneously detected as required.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
強力音波が治療目標領域に収束されていることを監視確
認し、収束強力音波の確実な照準を行なうことが可能と
なり、収束強力音波治療の安全性を高めることができる
[Effects of the Invention] As explained above, according to the present invention,
It is possible to monitor and confirm that the powerful sound waves are converged on the treatment target area, and to reliably aim the focused high-power sound waves, thereby increasing the safety of the convergent high-power sound wave treatment.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例装置の構成のブロック図。FIG. 1 is a block diagram of the configuration of an apparatus according to an embodiment of the present invention.

【図2】図1の実施例において用いられる、超音波パル
ス送受波器を組み込んだ収束強力音波送波器の側面図(
a)および下面図(b)。
FIG. 2 is a side view of a convergent high-intensity sound wave transmitter incorporating an ultrasonic pulse transducer used in the embodiment of FIG.
a) and bottom view (b).

【符号の説明】[Explanation of symbols]

1―1,1―2,…,1−N…収束強力音波送波器振動
子素子、2―1,2―2,…,2−N…超音波パルス送
受波器振動子素子、5…軽金属製球殻、6…音響整合層
、7…背面制動層、10…主制御回路、11…強力音波
送波回路、12…超音波パルス送波制御回路、13…送
受波回路、14…受波フォーカス回路、15…差分回路
、16…表示回路、20…エコー信号記憶回路。
1-1, 1-2,..., 1-N... Convergent strong sound wave transmitter transducer element, 2-1, 2-2,..., 2-N... Ultrasonic pulse transducer transducer element, 5... Light metal spherical shell, 6... Acoustic matching layer, 7... Back damping layer, 10... Main control circuit, 11... Strong sonic wave transmitting circuit, 12... Ultrasonic pulse transmitting control circuit, 13... Wave transmitting/receiving circuit, 14... Receiving wave focus circuit, 15... difference circuit, 16... display circuit, 20... echo signal storage circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】フォーカス機構と送波出力を変調する手段
とを有する強力音波送波器と、走査可能な指向性をもつ
超音波パルス送受波器とを具備する医療用超音波装置に
おいて、上記送受波器の受信信号から、上記送波器の出
力変調周波数の成分を抽出する機構を有することを特徴
とする装置。
1. A medical ultrasonic device comprising a powerful sonic wave transmitter having a focus mechanism and a means for modulating the transmitted wave output, and an ultrasonic pulse transducer having directivity capable of scanning, the above-mentioned An apparatus characterized by having a mechanism for extracting a component of an output modulation frequency of the transducer from a received signal of the transducer.
【請求項2】特許請求の範囲第1項記載の装置において
、上記送波器の出力変調手段が、送波出力を断続または
増減する手段であることを特徴とする装置。
2. The apparatus according to claim 1, wherein the output modulating means of the transmitter is means for intermittent or increasing/decreasing the transmitted wave output.
【請求項3】特許請求の範囲第1項記載の装置において
、上記送波器の出力変調手段が、送波焦点を循環的に変
更する手段であることを特徴とする装置。
3. The apparatus according to claim 1, wherein the output modulation means of the transmitter is means for cyclically changing the transmission focal point.
JP06147191A 1991-03-26 1991-03-26 Medical ultrasonic device Expired - Fee Related JP3235110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06147191A JP3235110B2 (en) 1991-03-26 1991-03-26 Medical ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06147191A JP3235110B2 (en) 1991-03-26 1991-03-26 Medical ultrasonic device

Publications (2)

Publication Number Publication Date
JPH04297248A true JPH04297248A (en) 1992-10-21
JP3235110B2 JP3235110B2 (en) 2001-12-04

Family

ID=13172005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06147191A Expired - Fee Related JP3235110B2 (en) 1991-03-26 1991-03-26 Medical ultrasonic device

Country Status (1)

Country Link
JP (1) JP3235110B2 (en)

Also Published As

Publication number Publication date
JP3235110B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US9272162B2 (en) Imaging, therapy, and temperature monitoring ultrasonic method
US6984209B2 (en) Harmonic motion imaging
US6500121B1 (en) Imaging, therapy, and temperature monitoring ultrasonic system
US20030083595A1 (en) Method and apparatus for fetal audio stimulation
EP0551225A1 (en) Ultra-high-speed extracorporeal ultrasound hyperthermia treatment, method and device
US20070239007A1 (en) Ultrasound method for enhanced visualization of thermal lesions and other features of biological tissues
JP2008532607A (en) Microbubble generation technology for phase aberration correction
Wang et al. An improved chirp coded excitation based on compression pulse weighting method in endoscopic ultrasound imaging
Masotti Basic principles and advanced technological aspects of ultrasound imaging
WO2005071437A1 (en) Contrast dual frequency imaging
CN104582587A (en) Ultrasonic probe having gradient information and device for ultrasonic diagnosis and treatment using same
JPWO2019208767A1 (en) Ultrasonic system and control method of ultrasonic system
JPH04297248A (en) Medical ultrasonic system
Sinelnikov et al. Time reversal in ultrasound focusing transmitters and receivers
Garbi The general principles of echocardiography
JP2735266B2 (en) Pulse echo type ultrasonic device
JP3189293B2 (en) Ultrasound therapy equipment
JP3225526B2 (en) Ultrasound therapy equipment
JPH05300909A (en) Ultrasonic medical treatment system
Schafer et al. Development of a high intensity focused ultrasound (HIFU) hydrophone system
Ebbini et al. Self-guided ultrasound phased arrays for noninvasive surgery
JPH02149263A (en) Calculus crushing device of shock wave external type
Kuttruff et al. Application of ultrasound in medical diagnostics
Verma Ultrasound Transducers and Image Quality
SMITH Basic physics of ultrasound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees